

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c\bigcirc 2020 Society for Industrial and Applied Mathematics
Vol. 42, No. 2, pp. A1097--A1115

INTERPOLATIVE DECOMPOSITION BUTTERFLY
FACTORIZATION\ast

QIYUAN PANG\dagger , KENNETH L. HO\ddagger , AND HAIZHAO YANG\S

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This paper introduces a ``kernel-independent"" interpolative decomposition butterfly
factorization (IDBF) as a data-sparse approximation for matrices that satisfy a complementary low-
rank property. The IDBF can be constructed in O(N logN) operations for an N \times N matrix via
hierarchical interpolative decompositions (IDs) if matrix entries can be sampled individually and each
sample takes O(1) operations. The resulting factorization is a product of O(logN) sparse matrices,
each with O(N) nonzero entries. Hence, it can be applied to a vector rapidly in O(N logN) oper-
ations. IDBF is a general framework for nearly optimal fast matrix-vector multiplication (matvec),
which is useful in a wide range of applications, e.g., special function transformation, Fourier integral
operators, and high-frequency wave computation. Numerical results are provided to demonstrate the
effectiveness of the butterfly factorization and its construction algorithms.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . data-sparse matrix, butterfly factorization, interpolative decomposition, operator
compression, Fourier integral operators, high-frequency integral equations

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 44A55, 65R10, 65T50

\bfD \bfO \bfI . 10.1137/19M1294873

1. Introduction. One of the key computational tasks in scientific computing is
to rapidly evaluate dense matrix-vector multiplication (matvec). Given a dense matrix
K \in \BbbC N\times N and a vector x \in \BbbC N , it takes O(N2) operations to naively compute the
vector y = Kx \in \BbbC N . There has been extensive research on constructing data-sparse
representations of structured matrices (e.g., low-rank matrices [1, 2, 3, 4], \scrH matrices
[5, 6, 7], \scrH 2 matrices [8, 9], HSS matrices [10, 11], complementary low-rank matrices
[12, 13, 14, 15, 16, 17], FMM [18, 19, 20, 21, 22, 23, 24, 25], directional low-rank
matrices [26, 27, 28, 29], and the combination of these matrices [30, 31]) with the goal
of obtaining linear or nearly linear scaling matvec. In particular, this paper concerns
nearly optimal matvec for complementary low-rank matrices.

A wide range of transforms in harmonic analysis [13, 14, 32, 33, 34, 35] and integral
equations in the high-frequency regime [30, 31] admit a matrix or its submatrices
satisfying a complementary low-rank property. For a 1D complementary low-rank
matrix, its rows are typically indexed by a point setX \subset \BbbR and its columns by another
point set \Omega \subset \BbbR . Associated with X and \Omega are two trees TX and T\Omega constructed by
dyadic partitioning of each domain. Both trees have the same level L+1 = O(logN),
with the top root being the 1st level and the bottom leaf being the (L + 1)th level.
We say a matrix satisfies the complementary low-rank property if, for any node A at
level \ell in TX and any node B at level L+2 - \ell , the submatrix K\ell

A,B of K, obtained by
restricting the rows ofK to the points in node A and the columns to the points in node
B, is numerically low-rank; that is, given a precision \epsilon , there exists an approximation

\ast Submitted to the journal's Methods and Algorithms for Scientific Computing section October
22, 2019; accepted for publication (in revised form) January 16, 2020; published electronically April
9, 2020. This work was completed at the National University of Singapore, from which the third
author is currently on leave.

https://doi.org/10.1137/19M1294873
\dagger Mathematics Department, Purdue University, West Lafayette, IN 47907 (qpang@purdue.edu).
\ddagger Mathematics, Stanford University, Stanford, CA 94305 (klho@alumni.caltech.edu).
\S Mathematics Department, Purdue University, West Lafayette, IN 47907, and National University

of Singapore, Singapore (haizhao@purdue.edu).

A1097

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1137/19M1294873
mailto:qpang@purdue.edu
mailto:klho@alumni.caltech.edu
mailto:haizhao@purdue.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1098 QIYUAN PANG, KENNETH L. HO, AND HAIZHAO YANG

A wide range of transforms in harmonic analysis [13, 14, 32, 33, 34, 35], and integral equations
in the high-frequency regime [30, 31] admit a matrix or its submatrices satisfying a complementary
low-rank property. For a 1D complementary low-rank matrix, its rows are typically indexed by a
point set X ⊂ R and its columns by another point set Ω ⊂ R. Associated with X and Ω are two
trees TX and TΩ constructed by dyadic partitioning of each domain. Both trees have the same
level L+ 1 = O(logN), with the top root being the 1-th level and the bottom leaf level being the
(L+ 1)-th level. We say a matrix satisfies the complementary low-rank property if, for any node A
at level ` in TX and any node B at level L+2−`, the submatrix K`

A,B of K, obtained by restricting
the rows of K to the points in node A and the columns to the points in node B, is numerically
low-rank; that is, given a precision ε, there exists an approximation of K`

A,B with the 2-norm of
the error bounded by ε and the rank k bounded by a polynomial in logN and log 1/ε.

Points in X×Ω may be non-uniformly distributed. Hence, submatrices {K`
A,B}A,B at the same

level ` may have different sizes but they have almost the same rank. If the point distribution
is uniform, then at the `-th level starting from the root of TX , submatrices have the same size
N

2`−1 × 2`−1. See Figure 1 for an illustration of low-rank submatrices in a 1D complementary low-
rank matrix of size 16 × 16 with uniform point distributions in X and Ω. It is easy to generalize
the complementary low-rank matrices to higher dimensional space as in [16]. For simplicity, we
only present the IDBF for the 1D case with uniform point distributions and leave the extension for
non-uniform point distributions and higher dimensional cases to the reader.

Figure 1: Hierarchical decomposition of the row and column indices of a 16 × 16 matrix. The
dyadic trees TX and TΩ have roots containing 16 rows and 16 columns respectively, and their leaves
containing only a single row or column. The partition above indicates the complementary low-rank
property of the matrix, and assumes that each submatrix is rank-1.

This paper introduces an Interpolative Decomposition Butterfly Factorization (IDBF)
as a data-sparse approximation for kernel matrices that satisfy the complementary low-rank prop-
erty. The IDBF can be constructed in O(k

3

n0
N logN) operations for an N × N matrix K with a

local rank parameter k and a leaf size parameter n0 via hierarchical linear interpolative decompo-
sitions (IDs), if each matrix entry can be sampled individually in O(1) operations and the matrix
itself admits good prior proxy points. The resulting factorization is a product of O(logN) sparse

matrices, each of which contains O(k
2

n0
N) nonzero entries as follows:

K ≈ ULUL−1 · · ·UhShV h · · ·V L−1V L, (1)

where h = L/2 and the level L is assumed to be even. Hence, it can be applied to a vector rapidly

in O(k
2

n0
N logN) operations.

This paper mainly focuses on the kernel-independent butterfly factorization in the sense that
the factorization does not rely on the explicit formula of the kernel matrix K but assumes that the
kernel matrix K is the discretization of certain kernels, i.e., rows and columns are associated with
points in the discretization. Most previous work in the literature requires expensive precomputation
time, e.g., [13, 14, 16], which motivates the work in this paper. After the completion of this paper,
the authors became aware of a work [36] which addresses similar questions. The algorithm in

2

Fig. 1. Hierarchical decomposition of the row and column indices of a 16 \times 16 matrix. The
dyadic trees TX and T\Omega have roots containing 16 rows and 16 columns, respectively, and their leaves
contain only a single row or column. The partition above indicates the complementary low-rank
property of the matrix and assumes that each submatrix is rank-1.

of K\ell
A,B with the 2-norm of the error bounded by \epsilon and the rank k bounded by a

polynomial in logN and log 1/\epsilon .
Points inX\times \Omega may be nonuniformly distributed. Hence, submatrices \{ K\ell

A,B\} A,B

at the same level \ell may have different sizes, but they have almost the same rank. If
the point distribution is uniform, then at the \ell th level starting from the root of
TX , submatrices have the same size N

2\ell - 1 \times 2\ell - 1. See Figure 1 for an illustration of
low-rank submatrices in a 1D complementary low-rank matrix of size 16 \times 16 with
uniform point distributions in X and \Omega . It is easy to generalize the complementary
low-rank matrices to higher dimensional space as in [16]. For simplicity, we only
present interpolative decomposition butterfly factorization (IDBF) for the 1D case
with uniform point distributions and leave to the reader the extension to nonuniform
point distributions and higher dimensional cases.

