

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MULTISCALE MODEL. SIMUL. c© 2016 Society for Industrial and Applied Mathematics
Vol. 14, No. 1, pp. 42–64

A TECHNIQUE FOR UPDATING HIERARCHICAL
SKELETONIZATION-BASED FACTORIZATIONS

OF INTEGRAL OPERATORS∗

VICTOR MINDEN† , ANIL DAMLE† , KENNETH L. HO‡ , AND LEXING YING§

Abstract. We present a method for updating certain hierarchical factorizations for solving
linear integral equations with elliptic kernels. In particular, given a factorization corresponding to
some initial geometry or material parameters, we can locally perturb the geometry or coefficients
and update the initial factorization to reflect this change with asymptotic complexity that is poly-
logarithmic in the total number of unknowns and linear in the number of perturbed unknowns.
We apply our method to the recursive skeletonization factorization and hierarchical interpolative
factorization and demonstrate scaling results for a number of different two-dimensional (2D) problem
setups.

Key words. factorization updating, local perturbations, hierarchical factorizations, integral
equations

AMS subject classifications. 65R20, 15A23, 65F30

DOI. 10.1137/15M1024500

1. Introduction. In engineering and the physical sciences, many fundamental
problems of interest can be expressed as an integral equation (IE) of the form

a(x)u(x) + b(x)

∫
Ω

K(x, y)c(y)u(y) dy = f(x), x ∈ Ω ⊂ R
d,(1.1)

where a(x), b(x), and c(x) are given functions typically representing material param-
eters, u(x) is the unknown function to be determined, K(x, y) is some integral kernel,
f(x) is some known right-hand side, and the dimension d = 2 or 3. Typically, K(x, y)
is associated with some underlying elliptic partial differential equation (i.e., it is the
Green’s function or its derivative), and it thus tends to be singular at x = y.

Discretizing the integral operator in (1.1) with N degrees of freedom (DOFs) via,
e.g., the collocation, Nyström, or Galerkin method reduces our problem to solving a
linear system,

Gu = f,(1.2)

∗Received by the editors June 5, 2015; accepted for publication (in revised form) October 22,
2015; published electronically January 6, 2016.

http://www.siam.org/journals/mms/14-1/M102450.html
†Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA

94305 (vminden@stanford.edu, damle@stanford.edu). The first author is supported by a U.S. De-
partment of Energy Computational Science Graduate Fellowship under grant DE-FG02-97ER25308.
The second author is partially supported by a National Science Foundation Graduate Research Fel-
lowship under grant DGE-1147470 and a Simons Graduate Research Assistantship.

‡Department of Mathematics, Stanford University, Stanford, CA 94305 (klho@stanford.edu). This
author is supported by a National Science Foundation Mathematical Sciences Postdoctoral Research
Fellowship under grant DMS-1203554.

§Department of Mathematics and Institute for Computational and Mathematical Engineering,
Stanford University, Stanford, CA 94305 (lexing@math.stanford.edu). This author is partially sup-
ported by the National Science Foundation under award DMS-1328230 and the U.S. Department of
Energy’s Advanced Scientific Computing Research program under award DE-FC02-13ER26134/DE-
SC0009409.

42

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/mms/14-1/M102450.html
mailto:vminden@stanford.edu
mailto:damle@stanford.edu
mailto:klho@stanford.edu
mailto:lexing@math.stanford.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

UPDATING HIERARCHICAL FACTORIZATIONS 43

where the matrix G ∈ CN×N is dense and u ∈ CN and f ∈ CN here are to be
interpreted as discretized versions of u(x) and f(x) in (1.1). For a concrete example,
in the case of simple piecewise-constant collocation with {xj} as the set of collocation
points, the discretization of (1.1) becomes

a(xi)ui + b(xi)
∑
j

Kijc(xj)uj = f(xj),(1.3)

which we solve for ui ≈ u(xi) with

Kij ≈
∫
Ωj

K(xi, y) dy,(1.4)

where Ωj is the local collocation subdomain of xj . In this case, the matrix G in (1.2)
has entries Gij = a(xi)δij + b(xi)Kijc(xj) with δij the Kronecker delta, and we see
that the off-diagonal structure of G is essentially dictated by the discretized kernel
Kij .

Given disjoint sets of unknowns I and I ′ corresponding to point sets {xj}j∈I
and {xj}j∈I′ that are physically separated, we assume that the corresponding off-
diagonal subblocks G(I, I ′) and G(I ′, I) are numerically low-rank. For example, this
is well known to be the case for elliptic kernels where K(x, y) is smooth away from
x = y. This observation is the cornerstone of a number of fast (linear or quasi-linear
time complexity) direct algorithms for factoring G and solving (1.2) using hierarchical
spatial subdivision to expose and take advantage of the inherent physical structure of
the underlying problem.

1.1. Problem statement. In this paper, we consider a sequence of problems
of the form (1.1) that are related through localized perturbations. By a localized
perturbation we mean that, given a matrix G discretizing the original problem and
a matrix Ḡ discretizing the new problem, there is a small local subdomain Ω̃ ⊂ Ω
such that for all index sets I and I ′ with corresponding points all not in the modified
subdomain Ω̃, we have

Ḡ(I, I ′) = G(I, I ′).(1.5)

Put simply, blocks of the system matrix that correspond to DOFs away from the
modifications are unchanged. Such local perturbations include (but are not limited
to)

• localized geometric perturbations (see Figure 1), wherein the domain of inte-
gration Ω is modified and therefore a subset of discretization points of Ω may
move or discretization points may be added or removed, and

• localized coefficient perturbations, wherein the material parameters a(x),
b(x), or c(x) are modified in a local region.

By a sequence of localized updates, we mean that we are interested in applications
where there are a number of localized perturbations

G = G(1) → G(2) → · · · → G(i−1) → G(i) → . . . ,(1.6)

and each perturbation G(i−1) → G(i) is localized to some subdomain Ω̃i that we allow
to be different for each i. Such sequences of problems can arise, e.g., in the case of
design problems where the physical system described by the linear operator is a device
that we want to design in an effort to optimize some objective function. We make the
following observations.

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

44 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

Fig. 1. As an example of a localized perturbation to the geometry, we start with the quasi-
one-dimensional (quasi-1D) domain Ω = Γ1, the square with rounded corners following the dashed
curve. Then, for updating we adjust the rounding parameter to obtain Ω′ = Γ2, the square with the
sharper, solid corners.

• Localized perturbations lead to a global low-rank modification in the sense
that entire rows and columns of the new matrix G(i) are different from the
corresponding rows and columns in G(i−1), if such a correspondence even
exists.

• Because each perturbation can be localized to a different subdomain, for large
i the matrix G(i) is not necessarily given by a low-rank modification to G.

Because the perturbations we consider take advantage of the same physical struc-
ture used in the construction of hierarchical factorizations (i.e., spatial locality), it
is not unreasonable to believe it might be possible to take a hierarchical factoriza-
tion of G(i−1) and update it to obtain a hierarchical factorization of G(i). This is
what the method we describe in this work accomplishes in an efficient way for certain
factorizations.