This paper introduces IDBF as a data-sparse approximation for kernel matri-
ces that satisfy the complementary low-rank property. IDBF can be constructed in

O(k
3

n0
N logN) operations for an N \times N matrix K, with a local rank parameter k and

a leaf size parameter n0 via hierarchical linear interpolative decompositions (IDs), if
each matrix entry can be sampled individually in O(1) operations and the matrix itself
admits good prior proxy points. The resulting factorization is a product of O(logN)

sparse matrices, each of which contains O(k
2

n0
N) nonzero entries as follows:

(1) K \approx ULUL - 1 \cdot \cdot \cdot UhShV h \cdot \cdot \cdot V L - 1V L,

where h = L/2, and the level L is assumed to be even. Hence, it can be applied to a

vector rapidly in O(k
2

n0
N logN) operations.

This paper mainly focuses on the kernel-independent butterfly factorization in the
sense that the factorization does not rely on the explicit formula of the kernel matrix
K but assumes that the kernel matrix K is the discretization of certain kernels; i.e.,
rows and columns are associated with points in the discretization. Most previous work
in the literature requires expensive precomputation time, e.g., [13, 14, 16], which
motivates the work in this paper. After the completion of this paper, the authors
became aware of [36], which addresses similar questions. The algorithm in [36] was
also applied in [12, 30, 31], resulting in nearly linear scaling fast matvec therein.
The algorithm in [36] is organized slightly differently from our algorithm but shares
many aspects with it. In our algorithm, linear scaling IDs are applied to low-rank
submatrices instead of low-rank approximations based on a sampling technique in
[37], the latter of which might not be as accurate and stable as IDs since it shares the
same spirit of CUR decomposition.

2. Interpolative decomposition butterfly factorization. We will describe
IDBF in detail in this section. For the sake of simplicity, we assume that N = 2Ln0,

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IDBF A1099

where L is an even integer, and n0 = O(1) is the number of column or row indices
in a leaf in the dyadic trees of row and column spaces, i.e., TX and T\Omega , respectively.

Let us briefly introduce the main ideas of designing O(k
3

n0
N logN) IDBF using a

linear ID. In IDBF, we compute O(logN) levels of low-rank submatrix factorizations.
At each level, according to the matrix partition by the dyadic trees in column and
row (see Figure 1 for an example), there are N

n0
low-rank submatrices. Linear IDs

only require O(k3) operations for each submatrix, and hence at most O(k
3

n0
N) for

each level of factorization, and O(k
3

n0
N logN) for the whole IDBF. There are two

differences between IDBF and other BFs [12, 13, 14] as follows:
1. The order of factorization is from the leaf-root and root-leaf levels of matrix

partitioning (e.g., the left and right panels of Figure 1) and moves towards
the middle level of matrix partitioning (e.g., the middle panel of Figure 1).

2. Linear IDs are organized in an appropriate way such that it is cheap in terms
of both memory and operations to provide all necessary information for each
level of factorization.

In what follows, uppercase letters will generally denote matrices, while lowercase
letters c, p, q, r, and s denote ordered sets of indices. For a given index set c, its
cardinality is written | c| . Given a matrix A, the submatrix is Apq, Ap,q, or A(p, q),
with rows and columns restricted to the index sets p and q, respectively. We also use
the notation A:,q to denote the submatrix with columns restricted to q. s : t is an
index set containing indices \{ s, s+ 1, s+ 2, . . . , t - 1, t\} .

2.1. Linear scaling interpolative decompositions. Interpolative decompo-
sition and other low-rank decomposition techniques [1, 3, 38] are important elements
in modern scientific computing. These techniques usually require O(kmn) arithmetic
operations in order to obtain a rank k = O(1) matrix factorization that approximates
a matrix A \in \BbbC m\times n. Linear scaling randomized techniques can reduce the cost to
O(k(m + n)) [39]. The paper [40] further shows that in the CUR low-rank approxi-
mation A \approx CUR, where C = A:,c, R = Ar,:, and U \in \BbbC k\times k with | c| = | r| = k, if only
U , c, and r are needed, there exists an O(k3) algorithm for constructing U , c, and r.

In the construction of IDBF, we use an O(nk2) linear scaling column ID to con-
struct V , and we select skeleton indices q such that A \approx A:,qV when n \ll m. Similarly,
we can construct a row ID A \approx UAq,: in O(mk2) operations when m \ll n. As in
[39, 40], randomized sampling can be applied to reduce the quadratic computational
cost to linear. Here we present a simple lemma of ID to motivate the proposed linear
scaling ID.

Lemma 1. For a matrix A \in \BbbC m\times n with rank k \leq min\{ m,n\} , there exists a
partition of the column indices of A, p \cup q with | q| = k, and a matrix T \in \BbbC k\times (n - k),
such that A:,p = A:,qT .

Proof. A rank-revealing QR decomposition of A gives

(2) A\Lambda = QR = Q[R1 R2],

where Q \in \BbbC m\times k is an orthogonal matrix, R \in \BbbC k\times n is upper triangular, and \Lambda \in
\BbbC n\times n is a carefully chosen permutation matrix such that R1 \in \BbbC k\times k is nonsingular.
Let

(3) A:,q = QR1,

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1100 QIYUAN PANG, KENNETH L. HO, AND HAIZHAO YANG

and then let

(4) A:,p = QR2 = QR1R
 - 1
1 R2 = A:,qT,

where

(5) T = R - 1
1 R2.

A:,p = A:,qT in Lemma 1 is equivalent to the traditional form of a column ID,

(6) A = A:,q[I T]\Lambda \ast := A:,qV,

where \ast denotes the conjugate transpose of a matrix. We call p and q redundant and
skeleton indices, respectively. V can be understood as a column interpolation matrix.
Our goal for linear scaling ID is to construct in O(k2n) operations and O(kn) memory
the skeleton index set q, the redundant index set p, T , and \Lambda .

For a tall skinny matrix A, i.e., m \gg n, the rank-revealing QR decomposition of
A in (2) typically requires O(kmn) operations. To reduce the complexity to O(k2n),
we actually apply the rank-revealing QR decomposition to As,::

(7) As,:\Lambda = QR = Q[R1 R2],

where s is an index set containing tk carefully selected rows of A, where t is an
oversampling parameter. In many applications of interest, these rows can be chosen
independently and uniformly from the row space, as in the sublinear CUR in [40] or the
linear scaling algorithm in [39], or they can be chosen from the mock-Chebyshev grids
(the subset of points taken from a given equispaced set that are nearest neighbors
of actual Chebyshev nodes) of the row indices as in [17, 41, 42]. In fact, numerical
results show that mock-Chebyshev points lead to a more efficient and accurate ID
than randomly sampled points when matrices are from physical systems in a mesh
domain. After the rank-revealing QR decomposition, the other steps to generate T
and \Lambda take only O(k2n) operations since R1 in (5) is an upper triangular matrix.

In practice, the true rank of A is not available, i.e., k is unknown. In this case,
the above computation procedure should be applied with some test rank k \leq n.
Furthermore, we are often interested in an ID with a numerical rank k\epsilon specified by
an accuracy parameter \epsilon , i.e.,

(8) \| A - A:,qV \| 2 \leq O(\epsilon)

with T \in \BbbC k\epsilon \times (n - k\epsilon) and V \in \BbbC k\epsilon \times n. We can choose

(9) k\epsilon = min\{ k : R1(k, k) \leq \epsilon R1(1, 1)\} ,

where R1 is given by the rank-revealing QR factorization in (7). Then define

(10) T = (R1(1 : k\epsilon , 1 : k\epsilon))
 - 1[R1(1 : k\epsilon , k\epsilon + 1 : k) R2(1 : k\epsilon , :)] \in \BbbC k\epsilon \times (n - k\epsilon)

and
V = [I T]\Lambda \ast \in \BbbC k\epsilon \times n.

Correspondingly, let q be the index set such that

A:,q = QR1(1 : k\epsilon , 1 : k\epsilon),

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IDBF A1101

and let p be the complementary set of q; then q and V satisfy the requirement in (8).
We refer to this linear scaling column ID with an accuracy tolerance \epsilon and a rank
parameter k as (\epsilon , k)-cID. For convenience, we will drop the term (\epsilon , k) when it is not
necessary to specify it.

For a short and fat matrix A \in \BbbC m\times n with m \ll n, a similar row ID

(11) A \approx \Lambda [I T]\ast Aq,: := UAq,:

can be devised similarly with O(k2m) operations and O(km) memory. We refer to
this linear scaling row ID as \epsilon -rID and to U as the row interpolation matrix.

2.2. Leaf-root complementary skeletonization. For a complementary low-
rank matrix A, we introduce the leaf-root complementary skeletonization (LRCS)

A \approx USV

via cIDs of the submatrices corresponding to the leaf-root levels of the column-row
dyadic trees (e.g., see the associated matrix partition in Figure 2 (right)) and rIDs of
the submatrices corresponding to the root-leaf levels of the column-row dyadic trees
(e.g., see the associated matrix partition in Figure 2 (middle)). We always assume
that IDs in this section are applied with a rank parameter k = O(1). We will not
specify k again in the following discussion.

Suppose that at the leaf level of the row (and column) dyadic trees, the row index
set r (and the column index set c) of A are partitioned into leaves \{ ri\} 1\leq i\leq m (and
\{ ci\} 1\leq i\leq m) as follows:

(12) r = [r1, r2, . . . , rm] (and c = [c1, c2, . . . , cm]),

with | ri| = n0 (and | ci| = n0) for all 1 \leq i \leq m, where m = 2L = N
n0

,

L = log2 N - log2 n0, and L + 1 is the depth of the dyadic trees TX (and T\Omega).
Figure 2 shows examples of row and column dyadic trees with m = 16. We apply rID
to each Ari,: to obtain the row interpolation matrix in its ID and denote it as Ui; the
associated skeleton indices of the ID are denoted as \^ri \subset ri. Let

(13) \^r = [\^r1, \^r2, . . . , \^rm];

then A\^r,: is the important skeleton of A, and we have

A \approx

\left(

U1

U2

. . .

Um

\right)

\left(

A\^r1,c1 A\^r1,c2 . . . A\^r1,cm

A\^r2,c1 A\^r2,c2 . . . A\^r2,cm
...

...
. . .

...
A\^rm,c1 A\^rm,c2 . . . A\^rm,cm

\right)
 := UM.

Similarly, cID is applied to each A\^r,cj to obtain the column interpolation matrix
Vj and the skeleton indices \^cj \subset cj in its ID. Then, finally, we form the LRCS of A as

A \approx

\left(

U1

U2

. . .

Um

\right)

\left(

A\^r1,\^c1 A\^r1,\^c2 . . . A\^r1,\^cm

A\^r2,\^c1 A\^r2,\^c2 . . . A\^r2,\^cm
...

...
. . .

...
A\^rm,\^c1 A\^rm,\^c2 . . . A\^rm,\^cm

\right)

\left(

V1

V2

. . .

Vm

\right)

(14)

:= USV.

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1102 QIYUAN PANG, KENNETH L. HO, AND HAIZHAO YANG

A ≈

U1

U2

. . .

Um

Ar̂1,ĉ1 Ar̂1,ĉ2 . . . Ar̂1,ĉm
Ar̂2,ĉ1 Ar̂2,ĉ2 . . . Ar̂2,ĉm

...
...

. . .
...

Ar̂m,ĉ1 Ar̂m,ĉ2 . . . Ar̂m,ĉm

V1

V2

. . .

Vm

 := USV. (14)

For a concrete example, Figure 3 visualizes the non-zero pattern of the LRCS in (14) of the com-
plementary low-rank matrix A in Figure 2.

The novelty of the LRCS is that M and S are not computed explicitly; instead, they are
generated and stored via the skeleton of row and column index sets. Hence, it only takes O(k

3

n0
N)

operations and O(k
2

n0
N) memory to generate and store the factorization in (14), since there are

2m = 2N
n0

IDs in total.
It is worth emphasizing that in the LRCS of a complementary matrix A ≈ USV , the matrix

S is again a complementary matrix. The row (and column) dyadic tree T̂X (and T̂Ω) of S is the
compressed version of the row (and column) dyadic trees TX (and TΩ) of A. Figure 4 (or 5)
visualizes the relation of TX and T̂X (or TΩ and T̂Ω) for the complementary matrix A in Figure
2. T̂X (or T̂Ω) is not compressible at the leaf level of TX (or TΩ) but it is compressible if it is
considered as a dyadic tree with one depth less (see Figure 6 for an example of a new compressible
dyadic tree with one depth less).

=

=

Figure 2: The left matrix is a complementary low-rank matrix. Assume that the depth of the
dyadic trees of column and row spaces is 5. The middle figure visualizes the root-leaf partitioning
that divides the row index set into 16 continuous subsets as 16 leaves. The right one is for the
leaf-root partitioning that divides the column index set into 16 continuous subsets as 16 leaves.

≈

Figure 3: An example of the LRCS in (14) of the complementary low-rank matrix A in Figure 2.
Non-zero submatrices in (14) are shown in gray areas.

6

Fig. 2. The left matrix is a complementary low-rank matrix. Assume that the depth of the
dyadic trees of column and row spaces is 5. The middle figure visualizes the root-leaf partitioning
that divides the row index set into 16 continuous subsets as 16 leaves. The right figure shows the
leaf-root partitioning that divides the column index set into 16 continuous subsets as 16 leaves.

A ≈

U1

U2

. . .

Um

Ar̂1,ĉ1 Ar̂1,ĉ2 . . . Ar̂1,ĉm
Ar̂2,ĉ1 Ar̂2,ĉ2 . . . Ar̂2,ĉm

...
...

. . .
...

Ar̂m,ĉ1 Ar̂m,ĉ2 . . . Ar̂m,ĉm

V1

V2

. . .

Vm

 := USV. (14)

For a concrete example, Figure 3 visualizes the non-zero pattern of the LRCS in (14) of the com-
plementary low-rank matrix A in Figure 2.

The novelty of the LRCS is that M and S are not computed explicitly; instead, they are
generated and stored via the skeleton of row and column index sets. Hence, it only takes O(k

3

n0
N)

operations and O(k
2

n0
N) memory to generate and store the factorization in (14), since there are

2m = 2N
n0

IDs in total.
It is worth emphasizing that in the LRCS of a complementary matrix A ≈ USV , the matrix

S is again a complementary matrix. The row (and column) dyadic tree T̂X (and T̂Ω) of S is the
compressed version of the row (and column) dyadic trees TX (and TΩ) of A. Figure 4 (or 5)
visualizes the relation of TX and T̂X (or TΩ and T̂Ω) for the complementary matrix A in Figure
2. T̂X (or T̂Ω) is not compressible at the leaf level of TX (or TΩ) but it is compressible if it is
considered as a dyadic tree with one depth less (see Figure 6 for an example of a new compressible
dyadic tree with one depth less).

=

=

Figure 2: The left matrix is a complementary low-rank matrix. Assume that the depth of the
dyadic trees of column and row spaces is 5. The middle figure visualizes the root-leaf partitioning
that divides the row index set into 16 continuous subsets as 16 leaves. The right one is for the
leaf-root partitioning that divides the column index set into 16 continuous subsets as 16 leaves.

≈

Figure 3: An example of the LRCS in (14) of the complementary low-rank matrix A in Figure 2.
Non-zero submatrices in (14) are shown in gray areas.