1.2. Background. Fast direct solvers for solving the linear systems arising from
discretized integral equations via the compression of low-rank blocks exist in a number
of different forms. The seminal work in such compressed representations is the H- and
H2-matrices of Hackbusch et al. [14, 16, 15], which provide an important theoretical
framework but in practice exhibit large constant factors in the asymptotic scaling.

A hierarchical compression framework designed more explicitly to solve discretized
elliptic integral equations dates back at least to [21] based on observations in [24] and
[13] and has since been utilized and refined by a number of different authors (see,
e.g., [12, 10, 17, 19]). We refer to methods using this framework as “skeletonization-
based” since at their core they employ the interpolative decomposition for compression
using the skeletonization process described in [6]. Conceptually, these methods are
closely related to methods for systems involving so-called hierarchically semiseparable
(HSS) matrices (see, e.g., [3, 4, 26]), and recent work has explicitly combined the HSS
and skeletonization frameworks [7]. Notable related schemes employing similar ideas
include [5, 1, 2].

The idea of updating matrix factorizations to solve sequences of related systems
is not a new one. For example, in the linear programming community it is common
practice to maintain an LU factorization of a sparse matrixA that permits the addition
or deletion of rows/columns of A, or a general rank-one update; see [9]. Further, it is
well known how to update the QR factorization of a matrix after any of those same
operations; see [11].

The updating techniques described above, however, do not apply to fast hierar-
chical factorizations. Updating factorizations in the H-matrix format in response to
local modifications has been previously studied in [8], wherein a process similar to

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

UPDATING HIERARCHICAL FACTORIZATIONS 45

this work is used to update the representation of the forward operator, which allows
for a postprocessing step to obtain the updated inverse in the same format. Updating
of the skeletonization-based formats we consider here has not appeared thus far in
the literature, and, as we show, these formats admit efficient one-pass updating.

In the case where the number of unknowns does not change and Ω̃k is the same
for all k, it is possible to order the unknowns in an LU decomposition such that those
that will be modified are eliminated last, as in [23], which can be used to update LU
factorizations for IE design problems where only one small portion of the geometry is
to be changed across all updates. Similarly, if the total number of unknowns modified
between G and G(i) is small and one is interested only in solving systems and not in
updating factorizations, then for any factorization of the base system G it is relatively
efficient to keep track of the updates as a global rank k update G(i) = G+UCV with
U ∈ C

N×k, C ∈ C
k×k, and V ∈ C

k×N and use the Sherman–Morrison–Woodbury
(SMW) formula,

(G+ UCV)−1 = G−1 −G−1U
(
C−1 + V G−1U

)−1
V G−1,(1.7)

taking advantage of the initial factorization of G as is done in [12].

1.3. Contribution. In this work we present a method to efficiently update
skeletonization-based hierarchical factorizations in response to localized perturba-
tions, i.e., to take a factorization corresponding to G(i−1) in (1.6) and obtain a fac-
torization of G(i). We illustrate our approach using the language of the recursive
skeletonization factorization of [18, 17] and hierarchical interpolative factorization of
[19], though our approach is simple to generalize to any factorization using bottom-up
hierarchical compression of off-diagonal subblocks.

There are a number of advantages to our approach over using the SMW formula
to solve a system with G(i). In the case where the number of unknowns that have
been modified between G and G(i) is bounded by a small constant m and the cost of
solving a system with the existing factorization of G is O(N), the cost of a solve using
(1.7) (dropping terms that do not depend on N) is O(N + mN), where the second
term can be amortized across multiple right-hand sides. However, if the number of
total modified unknowns m comprises any substantial fraction of N , then this is not
a viable strategy.

In contrast, under certain assumptions on the attainable compression of off-
diagonal blocks in the factorizations considered in this paper, if the number of modified
unknowns between two factorizations is bounded by m, then the asymptotic cost of
our updating method is O(m logp N) for some small p. Furthermore, one obtains
a factorization of the new matrix and not just a method for solving systems. This
factorization can of course be subsequently efficiently updated but can be useful for
other reasons such as computing determinants or applying or solving with a matrix
square root.

2. Preliminaries. The updating ideas presented in this paper apply, in princi-
ple, to many of the existing fast hierarchical algorithms for IEs. For concreteness, we
present them in the context of quadtree-based generalized triangular factorizations as
presented in [19], in contrast to the telescoping decompositions previously discussed
in, e.g., [21, 17, 10]. We begin by reviewing the linear algebra necessary for these fac-
torizations to establish notation and elucidate the components of such factorizations
that lead to efficient updating, though we direct the reader to [19] for further details.
For brevity, we restrict our discussion to solving quasi-one-dimensional (quasi-1D)

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

46 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

problems (i.e., curves in the plane) and true two-dimensional (2D) problems such
that Ω ⊂ R2, though the same basic process works in three dimensions. Further,
our definitions and examples are given assuming collocation in which case DOFs
correspond to zero-dimensional point sets. In the case of, for example, Galerkin dis-
cretization, where elements have nonzero spatial extent, certain definitions will need
to be extended appropriately.

Recall that, given a set of DOFs corresponding to a discretization of (1.1), con-
struction of a hierarchical factorization of G in (1.2) requires a way to expose com-
pressible interactions between sets of DOFs. In this work, we use a quadtree with L
levels, which we assume is constructed such that leaf-level boxes each contain a num-
ber of DOFs bounded by an occupancy parameter nocc independent of N . In other
words, the tree is adaptive. We note that this assumption implies that construction of
the hierarchical decomposition is a superlinear process with complexity O(N logN),
but in practice constructing the quadtree does not significantly contribute to runtime.

In the remainder of this paper, we adopt the following notation. For a positive
integer n, we use [n] to denote the index set {1, 2, . . . , n}. Given a matrix A ∈ Cn×n,
we will use I ⊂ [n] and I ′ ⊂ [n] to denote disjoint sets of DOFs, which will later be
explicitly associated with boxes in our quadtree. For a given DOF set I, we will write
the complement DOF set as Ic = [n]\I. We use the MATLAB style notation A(I, I)
to denote the diagonal subblock of A corresponding to self-interactions between DOFs
in I and A(I, I ′) or A(I ′, I) to denote off-diagonal subblocks of A corresponding to
cross-interactions between the DOFs associated with the index sets I and I ′. This
is in contrast to the simple subscript AI , which will be used to label a matrix A
that is in some way associated with I. We will use A(:, I) to refer to A([n], I) and
define A(I, :) similarly. In general, we will use uppercase variable names (e.g., A) to
refer to matrices and matrix-valued functions and variable names in math-calligraphic
font (e.g., N) to refer to index sets or index-set-valued functions (with the notable
exception that O will be used for “big-O” notation), and variable names in math-
script font (e.g., L) to refer to collections of index sets. When referring to specific
boxes in the quadtree, we will always use the letter b, and similarly we will denote
edges as e.

2.1. Interpolative decomposition. As discussed in section 1, off-diagonal sub-
blocks of G corresponding to sets of DOF sets discretizing nonoverlapping subdomains
are assumed to be numerically low-rank, and thus fast algorithms for solving (1.2)
typically use some form of compression to approximate these subblocks. One such
method is interpolative decomposition (ID), which we define below in a slightly non-
standard fashion.