6

Fig. 3. An example of the LRCS in (14) of the complementary low-rank matrix A in Figure 2.
Nonzero submatrices in (14) are shown in gray areas.

For a concrete example, Figure 3 visualizes the nonzero pattern of the LRCS in (14)
of the complementary low-rank matrix A in Figure 2.

The novelty of the LRCS is that M and S are not computed explicitly; instead,
they are generated and stored via the skeleton of row and column index sets. Hence,

it only takes O(k
3

n0
N) operations and O(k

2

n0
N) memory to generate and store the

factorization in (14), since there are 2m = 2N
n0

IDs in total.
It is worth emphasizing that in the LRCS of a complementary matrix A \approx USV ,

the matrix S is again a complementary matrix. The row (and column) dyadic trees
\^TX (and \^T\Omega) of S is the compressed version of the row (and column) dyadic trees TX

(and T\Omega) of A. Figure 4 (see also Figure 5) visualizes the relation of TX and \^TX (or T\Omega

and \^T\Omega) for the complementary matrix A in Figure 2. \^TX (or \^T\Omega) is not compressible
at the leaf level of TX (or T\Omega), but it is compressible if it is considered as a dyadic
tree with one depth less (see Figure 6 for an example of a new compressible dyadic
tree with one depth less).

2.3. Matrix splitting with complementary skeletonization. Here we de-
scribe another elementary idea of IDBF that is applied repeatedly: matrix splitting
with complementary skeletonization (MSCS). A complementary low-rank matrix A
(with row and column dyadic trees TX and T\Omega of depth L and with m = 2L leaves)
can be split into a 2\times 2 block matrix

(15) A =

\biggl(
A11 A12

A21 A22

\biggr)

according to the nodes of the second level of the dyadic trees TX and T\Omega (those nodes
right next to the root level). By the complementary low-rank property of A, we know

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IDBF A1103

Fig. 4. Left: The dyadic tree TX of the row space with leaves \{ ri\} 1\leq i\leq 16 denoted as in (12)
for the example in Figure 2. Right: Selected important rows \{ \^ri\} 1\leq i\leq 16 in (13) are marked in red
(level 5) and can be traced in previous levels (also marked in red in levels 1--4). Those important
rows of TX naturally form a compressed dyadic tree shown in red. (See online version for color.)

Fig. 5. Left: The dyadic tree T\Omega of the column space with leaves \{ ci\} 1\leq i\leq 16 denoted as in (12)
for the example in Figure 2. Right: Selected important rows \{ \^ci\} 1\leq i\leq 16 are marked in red (level 5)
and can be traced in previous levels (also marked in red in levels 1--4). Those important columns of
T\Omega naturally form a compressed dyadic tree shown in red. (See online version for color.)

Fig. 6. Left: The compressed dyadic tree of TX of the row space in Figure 4. Level 5 is not
compressible. Middle left: Combining adjacent leaves at level 5, i.e., \=ri = \^r2i - 1 \cup \^r2i, forms a
compressible dyadic tree with depth 4. Middle right: the compressed dyadic tree of T\Omega of the column
space in Figure 5. Level 5 is not compressible. Right: Combining adjacent leaves at level 5, i.e.,
\=ci = \^c2i - 1 \cup \^c2i, forms a compressible dyadic tree with depth 4.

that Aij is also complementary low-rank, for all i and j, with row and column dyadic
trees TX,ij and T\Omega ,ij of depth L - 1 and with m/2 leaves.

Suppose Aij \approx UijSijVij , for i, j = 1, 2, is the LRCS of Aij . Then A can be

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1104 QIYUAN PANG, KENNETH L. HO, AND HAIZHAO YANG

Fig. 7. The visualization of an MSCS of a complementary low-rank matrix A \approx USV with
dyadic trees of depth 5 and 16 leaf nodes as shown in Figure 2. Nonzero blocks in (16) are shown
in gray areas.

factorized as A \approx USV , where

U =

\biggl(
U11 U12

U21 U22

\biggr)
,

S =

\left(

S11

S21

S12

S22

\right)
 ,

V =

\left(

V11

V12

V21

V22

\right)
 .

(16)

The factorization in (16) is referred to as the MSCS in this paper. Recall that the
middle factor S is not explicitly computed, resulting in a linear scaling algorithm for
forming (16). Figure 7 visualizes the MSCS of the complementary low-rank matrix A
with dyadic trees of depth 5 and 16 leaf nodes shown in Figure 2.

2.4. Recursive matrix splitting with complementary skeletonization.
Now we apply MSCS recursively to get the full IDBF of a complementary low-rank
matrix A (with row and column dyadic trees TX and T\Omega of depth L and with m = 2L

leaves). As in (16), suppose we have constructed the first level of MSCS, and denote
it as

(17) A \approx ULSLV L

with

UL =

\biggl(
UL
11 UL

12

UL
21 UL

22

\biggr)
,

SL =

\left(

SL
11

SL
21

SL
12

SL
22

\right)
 ,

V L =

\left(

V L
11

V L
12

V L
21

V L
22

\right)
 ,

(18)

as in (16).

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IDBF A1105

Suppose that at the leaf level of the row and column dyadic trees, the row index
set r and the column index set c of A are partitioned into leaves \{ ri\} 1\leq i\leq m and
\{ ci\} 1\leq i\leq m as in (12). By the rIDs and cIDs applied in the construction of (17), we
have obtained skeleton index sets \^ri \subset ri and \^ci \subset ci. Then

(19) SL
ij =

\left(

A\^r(i - 1)m/2+1,\^c(j - 1)m/2+1

\cdot \cdot \cdot A\^r(i - 1)m/2+1,\^cjm/2

...
. . .

...
A\^rim/2,\^c(j - 1)m/2+1

\cdot \cdot \cdot A\^rim/2,\^cjm/2

\right)

for i, j = 1, 2.
As explained in section 2.2, each nonzero block SL

ij in SL is a submatrix of Aij

consisting of important rows and columns of Aij for i, j = 1, 2. Hence, SL
ij inherits

the complementary low-rank property of Aij and is itself a complementary low-rank
matrix. Suppose TX,ij and T\Omega ,ij are the dyadic trees of the row and column spaces
of Aij with m/2 leaves and L - 1 depth; then according to section 2.2, SL

ij has

compressible row and column dyadic trees \^TX,ij and \^T\Omega ,ij with m/4 leaves and L - 2
depth.

Next, we apply MSCS to each SL
ij in a recursive way. In particular, we divide

each SL
ij into a 2 \times 2 block matrix according to the nodes at the second level of its

row and column dyadic trees:

(20) SL
ij =

\Biggl(
(SL

ij)11 (SL
ij)12

(SL
ij)21 (SL

ij)22

\Biggr)
.

After constructing the LRCS of the (k, \ell)th block of SL
ij , i.e.,

(SL
ij)k\ell \approx (UL - 1

ij)k\ell (S
L - 1
ij)k\ell (V

L - 1
ij)k\ell for k, \ell = 1, 2,

we assemble matrices to obtain the MSCS of SL
ij as follows:

(21) SL
ij \approx UL - 1

ij SL - 1
ij V L - 1

ij ,

where

UL - 1
ij =

\biggl(
(UL - 1

ij)11 (UL - 1
ij)12

(UL - 1
ij)21 (UL - 1

ij)22

\biggr)
,

SL - 1
ij =

\left(

(SL - 1
ij)11

(SL - 1
ij)21

(SL - 1
ij)12

(SL - 1
ij)22

\right)
 ,

V L - 1
ij =

\left(

(V L - 1
ij)11

(V L - 1
ij)12

(V L - 1
ij)21

(V L - 1
ij)22

\right)
 ,

(22)

according to section 2.3.
Finally, we organize the factorizations in (21) for all i, j = 1, 2 to form a factor-

ization of SL as

(23) SL \approx UL - 1SL - 1V L - 1,

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1106 QIYUAN PANG, KENNETH L. HO, AND HAIZHAO YANG

Fig. 8. The visualization of the recursive MSCS of SL= UL - 1SL - 1V L - 1 in (23) when A is a
complementary low-rank matrix with dyadic trees of depth 5 and 16 leaf nodes as shown in Figure 2.

where

UL - 1 =

\left(

UL - 1
11

UL - 1
21

UL - 1
12

UL - 1
11

\right)
 ,

SL - 1 =

\left(

SL - 1
11

SL - 1
21

SL - 1
12

SL - 1
22

\right)
 ,

V L - 1 =

\left(

V L - 1
11

V L - 1
12

V L - 1
21

SL - 1
22

\right)
 ,

(24)

leading to a second level factorization of A:

A \approx ULUL - 1SL - 1V L - 1V L.