Definition 2.1. Given a matrix A ∈ C
m×|I| with columns indexed by I and

a tolerance ε > 0, an ε-accurate interpolative decomposition of A is a partitioning
of I into DOF sets associated with so-called skeleton columns S ⊂ I and redundant
columns R = I \ S and a corresponding interpolation matrix TI such that

A(:,R) = A(:,S)TI + E,

where ‖E‖2 � ε‖A‖2. In other words, the redundant columns are approximated as a
linear combination of the skeleton columns to within the prescribed relative accuracy.

Clearly, the ID of Definition 2.1 trivially always exists by taking S = I. In
practice, however, we aim to use the ID to compress I such that |S| is close to the
true ε-numerical rank.

We do not go into detail about IDs or their computation here, but we refer the

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

UPDATING HIERARCHICAL FACTORIZATIONS 47

reader to [6, 20] and references therein for a more detailed presentation. We do,
however, note an important point in finding an ID of A: when constructing the ID, it
is only necessary to consider nonzero rows of A. This is evident from the fact that, if
J is a set of DOFs corresponding to all the nonzero rows of A, then an ID of A(J , :)
yields a partitioning of I and an interpolation matrix TI that also give a valid ID of
all of A to the same accuracy.

In what follows, we will use the notation

[S, R, TI] = id(A, I, ε)(2.1)

to denote functions that return the relevant pieces of an ε-accurate ID of a matrix A.

2.2. Skeletonization. By applying the ID to numerically low-rank, off-diagonal
subblocks of a matrix A, we expose redundancy that can be exploited through block
Gaussian elimination to approximately sparsify A via a multiplicative procedure
known as skeletonization factorization.

To begin, let A ∈ Cn×n, and let I ⊂ [n] be an index set of interest. We compress
the blocks A(Ic, I) and A(I, Ic) by computing an ID with tolerance ε to obtain

[S, R, TI] = id

([
A(Ic, I)
A(I, Ic)∗

]
, I, ε

)
(2.2)

with which we can write A (up to a permutation) in block form as

A =

⎡
⎣ A(Ic, Ic) A(Ic,S) A(Ic,R)

A(S, Ic) A(S,S) A(S,R)
A(R, Ic) A(R,S) A(R,R)

⎤
⎦(2.3)

≈
⎡
⎣ A(Ic, Ic) A(Ic,S) A(Ic,S)TI

A(S, Ic) A(S,S) A(S,R)
T ∗
IA(S, Ic) A(R,S) A(R,R)

⎤
⎦ ,(2.4)

up to relative error O(ε). By a sequence of block row and column operations, we can
eliminate the top-right and bottom-left blocks to obtain

Q∗
IAQI ≈

⎡
⎣ A(Ic, Ic) A(Ic,S)

A(S, Ic) A(S,S) DS,R
DR,S DR,R

⎤
⎦ ,(2.5)

where QI is given by

QI =

⎡
⎣ I

I −TI
I

⎤
⎦(2.6)

and theD subblocks are linear combinations of the A subblocks. We use these matrices
to define the skeletonization factorization of A via a final step of elimination of the
DOFs R as in [19].

Definition 2.2. Assume that DR,R in (2.5) is nonsingular. We define the
skeletonization factorization of A with respect to the DOFs I (up to a permutation)
as

ZI(A) ≡
⎡
⎣ A(Ic, Ic) A(Ic,S)

A(S, Ic) DS,S
DR,R

⎤
⎦ ≈ M∗

IQ
∗
IAQIHI ≡ U∗

IAVI ,D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

48 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

where the Schur complement block is DS,S = AS,S − DS,RD−1
R,RDR,S , the matrices

M∗
I and HI are given by

M∗
I ≡

⎡
⎣ I

I −DS,RD−1
R,R

I

⎤
⎦ , HI ≡

⎡
⎣ I

I

−D−1
R,RDR,S I

⎤
⎦ ,

and the remaining matrices are as defined in (2.5) and (2.6).
We note that in ZI(A) the redundant DOFs R have been completely decoupled

from the rest while leaving the off-diagonal interactions AIc,S and AS,Ic unchanged.
Thus, after this skeletonization process we will refer to the skeleton DOFs S as active
and the redundant DOFs R as inactive. Henceforth, we refer to this skeletonization
factorization as “skeletonization,” though this is not to be confused with the sense in
which the term is used in [6].

Clearly the matrices UI and VI are highly structured since they are each the
product of block unit-triangular matrices. As such, we will write the skeletonization
of a matrix A with respect to the DOFs I with accuracy ε as

[S, R, DS,S , DR,R, UI , VI] = skel(A, I, ε),(2.7)

where UI and VI are understood to be stored as a product of operators in block
form that can be applied and inverted cheaply, and clearly one can construct ZI(A)
implicitly from the information returned by skel(A, I, ε).

2.3. Group skeletonization. Notationally, it will be useful as in [19] to extend
the notion of skeletonization of a matrix A with respect to an index set I to skeleton-
ization of A with respect to multiple disjoint index sets. In particular, for two index
sets I and I ′ with I ∩ I ′ = ∅ we can perform the independent skeletonizations

[S, R, DS,S , DR,R, UI , VI] = skel(A, I, ε),(2.8)

[S ′, R′, DS′,S′ , DR′,R′ , UI′ , VI′] = skel(A, I ′, ε),(2.9)

whereupon we observe that the matrices UI and UI′ (and similarly VI and VI′)
commute, which motivates us to define the group skeletonization of A with respect to
the index sets I and I ′ as

Z{I,I′}(A) ≈ U∗
I′U∗

IAVIVI′ = U∗
IU

∗
I′AVI′VI ,(2.10)

where we understand the approximation to be in the same sense as in Definition 2.2;
i.e., the remainder matrix E from each ID is assumed to be zero such that the off-
diagonal blocks of A indexed by R can be exactly eliminated by blocks indexed by
S (and likewise for R′ and S ′). By construction, the remainder error matrix is small
and therefore ignored.

More generally, given a pairwise-disjoint collection of index sets C = {I1, . . . , Im}
with each Ii ⊂ [n], we similarly define the simultaneous group skeletonization of A
with respect to C as

ZC (A) ≈ U∗
CAVC =

(∏
I∈C

U∗
I

)
A

(∏
I∈C

VI

)
,(2.11)

with UC and VC understood to be stored as relevant blocks of their constituent ma-
trices.

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

UPDATING HIERARCHICAL FACTORIZATIONS 49

(a) (b)

Fig. 2. (a) Using the dotted black circle as a proxy surface when skeletonizing DOFs in the dark
gray box, only interactions between that box and the light gray boxes adjacent to it need be considered.
In particular, all interactions between the dark gray box and the white boxes will be represented by
equivalent interactions using the proxy surface. (b) If the dashed black grid corresponds to edges of
boxes at level �, then the assignment of DOFs to edges is given using the Voronoi tessellation about
the edge centers (gray rotated grid).

2.4. Acceleration using equivalent interactions. In principle, the D blocks
in (2.5) and Definition 2.2 depend on all of A(:, I) and A(I, :) due to the fact that
they depend on the partitioning and interpolation matrix coming from the ID of off-
diagonal blocks of A. In practice, however, we are not considering a general matrix
A but rather the explicit matrix G in (1.2) coming from the discretization of the
integral of some elliptic kernel. Since such kernels frequently satisfy some form of the
Green’s theorem wherein the values of the kernel inside a domain can be recovered
from those on the boundary, a key trick for reducing algorithmic complexity and
increasing locality that is common in the literature is the use of an equivalent proxy
surface; see, e.g., [6, 7, 10, 12, 17, 21, 22, 27, 19].

Let Ib correspond to the DOF set associated with a single leaf box b at level L
of our quadtree, such that the complement DOF set Ic

b = [n] \ Ib contains DOFs
corresponding to all other leaf boxes. As seen in Figure 2a, we can draw a smooth
proxy surface Γprox

Ib
around b such that only the leaf boxes immediately adjacent to

b in the quadtree intersect the interior of the proxy surface. By choosing a small
number of points to discretize Γprox

Ib
, we can write down the matrix PIb

corresponding
to discretized kernel interactions between Ib and the proxy points. Then, letting Nb

refer to the collection of DOFs in leaf boxes adjacent to b and Fb = Ic
b \Nb, we know

that in the continuous limit, there exists a bounded linear operator W such that we
can write (up to a permutation)

G(Ic
b , Ib) =

[
G(Nb, Ib)
G(Fb, Ib)

]
≈
[

I
W

] [
G(Nb, Ib)

PIb

]
.(2.12)

With this representation, we can now perform an ID of simply the rightmost matrix
above and use this to obtain an ID of G(Ic

b , Ib). This is desirable for two reasons.
First, since the interpolation matrixW potentially has many more rows than columns,
computing an ID of this surrogate matrix can be much less computationally expensive.
Second, we see that performing an ID with respect to Ib is now dependent only on
DOFs in the boxes immediately adjacent to b, which increases locality and will be
essential for our fast updating algorithm. For a more thorough treatment of the proxy
surface, see [19].

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

50 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

3. Factorization algorithms. Here we describe the recursive skeletonization
factorization and hierarchical interpolative factorization detailed in [19] in a manner
conducive to discussing efficient updating. We remark that our notation here differs
in several ways from the previous presentation.

3.1. Recursive skeletonization factorization. With our notion of group skel-
etonization using the proxy trick described in section 2.4, we construct the recursive
skeletonization factorization of [19] described in Algorithm 3.1, which is an alternative
approach to the hierarchical compression scheme in [10, 21, 17] for solving (1.2). The
resulting multiplicative factorization closely resembles a variant of the so-called ULV
decomposition in [4] while taking advantage of intermediate reduced representations
of matrix blocks such as in [25] to attain better complexity.

As previously stated, we hierarchically decompose our domain Ω using a quadtree
with root level � = 0 and lowest level � = L. As in section 2.4, we will consider the
DOFs corresponding to a leaf box b, Ib, to be the set of DOFs corresponding to
discretization points interior to b. Then, we define the collection of DOF sets for level
L as

LL = {Ib | b is a box at level L}.(3.1)

Using the group skeletonization process described in section 2.3 to skeletonize G
in (1.2) with respect to the collection LL with tolerance ε yields the sparsified matrix
ZLL(G). We functionally write this group skeletonization as[

{Sb, Rb, DSb,Sb
, DRb,Rb

}Ib∈LL
, ULL , VLL

]
= skel(G,LL, ε).(3.2)

After group skeletonization at level L, we move to level � = L− 1. For a leaf box
b, we define the DOFs Ib as before, but now we also have some boxes b at level L− 1
that are not leaves. For such boxes b, we will define the child set child(b) to be the
set of child boxes of b in the quadtree and define the DOFs associated with b as the
set of active DOFs corresponding to children of b, i.e.,

Ib =
⋃

b′∈child(b)

Sb′ .(3.3)

With this definition, we can define L� for any level � < L analogously to (3.1) and
again skeletonize with respect to L� to further eliminate DOFs. Repeating this process
level by level constitutes the recursive skeletonization factorization, rskelf, as made
concrete in Algorithm 3.1.

As before, we note that the large matrices UL�
and VL�

for each level are purely
notational and are stored in block form. In fact, even explicit assembly of G�−1 is not
strictly necessary but written purely for exposition.

At each level � in Algorithm 3.1, we identify for each box b a set of redundant
DOFs Rb which are completely decoupled from the rest of the DOFs as evidenced by
the zero blocks introduced into G�−1. Therefore, as observed in section 2.1, it is not
necessary to consider the redundant DOFs from any level �′ > � when skeletonizing
level �. Further, the use of the proxy trick described in section 2.4 implies that when
skeletonizing box b we need to consider only the set of neighboring active DOFs

Nb =
⋃

b′∈nbor(b)

Ib′ ,(3.4)D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

UPDATING HIERARCHICAL FACTORIZATIONS 51

Algorithm 3.1. Recursive skeletonization factorization (rskelf).

GL = G
for � = L, L− 1, . . . , 1 do

// get skeleton blocks and operators[
{Sb, Rb, DSb,Sb , DRb,Rb}Ib∈L�

, UL�
, VL�

]
= skel(G�,L�, ε)

// assemble skeletonization

G�−1 = G�

for Ib ∈ L� with Ib = Sb ∪ Rb do
G�−1(:,Rb) = G�−1(Rb, :) = 0
G�−1(Sb,Sb) = DSb,Sb

G�−1(Rb,Rb) = DRb,Rb

end for
end for
G ≈ F ≡ U−∗

LL
· · ·U−∗

L1
G0V

−1
L1

· · ·V −1
LL

where nbor(b) is the function that maps a box to the collection of adjacent boxes that
are either also on level � or on level �′ < � and have no children. This second criterion
serves to address the case of heterogeneous tree refinement. With the use of the proxy
surface, skeletonization requires only local matrix operations with cost O(|Ib|3). This
combined with (3.3) shows that the cost of rskelf depends strongly on the scaling
of |Sb| across all boxes with respect to N .

We let |s�| refer to the average number of skeleton DOFs per box at level �, i.e.,

|s�| = 1

|L�|
∑

Ib∈L�Ib=Sb∪Rb

|Sb|,(3.5)

and note that |s0| = 0 by this definition. We see in Figure 3 that the skeleton DOFs
tend to cluster near the boundaries of the quadtree boxes, such that for the quasi-
1D problem at the top of the figure we have |s1| essentially independent of N for
elliptic kernels as documented in [17, 19], leading to an asymptotic cost of O(N)
for construction of G. However, as seen at the bottom of the same figure, in true
2D problems the clustering of DOFs near box boundaries for the same kernel results
in |s1| scaling as O(N1/2), making factorization with rskelf asymptotically more
expensive and thus necessitating modifications as described in section 3.2.

3.2. The hierarchical interpolative factorization. For true 2D problems,
complexity estimates give that the construction of F in Algorithm 3.1 costs roughly
O(N3/2), as seen in the previous section. To recover linear complexity for this case,
we use the hierarchical interpolative factorization (hif) as described in [19], which
is based on the same fundamental operations as rskelf but adds an extra step of
skeletonization between quadtree levels.