Figure 8 visualizes the recursive MSCS of SL in (23) when A is a complementary
low-rank matrix with dyadic trees of depth 5 and 16 leaf nodes as shown in Figure 2.

Comparing (17), (18), (23), and (24), we can see a fractal structure in each level
of the middle factor S\ell for \ell = L and L - 1. For example, in (24) (see Figure 8 for
its visualization), SL - 1 has four submatrices SL - 1

ij with the same structure as SL for

all i and j. SL - 1
ij can be factorized into a product of three matrices with the same

sparsity structure as the factorization SL \approx UL - 1SL - 1V L - 1. Hence, we can apply
MSCS recursively to each S\ell and assemble matrix factors hierarchically for \ell = L,
L - 1, . . . , L/2, to obtain

(25) A \approx ULUL - 1 \cdot \cdot \cdot UhShV h \cdot \cdot \cdot V L - 1V L,

where h = L/2. In the \ell th recursive MSCS, S\ell has 22(L - \ell +1) dense submatrices with
compressible row and column dyadic trees with m

22(L - \ell +1) leaves and depth L - 2(L -
\ell + 1). Hence, the recursive MSCS stops after h = L/2 iterations when Sh no longer
contains any compressible submatrix.

When S\ell is still compressible, since there are 22(L - \ell +1) dense submatrices
and each contains m

22(L - \ell +1) leaves, there are 22(L - \ell +1) m
22(L - \ell +1)m = N

n0
low-rank

submatrices to be factorized. Linear IDs only require O(k3) operations for each

low-rank submatrix, and hence at most O(k
3

n0
N) for each level of factorization, and

O(k
3

n0
N logN) for the whole IDBF.

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IDBF A1107

3. Numerical results. This section presents several numerical examples to
demonstrate the effectiveness of the algorithms proposed above. The first three
examples are complementary low-rank matrices coming from nonuniform Fourier
transforms, Fourier integral operators, and special function transforms. The last two
examples are hierarchical complementary matrices [30] from 2D Helmholtz boundary
integral methods in the high-frequency regime. All implementations were done are
in MATLAB on a server computer with a single thread and 3.2 GHz CPU. This new
framework will be incorporated into the ButterflyLab1 in the future.

Let \{ ud(x), x \in X\} and \{ ua(x), x \in X\} denote the results given by the direct
matrix-vector multiplication and the butterfly factorization. The accuracy of applying
the butterfly factorization algorithm is estimated by the relative error

(26) \epsilon a =

\sqrt{} \sum
x\in S | ua(x) - ud(x)| 2\sum

x\in S | ud(x)| 2 ,

where S is a point set of size 256 randomly sampled from X. In all of our examples,
the oversampling parameter t in the linear scaling ID is set to 1, and the number of
points in a leaf node is set to n0 = 8. Then the number of randomly sampled grid
points in the ID is equal to the rank parameter k, which we will here also call the
truncation rank.

Example 1. Our first example evaluates a 1D Fourier integral operator (FIO) of
the form

(27) u(x) =

\int

\BbbR
e2\pi \imath \Phi (x,\xi) \^f(\xi)d\xi ,

where \^f is the Fourier transform of f , and \Phi (x, \xi) is a phase function given by

(28) \Phi (x, \xi) = x \cdot \xi + c(x)| \xi | , c(x) = (2 + 0.2 sin(2\pi x))/16.

The discretization of (27) is

(29) u(xi) =
\sum

\xi j

e2\pi \imath \Phi (xi,\xi j) \^f(\xi j), i, j = 1, 2, . . . , N,

where \{ xi\} and \{ \xi j\} are uniformly distributed points in [0, 1) and [- N/2, N/2) fol-
lowing

(30) xi = (i - 1)/N and \xi j = j - 1 - N/2.

Equation (29) can be represented in matrix form as u = Kg, where ui = u(xi),

Kij = e2\pi \imath \Phi (xi,\xi j), and gj = \^f(\xi j). The matrix K satisfies the complementary low-
rank property with a rank parameter k independent of the problem size N when \xi is
sufficiently far away from the origin, as proved in [35, 43]. To make the presentation
simpler, we will directly apply IDBF to the whole K instead of performing a polar
transform as in [35] or applying IDBF hierarchically as in [43]. Hence, due to the
nonsmoothness of the \Phi (x, \xi) at \xi = 0, submatrices intersecting with or close to the
line \xi = 0 have a local rank increasing slightly in N , while other submatrices have
rank independent of N .

1Available at https://github.com/ButterflyLab.

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://github.com/ButterflyLab

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1108 QIYUAN PANG, KENNETH L. HO, AND HAIZHAO YANG

Figures 9--11 summarize the results of this example for different grid sizes N . To
compare IDs with mock-Chebyshev points and randomly selected points in different
cases, Figure 9 shows the results for tolerance \epsilon = 10 - 6 in (9) and when the truncation
rank k is the smallest size of a submatrix (i.e., k = min\{ m,n\} for a submatrix of size
m \times n); Figure 10 shows the results for \epsilon = 10 - 6 and k = 30; Figure 11 shows the
results for \epsilon = 10 - 15 and k = 30. Note that the accuracy of IDBF is expected to be
O(\epsilon), which may not be guaranteed, since the overall accuracy of IDBF is determined
by all IDs in a hierarchical manner. Furthermore, if the rank parameter k is too small
for some low-rank matrices, then the error of the corresponding ID will propagate
through the whole IDBF process and increase the error of the IDBF.

We see that the IDBF applied to the whole matrix K has O(N log2(N)) factor-
ization and application time in all cases with different parameters. The running time
agrees with the scaling of the number of nonzero entries required in the data-sparse
representation. In fact, when N is large enough, the number of nonzero entries in
the IDBF tends to scale as O(N logN), which means that the numerical scaling can
approach O(N logN) in both factorization and application when N is large enough.
IDBF via IDs with mock-Chebyshev points is much more accurate than IDBF via IDs
with random samples. The running times for three kinds of parameter pairs (\epsilon , k) are
almost the same. For the purpose of numerical accuracy, we prefer IDs with mock-
Chebyshev points with (\epsilon , k) = (10 - 15, 30). Hence, in later examples we will only
present numerical results for IDs with mock-Chebyshev points.

10 12 14 16 18

log
2

(N)

-15

-10

-5

0

5

10

lo
g

2
(t

im
e
)

BF fac

BF app

N log(N)

N log
2
(N)

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

16

18

20

22

24

26

28

lo
g

2
(n

n
z
)

nnz BF

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

-6

-5.8

-5.6

-5.4

-5.2

-5

-4.8

-4.6

lo
g

1
0

(e
rr

o
r)

err BF

10 12 14 16 18

log
2

(N)

-10

-5

0

5

10

lo
g

2
(t

im
e
)

BF fac

BF app

N log(N)

N log
2
(N)

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

16

18

20

22

24

26

28

lo
g

2
(n

n
z
)

nnz BF

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

lo
g

1
0

(e
rr

o
r)

err BF

Fig. 9. Numerical results for the FIO given in (29). The upper and lower portions of this
figure pertain to mock-Chebyshev sampling and uniformly random sampling, respectively. N is the
size of the matrix, nnz is the number of nonzero entries in the butterfly factorization, and err is
the approximation error of the IDBF matvec. \epsilon = 10 - 6, and k is the smallest size of a submatrix
(i.e., k = min\{ m,n\} for a submatrix of size m\times n).

Example 2. Next, we provide an example of a special function transform, the
evaluation of Schl\"omilch expansions [44] at gk = k - 1

N for 1 \leq k \leq N :

(31) uk =

N\sum

n=1

cnJ\nu (gk\omega n),

where J\nu is the Bessel function of the first kind with parameter \nu = 0, and \omega n = n\pi .
It is demonstrated in [13] that (31) can be represented via a matvec u = Kg, where

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IDBF A1109

10 12 14 16 18

log
2

(N)

-10

-5

0

5

10
lo

g
2

(t
im

e
)

BF fac

BF app

N log(N)

N log
2
(N)

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

16

18

20

22

24

26

28

lo
g

2
(n

n
z
)

nnz BF

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

-6

-5.5

-5

-4.5

-4

lo
g

1
0

(e
rr

o
r)

err BF

10 12 14 16 18

log
2

(N)

-10

-5

0

5

10

lo
g

2
(t

im
e
)

BF fac

BF app

N log(N)

N log
2
(N)

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

16

18

20

22

24

26

28

lo
g

2
(n

n
z
)

nnz BF

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

lo
g

1
0

(e
rr

o
r)

err BF

Fig. 10. Numerical results for the FIO given in (29). The upper and lower portions of this
figure pertain to mock-Chebyshev sampling and uniformly random sampling, respectively. N is the
size of the matrix, nnz is the number of nonzero entries in the butterfly factorization, and err is
the approximation error of the IDBF matvec. \epsilon = 10 - 6 and k = 30.

10 12 14 16 18

log
2

(N)

-8

-6

-4

-2

0

2

4

6

8

10

lo
g

2
(t

im
e
)

BF fac

BF app

N log(N)

N log
2
(N)

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

18

20

22

24

26

28

30

lo
g

2
(n

n
z
)

nnz BF

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

lo
g

1
0

(e
rr

o
r)

err BF

10 12 14 16 18

log
2

(N)

-10

-5

0

5

10

lo
g

2
(t

im
e
)

BF fac

BF app

N log(N)

N log
2
(N)

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

18

20

22

24

26

28

30

lo
g

2
(n

n
z
)

nnz BF

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

-8

-7

-6

-5

-4

-3

-2

lo
g

1
0

(e
rr

o
r)

err BF

Fig. 11. Numerical results for the FIO given in (29). The upper and lower portions of this
figure pertain to mock-Chebyshev sampling and uniformly random sampling, respectively. N is the
size of the matrix, nnz is the number of nonzero entries in the butterfly factorization, and err is
the approximation error of the IDBF matvec. \epsilon = 10 - 15 and k = 30.

K satisfies the complementary low-rank property. An arbitrary entry of K can be
calculated in O(1) operations [45], and hence IDBF is suitable for accelerating the
matvec u = Kg. Other, similar examples when \nu \not = 0 can be found in [44], and they
can also be evaluated by IDBF with the same operation counts.

Figure 12 summarizes the results of this example for different problem sizesN with
different parameter pairs (\epsilon , k). The results show that IDBF applied to this example
has O(N log2(N)) factorization and application time. The running time agrees with
the scaling of the number of nonzero entries required in the data-sparse representation
to guarantee the approximation accuracy. In fact, whenN is large enough, the number

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1110 QIYUAN PANG, KENNETH L. HO, AND HAIZHAO YANG

10 12 14 16 18

log
2

(N)

-15

-10

-5

0

5

10
lo

g
2

(t
im

e
)

BF fac

BF app

N log(N)

N log
2
(N)

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

18

20

22

24

26

28

lo
g

2
(n

n
z
)

nnz BF

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

-4

-3.5

-3

-2.5

lo
g

1
0

(e
rr

o
r)

err BF

10 12 14 16 18

log
2

(N)

-15

-10

-5

0

5

10

lo
g

2
(t

im
e
)

BF fac

BF app

N log(N)

N log
2
(N)

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

18

20

22

24

26

28

lo
g

2
(n

n
z
)

nnz BF

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

-5.6

-5.4

-5.2

-5

-4.8

-4.6

-4.4

-4.2

-4

lo
g

1
0

(e
rr

o
r)

err BF

10 12 14 16 18

log
2

(N)

-15

-10

-5

0

5

10

lo
g

2
(t

im
e
)

BF fac

BF app

N log(N)

N log
2
(N)

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

18

20

22

24

26

28

30

lo
g

2
(n

n
z
)

nnz BF

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

lo
g

1
0

(e
rr

o
r)

err BF

Fig. 12. Numerical results for the Schl\"omilch expansions given in (31). N is the size of
the matrix, nnz is the number of nonzero entries in the butterfly factorization, and err is the
approximation error of the IDBF matvec. Top row: (\epsilon , k) = (10 - 6,min\{ m,n\}). Middle row: (\epsilon , k) =
(10 - 6, 30). Bottom row: (\epsilon , k) = (10 - 15, 30).

of nonzero entries in the IDBF tends to scale as O(N logN), which means that the
numerical scaling can approachO(N logN) in both factorization and application when
N is large enough.

Example 3. In this example, we consider the 1D nonuniform Fourier transform
as follows:

(32) uk =

N\sum

n=1

e - 2\pi \imath xn\omega kgn,

for 1 \leq k \leq N , where xn is randomly selected in [0, 1), and \omega k is randomly selected
in [- N

2 ,
N
2) according to uniform distributions in these intervals.

Figure 13 summarizes the results of this example for different grid sizes N with
different parameter pairs (\epsilon , k). Numerical results show that IDBF admits at most
O(N log2(N)) factorization and application time for the nonuniform Fourier trans-
form. The running time agrees with the scaling of the number of nonzero entries
required in the data-sparse representation. In fact, when N is large enough, the num-
ber of nonzero entries in the IDBF tends to scale as O(N logN), which means that
the numerical scaling can approach O(N logN) in both factorization and application
when N is large enough.

Example 4. The fourth example is from the electric field integral equation (EFIE)
for analyzing scattering from a two-dimensional curve. Using the method of moments

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IDBF A1111

10 12 14 16 18

log
2

(N)

-10

-5

0

5

10
lo

g
2

(t
im

e
)

BF fac

BF app

N log(N)

N log
2
(N)

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

16

18

20

22

24

26

28

lo
g

2
(n

n
z
)

nnz BF

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

-6

-5.8

-5.6

-5.4

-5.2

-5

-4.8

lo
g

1
0

(e
rr

o
r)

err BF

10 12 14 16 18

log
2

(N)

-10

-5

0

5

10

lo
g

2
(t

im
e
)

BF fac

BF app

N log(N)

N log
2
(N)

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

16

18

20

22

24

26

28

lo
g

2
(n

n
z
)

nnz BF

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

-6.5

-6

-5.5

-5

-4.5

-4

lo
g

1
0

(e
rr

o
r)

err BF

10 12 14 16 18

log
2

(N)

-8

-6

-4

-2

0

2

4

6

8

10

lo
g

2
(t

im
e
)

BF fac

BF app

N log(N)

N log
2
(N)

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

18

20

22

24

26

28

30

lo
g

2
(n

n
z
)

nnz BF

N log(N)

N log
2
(N)

10 12 14 16 18

log
2

(N)

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

lo
g

1
0

(e
rr

o
r)

err BF

Fig. 13. Numerical results for the NUFFT given in (32). N is the size of the matrix, nnz is
the number of nonzero entries in the butterfly factorization, and err is the approximation error of
the IDBF matvec. Top row: (\epsilon , k) = (10 - 6,min\{ m,n\}). Middle row: (\epsilon , k) = (10 - 6, 30). Bottom
row: (\epsilon , k) = (10 - 15, 30).

on a linear segmentation of the curve, the EFIE takes the form [12]

Zx = b,

where Z is an impedance matrix with (up to scaling)

Zij =

\Biggl\{
wiwjH

(2)
0 (\kappa | \rho i - \rho j |) if i \not = j,

w2
i

\bigl[
1 - i 2\pi ln

\bigl(
\gamma \kappa wi

4e

\bigr) \bigr]
if i = j,

where e \approx 2.718, \gamma \approx 1.781 is the exponential of the Euler--Mascheroni constant,

\kappa = 2\pi /\lambda 0 is the wavenumber, \lambda 0 represents the free-space wavelength, H
(2)
0 denotes

the zeroth-order Hankel function of the second kind, wi is the length of the ith linear
segment of the scatterer object, and \rho i is the center of the ith segment.