In two dimensions, hif proceeds as follows. We begin just as in rskelf by
assuming a quadtree decomposition of space, defining LL as in (3.1), and skeletonizing
G with respect to LL to obtain ZLL(G). At this point, rather than going directly
to level LL−1, for each box b we consider the four edges of b, edge(b), and perform a
Voronoi tessellation of space with respect to the centers of all such edges as in Figure
2b yielding the DOFs Ve ⊂ [n] that are closest to e in the tessellation. We consider
these edges to be part of the half-integer level L− 1/2, and for every such edge e we
define the associated DOFs to be the active DOFs of its two adjacent boxes that fall

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

52 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

� = 3 � = 2 � = 1 � = 0

� = 3 � = 2 � = 1 � = 0

Fig. 3. Active DOFs before skeletonizing each level � of rskelf on a quasi-1D problem (top)
and true 2D problem (bottom). We see that the DOFs cluster near the edges of the boxes of the
quadtree at each level.

within the corresponding Voronoi cell, i.e.,

Ie = {Sb ∩ Ve | e ∈ edge(b)} ∪ {Ib′ ∩ Ve | e ∈ edge(b), b′ ∈ Nb has no children}.(3.6)

Note that the second collection above is necessary to capture active DOFs at higher
levels in the case of heterogeneous refinement. Defining the level LL−1/2 via LL−1/2 =
{Ie | e ∈ edge(b), b is a box on level L}, we perform group skeletonization with respect
to LL−1/2 which decouples (makes inactive) additional DOFs.

At this point, we move up to the next box level L−1, which requires a modification
of the definition of Ib in (3.3) for nonleaf boxes b at this level. In particular, since
additional DOFs are no longer active, we define Ib for hif as

Ib =
⋃

b′∈child(b)
e∈edge(b′)

Sb ∩ Se,(3.7)

i.e., only the active DOFs of children of b that are still active after edge skeletonization.
We continue by alternating between skeletonizing boxes and skeletonizing edges as
summarized in Algorithm 3.2.

There are a few idiosyncrasies to Algorithm 3.2 that we do not address here in
detail. For example, whereas in rskelf all IDs can be shown to be applied to original
blocks of the matrix G, in hif these blocks will contain rows and columns that have
been modified by Schur complement updates from the previous levels. We direct the
reader to [19] for a thorough treatment of this and the rigorous complexity estimates.
Assuming that the edge levels admit sufficient compression (observed in practice; see
Figure 4), however, we note that |s�| is asymptotically smaller than for rskelf and
that the computational complexity of hif for elliptic kernels is now therefore O(N)
or O(N logN) for computing F .

4. Updating algorithm. Given the rskelf and hif algorithms described in
section 3, we now consider updating existing instantiations of these factorizations in
response to a localized modification to the problem. Concretely, we suppose that we
have on hand a factorization corresponding to the initial problem with matrix G and
assume a new matrix Ḡ is obtained by discretizing a locally perturbed problem as
described in section 1.1. For simplicity of exposition, we initially assume that the

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

UPDATING HIERARCHICAL FACTORIZATIONS 53

Algorithm 3.2. Hierarchical interpolative factorization (hif).

GL = G
for � = L, L− 1, . . . , 1 do

// get skeleton blocks and operators for boxes[
{Sb, Rb, DSb,Sb , DRb,Rb}Ib∈L�

, UL�
, VL�

]
= skel(G�,L�, ε)

// assemble skeletonization for boxes

G�−1/2 = G�

for Ib ∈ L� with Ib = Sb ∪ Rb do
G�−1/2(:,Rb) = G�−1(Rb, :) = 0
G�−1/2(Sb,Sb) = DSb,Sb

G�−1/2(Rb,Rb) = DRb,Rb

end for
// get skeleton blocks and operators for edges[
{Se, Re, DSe,Se , DRe,Re}Ie∈L�−1/2

, UL�−1/2
, VL�−1/2

]
= skel(G�−1/2,L�−1/2, ε)

// assemble skeletonization for edges

G�−1 = G�−1/2

for Ie ∈ L�−1/2 with Ie = Se ∪Re do
G�−1(:,Re) = G�−1(Re, :) = 0
G�−1(Se,Se) = DSe,Se

G�−1(Re,Re) = DRe,Re

end for
end for
G ≈ F ≡ U−∗

LL
U−∗

LL−1/2
· · ·U−∗

L1
U−∗

L1/2
G0V

−1
L1/2

V −1
L1

· · ·V −1
LL−1/2

V −1
LL

� = 3 � = 2.5 � = 2 � = 1.5

� = 1 � = 0.5 � = 0

Fig. 4. Active DOFs before skeletonizing each level � of hif in two dimensions. The growth of
|s�| that was observed at the bottom of Figure 3 appears to have been reduced dramatically.

perturbation does not modify the total number of points and does not necessitate
a change in the structure of the hierarchical decomposition of space, i.e., the old
quadtree is still valid for the new problem with the same occupancy bound nocc, but
in practice this is not necessary. We first discuss updating in detail for rskelf and
later describe the necessary modifications for hif.

As remarked in section 2.4, the use of a proxy surface as in Figure 2a when
skeletonizing a box b gives a notion of locality to the skeletonization process. With

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

54 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

Nb as in (3.4), Fb = Ic
b \ Nb, and

[Sb, Rb, TIb
] = id(G, Ib, ε),(4.1)

we see that Sb, Rb, and TIb
depend only onG(Nb, Ib) andG(Ib,Nb) and, in particular,

not on G(Fb, Ib) or G(Ib,Fb). Tracing this through the rest of the skeletonization
process, we therefore see that the skeletonization of G with respect to box b is entirely
independent of G(:,Fb) and G(Fb, :); i.e., the DOF sets and matrices

[Sb, Rb, DSb,Sb
, DRb,Rb

, UIb
, VIb

] = skel(G, Ib, ε)(4.2)

can be computed without looking at those entries of G.
Based on the above observation, it is not difficult to see that if b is a box at

level L and Ḡ(Fc
b ,Fc

b) = G(Fc
b ,Fc

b), then skel(Ḡ, Ib, ε) = skel(G, Ib, ε) and the
corresponding blocks and index sets do not need to be recomputed. Similar logic can
be applied at quadtree levels � < L by taking into account some propagation rules we
outline below.

4.1. Propagation rules. We begin by defining the collection of DOF sets of
boxes b on level L for which it is possibly the case that skel(Ḡ, Ib, ε)
= skel(G, Ib, ε),
which from our previous discussion is the collection

ML =
{Ib | b is a box on level L and Ḡ(F̄c

b , F̄c
b)
= G(Fc

b ,Fc
b)
}
.(4.3)

We refer to this as the collection of marked DOF sets (or simply marked boxes) on
level L, and the remainder of this section is dedicated to describing the rules that
determine for which boxes at levels � < L the output of skel(Ḡ, Ib, ε) may differ and
therefore must also be marked at the appropriate level. We will use an overbar (e.g.,
S̄Ib

) to distinguish between quantities corresponding to the new factorization of Ḡ
and the old factorization of G when necessary.

It is a simple consequence of Algorithm 3.1 that in rskelf the diagonal blocks
satisfy a nesting property. By this we mean that, if b is a box on level � < L with child
boxes child(b), then for each b′ ∈ child(b) it is the case that D̄S̄b′ ,S̄b′ is a subblock

of Ḡ�(Ib, Ib). This leads to perhaps the most self-evident propagation rule: if box
b is marked, then so is the parent box of b, parent(b). Based on this, we define the
collection

P� = {Ib | b = parent(b′) for some b′ with Ib′ ∈ M�+1}(4.4)

for � = 1, . . . , L− 1.
Beyond the simple child-to-parent rule, we assert that, if a node b on level �+1 is

marked, then every b′ on level � such that parent(b) ∈ nbor(b′) is also marked. This is
because the set N̄b′ ∩ S̄b will be nonempty, and, since b is marked, it is thus possible
that blocks involved in the ID with respect to Ib′ will have changed. Thus, for each
� < L we define

U� = {Ib′ | b ∈ nbor(b′) for some b with Ib ∈ P�} .(4.5)

Finally, we note that, due to heterogeneous refinement, it is possible that there
are leaf boxes b at levels � < L that have been directly modified, i.e., Ḡ(F̄c

b , F̄c
b)
=

G(Fc
b ,Fc

b). Such boxes are also clearly marked, though they may not be covered by
the previous two rules. Combining this rule with the previous two leads us to define
the collection of marked DOF sets for levels � < L as

M� =
{Ib | b is a box on level � and Ḡ(Fc

b ,Fc
b)
= G(Fc

b ,Fc
b)
} ∪ P� ∪ U�.(4.6)

We see an example of the evolution of the marked set M� in Figure 5.

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

UPDATING HIERARCHICAL FACTORIZATIONS 55

b

Fig. 5. Left: Suppose the local perturbations are contained in box b so that Ḡ(:,Ib) �= G(:,Ib)
and Ḡ(Ib, :) �= G(Ib, :). Initially ML contains the DOF sets corresponding to the shaded boxes.
Center: At level L−1, DOF sets corresponding to the dark gray boxes are in PL−1 and thus ML−1

because they have marked children, and the light gray boxes are in UL−1 and thus ML−1 because
they have neighbors in PL−1. Right: The corresponding quadtree with nodes shaded the same as
their associated boxes.

4.2. Updating a group skeletonization. At any level � of the rskelf algo-
rithm, we have remarked that in the group skeletonization of the new system[{S̄b, R̄b, D̄S̄b,S̄b

, D̄R̄b,R̄b

}
Ib∈L�

, ŪL�
, V̄L�

]
= skel(Ḡ�,L�, ε)(4.7)

there will be a collection of DOF sets and associated boxes for which the corresponding
blocks and index sets output above do not differ from those computed in the factor-
ization of G, namely, the collection L� \ M�. For those boxes b ∈ M� for which the
corresponding output does potentially differ, we see that in computing skel(Ḡ�, Ib, ε)
we require knowledge of Ḡ�(Ib, Ib). As we noted in the previous section, it is the case
that Ḡ�(S̄b′ , S̄b′) = D̄S̄b′ ,S̄b′ for each b′ ∈ child(b). In rskelf, however, it is also the

case that all other blocks of Ḡ� that are relevant to skeletonization with respect to Ib
are pure kernel interactions; i.e., they coincide with blocks of Ḡ.

Notationally, when writing the group skeletonization ZL�
(Ḡ�) as in (2.11), we can

partition the matrices ŪL�
and V̄L�

into separate products over M� and L� \ M� as

ZL�
(Ḡ�) ≈ Ū∗

L�
Ḡ�V̄L�

= Ū∗
M�

U∗
L�\M�

Ḡ�VL�\M�
V̄M�

(4.8)

=

(∏
I∈M�

Ū∗
I

)⎛
⎝ ∏

I∈L�\M�

U∗
I

⎞
⎠ Ḡ�

⎛
⎝ ∏

I∈L�\M�

VI

⎞
⎠
(∏

I∈M�

V̄I

)
,(4.9)

where the matrices UL�\M�
and VL�\M�

are factors of the original UL�
and VL�

ma-
trices from the factorization of G�. With this, we can functionally write the necessary
computation to update this skeletonization as

[{S̄b, R̄b, D̄S̄b,S̄b
, D̄R̄b,R̄b

}
Ib∈M�

, ŪM�
, V̄M�

]
= skel update(Ḡ�,L�,M�, ε),

(4.10)

explicitly avoiding redundant recomputation of the blocks we already know.

4.3. Updating rskelf. Given the previous discussion, updating becomes a sim-
ple two-step process for each level � = L, . . . , 1. First, the propagation rules must be
applied to determine the marked set M� for the current level. Then, the group skele-
tonization is updated according to the process outlined in section 4.2. Repeating this
level-by-level, we obtain Algorithm 4.1, which is intentionally written analogously to
Algorithm 3.1. It is important to note that the updating process here is not an ap-
proximate one: the updated factorization F that is obtained is identical (to machine

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

56 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

precision) to that which would have been obtained starting from scratch with the same
decomposition of space. In other words, while rskelf is accurate to specified toler-
ance ε by design, no additional approximation error is introduced in updating the
factorization, and there is no compounding of error with repeated updates.

Thus far, we have considered updates that do not change the structure of the
hierarchical decomposition. In the case of tree refinement where quadtree nodes are
created or deleted, the core updating algorithm does not change, but the collection L�

will now itself have changed, potentially containing more or fewer DOF sets, and it is
necessary to perform some minor bookkeeping to ensure that DOF sets corresponding
to new boxes are always in the marked set and that factors corresponding to deleted
nodes are removed from the factorization. In cases where the structure of the hier-
archical decomposition changes, it is necessary to use a fully adaptive data structure
for the quadtree such that the addition or removal of points causes corresponding
refinement or coarsening of the decomposition to obtain the exact factorization via
updating as one would have from factoring anew. Without such dynamic tree main-
tenance, the updated factorization will still be accurate to the specified tolerance but
will not be numerically the same factorization. In our examples, we construct updates
such that the same underlying tree structure is obtained and updating is numerically
exact.

Algorithm 4.1. Updating rskelf.

ḠL = Ḡ
for � = L, L− 1, . . . , 1 do

// get updated skeleton blocks and operators[{S̄b, R̄b, D̄S̄b,S̄b
, D̄R̄b,R̄b

}
Ib∈M�

, ŪM�
, V̄M�

]
= skel update(Ḡ�,L�,M�, ε)

// assemble skeletonization

Ḡ�−1 = Ḡ�

for Ib ∈ L� \ M� with Ib = Sb ∪Rb do
Ḡ�−1(:,Rb) = G�−1(Rb, :) = 0
Ḡ�−1(Sb,Sb) = DSb,Sb

Ḡ�−1(Rb,Rb) = DRb,Rb

end for
for Ib ∈ M� with Ib = S̄b ∪ R̄b do

Ḡ�−1(:, R̄b) = Ḡ�−1(R̄b, :) = 0
Ḡ�−1(S̄b, S̄b) = D̄S̄b,S̄b

Ḡ�−1(R̄b, R̄b) = D̄R̄b,R̄b

end for
end for
Ḡ ≈ F̄ ≡ Ū−∗

ML
U−∗

LL\ML
· · · Ū−∗

M1
U−∗

L1\M1
Ḡ0V

−1
L1\M1

V̄ −1
M1

· · ·V −1
LL\ML

V̄ −1
ML

Again, the actual assembly of Ḡ�−1 is not necessary and is purely notational.