It was shown in [12, 30] that Z admits a HODLR-type complementary low-
rank property; i.e., off-diagonal blocks are complementary low-rank matrices. As
we mentioned in section 1, [12] compresses and applies the impedance matrix within
O(N log2 N) operations. Based on [12], the authors of [30] developed an O(N1.5 logN)
direct solver, which leverages a randomized butterfly scheme to compress blocks cor-
responding to near- and far-field interactions, to invert the impedance matrix. The
construction of the direct solver also involves fast matvec of complementary low-rank
matrices. To show the potential application of IDBF in the direct solver, we use IDBF
to compress and apply the impedance matrix.

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1112 QIYUAN PANG, KENNETH L. HO, AND HAIZHAO YANG

-2 -1 0 1 2

-4

-3

-2

-1

0

1

2

3

4

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)

Fig. 14. The two scatterers used in Examples 4 and 5. (a) A spiral object. (b) A round object
with a hole in center which is the port.

10 12 14 16

log
2

(N)

-10

-5

0

5

10

15

lo
g

2
(t

im
e
)

Time HSSBF fac

N log
2
(N)

N log
3
(N)

Time HSSBF app

N log
2
(N)

N log
3
(N)

10 12 14 16

log
2

(N)

18

19

20

21

22

23

24

25

26

27

lo
g

2
(n

n
z
)

nnz BF

N log(N)

N log
2
(N)

10 12 14 16

log
2

(N)

-4.65

-4.6

-4.55

-4.5

-4.45

-4.4

lo
g

1
0

(e
rr

o
r)

err HSSBF

Fig. 15. Numerical results for the 2D EFIE. N is the size of the matrix, nnz is the number of
nonzero entries in the butterfly factorization, and err is the approximation error of the matvec by
hierarchically applying IDBF.

Figure 15 shows the results of the fast matvec of the impedance matrix from
a 2D EFIE generated with a spiral object, as shown in Figure 14(a). We vary the
number of segments N and let \kappa = O(N) in the construction of Z. In the IDBF,
we use truncation rank k = 10 and tolerance \epsilon = 10 - 4 in IDs with mock-Chebyshev
points. Numerical results verify the O(N log2(N)) scaling for both the factorization
and application of the new HODLR-type butterfly factorization by IDBF.

Example 5. The fifth example is from the combined field integral equation (CFIE).
Similarly to the ideas in [12, 30] for EFIE, we verify that the impedance matrix of the
CFIE2 by the method of moments for analyzing scattering from 2D objects also admits
a HODLR-type complementary low-rank property. Applying a HODLR-type butterfly
factorization by IDBF, we obtain O(N log2(N)) scaling for both the factorization and
application time for impedance matrices of CFIEs. This makes it possible to design
efficient iterative solvers to solve the linear system for the impedance matrix. Figure
16 shows the results of the fast matvec of the impedance matrix from a 2D CFIE
generated with a round object as shown in Figure 14(b). We vary grid sizes N
with truncation rank k = 10 and tolerance \epsilon = 10 - 4 in IDs with mock-Chebyshev
points. Numerical results verify the O(N log2(N)) scaling for both the factorization
and application of the new HODLR-type butterfly factorization by IDBF.

4. Conclusion and discussion. This paper introduces IDBF as a data-sparse
approximation of complementary low-rank matrices. It represents such an N \times N
dense matrix as a product of O(logN) sparse matrices. The factorization and applica-
tion time and the memory of IDBF all scale as O(N logN). The order of factorization

2Codes for generating the impedance matrix are from MATLAB package ``emsolver"" available at
https://github.com/dsmi/emsolver.

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://github.com/dsmi/emsolver

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IDBF A1113

10 12 14 16

log
2

(N)

-10

-5

0

5

10

15

lo
g

2
(t

im
e
)

Time HSSBF fac

N log
2
(N)

N log
3
(N)

Time HSSBF app

N log
2
(N)

N log
3
(N)

10 12 14 16

log
2

(N)

19

20

21

22

23

24

25

26

27

28

lo
g

2
(n

n
z
)

nnz BF

N log(N)

N log
2
(N)

10 12 14 16

log
2

(N)

-4.6

-4.5

-4.4

-4.3

-4.2

-4.1

-4

-3.9

lo
g

1
0

(e
rr

o
r)

err HSSBF

Fig. 16. Numerical results for the 2D CFIE. N is the size of the matrix, nnz is the number of
nonzero entries in the butterfly factorization, and err is the approximation error of the matvec by
hierarchically applying IDBF.

is from the leaf-root and root-leaf levels of matrix partitioning (e.g., the left and right
panels in Figure 1) and moves towards the middle level of matrix partitioning (e.g.,
the middle panel of Figure 1). Other orders of factorization are also possible, e.g., an
order from the root of the column space to its leaves, an order from the root of the
row space to its leaves, or an order from the middle level towards two sides. We leave
the extensions of these O(N logN) IDBFs to the reader.

As shown by numerical examples, IDBF is able to construct the data-sparse rep-
resentation of the HODLR-type complementary matrix in [30] in nearly linear scaling.
These matrices arise widely in 2D high-frequency integral equation methods. By com-
parison of IDBF based on CUR and mock-Chebyshev points, we show that the IDBF
with mock-Chebyshev points is more accurate and could be a good alternative to the
factorization method in [30], since the factorization method in [30] shares the same
spirit of IDBF based on CUR. IDBF could also improve the factorization accuracy
of the hierarchical complementary matrix in [31] for 3D high-frequency boundary
integral methods.

REFERENCES

[1] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217--288, https://doi.org/10.1137/090771806.

[2] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, A fast randomized algorithm for the
approximation of matrices, Appl. Comput. Harmon. Anal., 25 (2008), pp. 335--366.

[3] H. Cheng, Z. Gimbutas, P. G. Martinsson, and V. Rokhlin, On the compression of low
rank matrices, SIAM J. Sci. Comput., 26 (2005), pp. 1389--1404, https://doi.org/10.1137/
030602678.

[4] M. W. Mahoney and P. Drineas, CUR matrix decompositions for improved data analysis,
Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 697--702.

[5] W. Hackbusch, A sparse matrix arithmetic based on \scrH -matrices I: Introduction to \scrH -matrices,
Computing, 62 (1999), pp. 89--108.

[6] L. Lin, J. Lu, and L. Ying, Fast construction of hierarchical matrix representation from
matrix-vector multiplication, J. Comput. Phys., 230 (2011), pp. 4071--4087.

[7] L. Grasedyck and W. Hackbusch, Construction and arithmetics of H-matrices, Computing,
70 (2003), pp. 295--334.

[8] W. Hackbusch and S. B\"orm, Data-sparse approximation by adaptive \scrH 2-matrices, Comput-
ing, 69 (2002), pp. 1--35.

[9] W. Hackbusch, B. Khoromskij, and S. A. Sauter, On H2-matrices, in Lectures on Applied
Mathematics, H.-J. Bungartz, R. H. W. Hoppe, and C. Zenger, eds., Springer, Berlin, 2000,
pp. 9--29.

[10] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisep-
arable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953--976.

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1137/090771806
https://doi.org/10.1137/030602678
https://doi.org/10.1137/030602678

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1114 QIYUAN PANG, KENNETH L. HO, AND HAIZHAO YANG

[11] P. G. Martinsson, A fast randomized algorithm for computing a hierarchically semiseparable
representation of a matrix, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1251--1274, https:
//doi.org/10.1137/100786617.

[12] E. Michielssen and A. Boag, A multilevel matrix decomposition algorithm for analyzing
scattering from large structures, Proc. IEEE Trans. Antennas Propagation, 44 (1996),
pp. 1086--1093.

[13] M. O'Neil, F. Woolfe, and V. Rokhlin, An algorithm for the rapid evaluation of special
function transforms, Appl. Comput. Harmon. Anal., 28 (2010), pp. 203--226.