4.4. Complexity of updating rskelf. Intuitively, if a perturbation between
G and Ḡ is localized, then the total number of marked boxes

|M0|+ |M1|+ · · ·+ |ML|
(i.e., the number of shaded nodes in Figure 5) is asymptotically smaller than the
total number of boxes in the hierarchy in a way that will be made rigorous. Thus,
if each box has roughly the same skeletonization cost, we see that updating will be
asymptotically less expensive than performing a new refactorization from scratch.

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

UPDATING HIERARCHICAL FACTORIZATIONS 57

The assumptions that ensure that rskelf is computationally efficient (asymptotic
complexity O(N) to factor) serve to control the number of active DOFs at each level.
Let k� independent of b denote a bound on the number of skeleton DOFs |S̄b| or |Sb| for
a box b at level �. For rskelf, standard multipole estimates show that factorization
of an elliptic system with a quasi-1D boundary leads to k� growing linearly as we
progress up the tree, i.e., k� = O(L− �) (cf. [21, 19]). The cost of skeletonizing a box
is dominated by the cost of the ID, which is cubic in the number of skeleton DOFs.
Therefore, the cost of skeletonizing a box on level � is O ((L− �)3

)
.

After a single leaf-level perturbation, i.e., a perturbation that is localized such
that Ḡ(Ib, :)
= G(Ib, :) and Ḡ(:, Ib)
= G(:, Ib) only for a single leaf box b, Lemma
4.1 shows that the total number of boxes that need to have their components of the
skeletonization updated at any level � is bounded by a small constant C. With this
lemma, we show in the proof of Theorem 4.2 that the cost of updating after m leaf-
level perturbations has asymptotic complexity O(m log4 N), i.e., linear in m but only
poly-logarithmic (poly-log) in the total number of DOFs.

Lemma 4.1. Suppose that Ḡ(IbL , :)
= G(IbL , :) and Ḡ(:, IbL)
= G(:, IbL) only for
a single leaf box bL on level L. Then the size of the marked set, |M�|, is bounded by
a small dimension-dependent constant C independent of N and �.

Proof. In any dimension, d, we can associate each box b on a given level with a
d-tuple of integer coordinates, (z1, . . . , zd), corresponding to the center of the box in
the grid at that level. It is natural to consider the �∞-distance associated with this
representation,

‖b− b′‖∞ ≡ ‖ (z1, . . . , zd)− (z′1, . . . , z
′
d) ‖∞,

which codifies the idea “b is ‖b − b′‖∞ boxes away from b′.” With this distance in
mind, we begin by defining the concept of reach at a level, r�. With b� the single
ancestor of bL at level �, we define the reach at level � as

r� ≡ max
b∈M�

‖b� − b‖∞;

i.e., it is the �∞ radius of the marked set at level �.
The key observation is that the bottom level reach is rL ≡ 1, and the reach at

subsequent levels does not much exceed this size. In particular, the reach satisfies the
recurrence relation

r� =
⌈r�+1

2

⌉
+ 1,

where division by two corresponds to the fact that marked boxes on a level are con-
tiguous and r�+1 contiguous boxes have at most

⌈ r�+1

2

⌉
parents, and adding one cor-

responds to marking all neighbors of these parents. This relation has a fixed point
at r� = 2. Therefore, in d dimensions, the size of the marked set is bounded as
|M�| � (2r� + 1)d � C.

Theorem 4.2 (complexity of updating rskelf). Assume that the number of
skeletons for a box at level �, k�, grows like O(L − �). Suppose we use the updating
technique of section 4.3 to construct an updated factorization of Ḡ given a factorization
of G, where Ḡ(Ib, :)
= G(Ib, :) and Ḡ(:, Ib)
= G(:, Ib) only for a collection of boxes b
of size m. Then, for an integral equation with elliptic kernel on a quasi-1D domain,
the complexity of updating rskelf is O(m log4 N).

Proof. On level � we need to update the skeletonization blocks corresponding to
|M�| boxes, each of which has at most k� skeleton DOFs. This costs O(k3�) per box.

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

58 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

Fig. 6. Left: When we skeletonize with respect to the DOFs associated with the shown Voronoi
cell of an edge between two small boxes b1 and b2 with the same parent b at level �, a Schur com-
plement update is performed that modifies the entries Ḡ�(S̄b1 , S̄b2) and Ḡ�(S̄b2 , S̄b1) to no longer be
original subblocks of Ḡ, which modifies the block Ḡ�(Ib,Ib). Right: Similarly, when skeletonizing
with respect to the DOFs associated with the Voronoi cell of an edge that also comprises part of an
edge of b, a Schur complement update occurs that modifies the blocks Ḡ(:, Ib) and Ḡ(Ib, :), entries
of which are used in the ID portion of skeletonization with respect to Ib.

This means that the total refactorization time, t, grows as

t =

L∑
�=0

|M�|O(k3�) = O
(
mC

L∑
�=0

(L− �)3

)
= O(mC log4 N),

where we have used the fact that the marked set resulting from m leaf-level mod-
ifications is no bigger than m times the maximum marked set size of a single box,
C from Lemma 4.1, as well as the fact that our quadtree is constructed such that
L = O(logN). Note that this bound is clearly weak, as the number of marked boxes
on a level is of course limited by the total number of boxes on that level; for example,
if m = O(N), then t = O(N).

4.5. Modifications for hif. To adapt the updating process for rskelf to an
updating process for hif, we use the same basic building blocks of identifying marked
boxes (and now marked edges) and updating the corresponding skeletonizations. In-
corporating the half-integer edge levels, however, complicates the process.

In section 4.2 we used the nesting property of diagonal blocks in rskelf to assert
that, for a box b, Ḡ�(S̄b′ , S̄b′) = D̄S̄b′ ,S̄b′ for each b′ ∈ child(b) and all other entries

of Ḡ�(Ib, Ib) are pure kernel interactions. For hif, this is no longer the case due to
mixing of matrix blocks between box and edge levels, and thus keeping track of the
state of interactions between DOFs becomes more complicated.

In particular, in hif, the block Ḡ�(Ib, Ib) for a box b at level � < L has only a sub-
set of entries that come directly from the blocks D̄S̄b′ ,S̄b′ corresponding to b

′ ∈ child(b).
Other entries have now received Schur complement updates from the skeletonization
of edges at level � + 1/2; see Figure 6. The intuition for defining M� and M�−1/2

follows essentially the same reasoning as that for rskelf, taking into account this
extra mixing of information due to Schur complement updates. Because of this, the
marked set M� for hif will be larger than that for rskelf, though not asymptotically
so.

Just as in the rskelf case, the updating procedure described here for hif is
exact in that the same factorization is obtained as would have been obtained when
computing a new hif factorization on the same decomposition of space.

4.6. Complexity of updating hif. The asymptotic complexity of updating
hif using the same technique as for rskelf follows essentially the same path of
reasoning.

Theorem 4.3 (complexity of updating hif). Assume that the number of skele-
tons for a box at level �, k�, grows like O(L−�). Suppose we use the updating technique

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

UPDATING HIERARCHICAL FACTORIZATIONS 59

of section 4.3 to construct an updated factorization of Ḡ given a factorization of G,
where Ḡ(Ib, :)
= G(Ib, :) and Ḡ(:, Ib :)
= G(:, Ib) only for a collection of boxes b
of size m. Then, for an integral equation with elliptic kernel on a 2D domain, the
complexity of updating hif is O(m log4 N).

Proof. The proof is essentially the same as that of Theorem 4.2, taking into
account edge-level skeletonization as well as box-level skeletonization in a manner
analogous to Lemma 4.1, yielding larger constants. Writing the recurrence relation
(at the box level) for the reach in hif as we did for rskelf, we obtain

r� =

⌈
r�+1 + 2

2

⌉
+ 1 =

⌈r�+1

2

⌉
+ 2,

which has a fixed point at 4 (versus 2 for rskelf). The same trick as before can be
used to bound the size of the collection of marked boxes, giving |M�| � (2r� + 1)d �
C′.

In Theorem 4.3 we assume that the number of remaining skeletons for a box at
level � grows like O(L − �). This rate of growth is strongly supported by numerical
experiments (see [19]) though remains a conjecture at this time. For both hif and
rskelf, it is interesting to observe that when a constant number of leaf boxes are
modified, the cost of an update is asymptotically less expensive than an apply or
solve, both of which have complexity O(N).

5. Numerical results. We now present two examples showing the asymptotic
scaling of our updating routine—one for rskelf and one for hif. For each example,
the following, if applicable, are given:

• ε: base relative precision of the interpolative decomposition;
• N : total number of DOFs in the problem;
• tf: wall clock time for constructing the factorization in seconds;
• tu,p: wall clock time for updating in response to modifying a constant pro-
portion of points in the factorization; and

• tu,n: wall clock time for updating in response to modifying a constant number
of points in the factorization.

All algorithms and examples were implemented in C++ using the Intel Math Kernel
Library for BLAS/LAPACK routines, and all computations were performed using a
single core of an Intel Xeon E5-4640 CPU at 2.4 GHz on a 64-bit Linux machine
with 1.5 TB of RAM. Previous work in [10, 17, 19, 21] has shown that the accuracy
of the approximate factorization is well controlled by ε, in that the rskelf or hif

factorization F of a matrix G satisfies

‖G− F‖2 � ε‖G‖2.(5.1)

As such, we focus our discussion on the asymptotic runtime of factoring versus up-
dating.

5.1. Example 1: Laplace double-layer potential on a circle with a bump.
We first present an example of modifying the boundary geometry for a boundary
integral equation formulation of the Laplace equation. Consider the interior Dirichlet
Laplace problem,

Δu(x) = 0, x ∈ Ω ⊂ R
2,(5.2)

u(x) = f(x), x ∈ Γ = ∂Ω,(5.3)

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

60 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

Fig. 7. Left: Visualization of the boundary Γ for Example 1. For scaling tests with a fixed
number of modified points, the size of the perturbation will vary depending on the size of N , while
for those with a variable number of points the size of the perturbation will remain constant. Right:
Visualization of the perturbed scatterer function w1(x) for Example 2. In our example, the size of
the perturbing Gaussian will vary depending on the size of N .

which can be written as a second-kind integral equation with unknown surface density
σ(x) as

−1

2
σ(x) +

∫
Γ

∂K

∂νy
(‖x− y‖)σ(y) dΓ(y) = f(x), x ∈ Γ,(5.4)

where K(r) = − 1
2π log r is the fundamental solution of the free-space partial differen-

tial equation and νy is the outward-facing unit normal at y ∈ Γ.
We use the trapezoid rule to discretize (5.4) on Γ = Γ1, a circle with a bump

function perturbation as in Figure 7, whose radius is given by

r(t) =

{
1 + 0.25 exp

(
−1

1−[s(t)]2

)
, t ∈ (tm, tM),

1 else,
(5.5)

with s(t) = 2t−(tM+tm)
(tM−tm) , and then factor the resulting system using rskelf. With

this base factorization, we move the quadrature points where necessary such that
they discretize Γ2, a simple circle (i.e., r ≡ 1), and change the necessary quadrature
weights to reflect the new arc lengths. We then use the old factorization as input to
our updating algorithm to construct the factorization for the new geometry.

To investigate asymptotic scaling of the updating algorithm as we increase the
number of discretization points N , there are two primary ways to increase the problem
size. The first is to choose Γ2 to have a perturbed region that is independent of N ,
which implies that a fixed proportion of the discretization points will be modified.
The second is to use a variable-size perturbation region for Γ2 such that the number
of modified discretization points is constant. In the first case, we expect to see linear
scaling with N , since the number of modified leaf-level boxes is O(N), and in the
second case theory dictates poly-log scaling. For the first case, we will take (tm, tM) =(
9π
10 ,

11π
10

)
, and for the second we take (tm, tM) =

(
π − 1000π

N , π + 1000π
N

)
.

The data for this example can be seen in Table 1, with Figure 8 showing corre-
sponding scaling results for both the case of updating a constant proportion of DOFs
(approximately N/10) and a constant number of DOFs (approximately 1000). The
initial factorization time for both cases for fixed N was approximately the same.

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

UPDATING HIERARCHICAL FACTORIZATIONS 61

Table 1

Timing results for Example 1 with rskelf as we vary the ID tolerance ε and the total number
of points N . The time to construct the initial factorization is tf. We see that doubling the number
of points doubles the time to update a constant proportion of points, tu,p, but that the time to update
in response to the modification of a constant number of points tu,n grows more slowly with N .

ε N tf (s) tu,p (s) tu,n (s)

10−3
524288 9.4e+0 8.6e−1 1.9e−2
1048576 1.9e+1 1.7e+0 2.0e−2
2097152 3.8e+1 3.4e+0 2.1e−2

10−6
524288 1.2e+1 1.1e+0 3.0e−2
1048576 2.4e+1 2.1e+0 3.1e−2
2097152 4.9e+1 4.2e+0 3.2e−2

10−9
2097152 1.6e+1 1.5e+0 5.0e−2
1048576 3.3e+1 2.8e+0 5.3e−2
2097152 6.5e+1 5.6e+0 5.6e−2

N

T
im

e
(s
)

0.01

0.1

1

10

100

104 105 106
N

T
im

e
(s
)

0.01

0.1

1

10

100

104 105 106

Fig. 8. Timing results for Example 1 with rskelf on the perturbed circle. Circular markers
denote factor times and square markers denote update times for tolerances ε of 10−3 (black), 10−6

(gray), and 10−9 (white). Left: Updating a fixed proportion of points with guide curve O(N). Right:
Updating a constant number of points with guide curves O(N) and O (

log4N
)
, from top to bottom.

5.2. Example 2: The Lippmann–Schwinger equation. To demonstrate up-
dating of hif for the true 2D case, we consider the