[14] Y. Li, H. Yang, E. R. Martin, K. L. Ho, and L. Ying, Butterfly factorization, Multiscale
Model. Simul., 13 (2015), pp. 714--732, https://doi.org/10.1137/15M1007173.

[15] Y. Li and H. Yang, Interpolative butterfly factorization, SIAM J. Sci. Comput., 39 (2017),
pp. A503--A531, https://doi.org/10.1137/16M1074941.

[16] Y. Li, H. Yang, and L. Ying, Multidimensional butterfly factorization, Appl. Comput. Har-
mon. Anal., 44 (2018), pp. 737--758.

[17] H. Yang, A Unified Framework for Oscillatory Integral Transform: When to Use NUFFT or
Butterfly Factorization?, preprint, https://arxiv.org/abs/1803.04128, 2018.

[18] V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions, J.
Comput. Phys., 86 (1990), pp. 414--439.

[19] V. Rokhlin, Diagonal forms of translation operators for the Helmholtz equation in three di-
mensions, Appl. Comput. Harmon. Anal., 1 (1993), pp. 82--93.

[20] H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge, J. Huang,
V. Rokhlin, N. Yarvin, and J. Zhao, A wideband fast multipole method for the Helmholtz
equation in three dimensions, J. Comput. Phys., 216 (2006), pp. 300--325.

[21] R. Coifman, V. Rokhlin, and S. Wandzura, The fast multipole method for the wave equation:
A pedestrian prescription, IEEE Antennas Propagation Mag., 35 (1993), pp. 7--12.

[22] E. Darve, The fast multipole method I: Error analysis and asymptotic complexity, SIAM J.
Numer. Anal., 38 (2000), pp. 98--128, https://doi.org/10.1137/S0036142999330379.

[23] M. A. Epton and B. Dembart, Multipole translation theory for the three-dimensional Laplace
and Helmholtz equations, SIAM J. Sci. Comput., 16 (1995), pp. 865--897, https://doi.org/
10.1137/0916051.

[24] J. Song, C.-C. Lu, and W. C. Chew, Multilevel fast multipole algorithm for electromag-
netic scattering by large complex objects, IEEE Trans. Antennas Propagation, 45 (1997),
pp. 1488--1493.

[25] V. Minden, K. L. Ho, A. Damle, and L. Ying, A recursive skeletonization factorization
based on strong admissibility, Multiscale Model. Simul., 15 (2017), pp. 768--796, https:
//doi.org/10.1137/16M1095949.

[26] L. Ying, Fast directional computation of high frequency boundary integrals via local FFTs,
Multiscale Model. Simul., 13 (2015), pp. 423--439, https://doi.org/10.1137/140985123.

[27] B. Engquist and L. Ying, A fast directional algorithm for high frequency acoustic scattering
in two dimensions, Commun. Math. Sci., 7 (2009), pp. 327--345.

[28] B. Engquist and L. Ying, Fast directional multilevel algorithms for oscillatory kernels, SIAM
J. Sci. Comput., 29 (2007), pp. 1710--1737, https://doi.org/10.1137/07068583X.

[29] M. Messner, M. Schanz, and E. Darve, Fast directional multilevel summation for oscillatory
kernels based on Chebyshev interpolation, J. Comput. Phys., 231 (2012), pp. 1175--1196.

[30] Y. Liu, H. Guo, and E. Michielssen, An HSS matrix-inspired butterfly-based direct solver for
analyzing scattering from two-dimensional objects, IEEE Antennas Wireless Propagation
Lett., 16 (2017), pp. 1179--1183.

[31] H. Guo, Y. Liu, J. Hu, and E. Michielssen, A butterfly-based direct integral-equation solver
using hierarchical LU factorization for analyzing scattering from electrically large conduct-
ing objects, IEEE Trans. Antennas Propagation, 65 (2017), pp. 4742--4750.

[32] D. S. Seljebotn, Wavemoth-fast spherical harmonic transforms by butterfly matrix compres-
sion, Astrophys. J. Suppl. Ser., 199 (2012), 5.

[33] M. Tygert, Fast algorithms for spherical harmonic expansions, III, J. Comput. Phys., 229
(2010), pp. 6181--6192.

[34] J. Bremer and H. Yang, Fast Algorithms for Jacobi Expansions via Nonoscillatory Phase
Functions, preprint, https://arxiv.org/abs/1803.03889, 2018.

[35] E. Cand\`es, L. Demanet, and L. Ying, A fast butterfly algorithm for the computation of
Fourier integral operators, Multiscale Model. Simul., 7 (2009), pp. 1727--1750, https://doi.
org/10.1137/080734339.

[36] E. Michielssen and A. Boag, Multilevel evaluation of electromagnetic fields for the rapid
solution of scattering problems, Microw. Opt. Technol. Lett., 7 (1994), pp. 790--795.D

ow
nl

oa
de

d
04

/1
8/

20
 to

 1
37

.1
32

.1
23

.6
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/100786617
https://doi.org/10.1137/100786617
https://doi.org/10.1137/15M1007173
https://doi.org/10.1137/16M1074941
https://arxiv.org/abs/1803.04128
https://doi.org/10.1137/S0036142999330379
https://doi.org/10.1137/0916051
https://doi.org/10.1137/0916051
https://doi.org/10.1137/16M1095949
https://doi.org/10.1137/16M1095949
https://doi.org/10.1137/140985123
https://doi.org/10.1137/07068583X
https://arxiv.org/abs/1803.03889
https://doi.org/10.1137/080734339
https://doi.org/10.1137/080734339

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IDBF A1115

[37] O. M. Bucci and G. Franceschetti, On the degrees of freedom of scattered fields, IEEE
Trans. Antennas Propagation, 37 (1989), pp. 918--926.

[38] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, and M. Tygert, Randomized
algorithms for the low-rank approximation of matrices, Proc. Natl. Acad. Sci. USA, 104
(2007), pp. 20167--20172.

[39] B. Engquist and L. Ying, A fast directional algorithm for high frequency acoustic scattering
in two dimensions, Commun. Math. Sci., 7 (2009), pp. 327--345.

[40] J. Chiu and L. Demanet, Sublinear randomized algorithms for skeleton decompositions, SIAM
J. Matrix Anal. Appl., 34 (2013), pp. 1361--1383, https://doi.org/10.1137/110852310.

[41] P. Hoffman and K. C. Reddy, Numerical differentiation by high order interpolation, SIAM
J. Sci. Statist. Comput., 8 (1987), pp. 979--987, https://doi.org/10.1137/0908079.

[42] J. P. Boyd and F. Xu, Divergence (Runge phenomenon) for least-squares polynomial ap-
proximation on an equispaced grid and mock Chebyshev subset interpolation, Appl. Math.
Comput., 210 (2009), pp. 158--168.

[43] Y. Li, H. Yang, and L. Ying, A multiscale butterfly algorithm for multidimensional Fourier
integral operators, Multiscale Model. Simul., 13 (2015), pp. 614--631, https://doi.org/10.
1137/140997658.

[44] A. Townsend, A fast analysis-based discrete Hankel transform using asymptotic expansions,
SIAM J. Numer. Anal., 53 (2015), pp. 1897--1917, https://doi.org/10.1137/151003106.

[45] J. Bremer, An algorithm for the rapid numerical evaluation of Bessel functions of real orders
and arguments, Adv. Comput. Math., 45 (2019), pp. 173--211.

D
ow

nl
oa

de
d

04
/1

8/
20

 to
 1

37
.1

32
.1

23
.6

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1137/110852310
https://doi.org/10.1137/0908079
https://doi.org/10.1137/140997658
https://doi.org/10.1137/140997658
https://doi.org/10.1137/151003106

	Introduction
	Interpolative decomposition butterfly factorization
	Linear scaling interpolative decompositions
	Leaf-root complementary skeletonization
	Matrix splitting with complementary skeletonization
	Recursive matrix splitting with complementary skeletonization

	Numerical results
	Conclusion and discussion
	References

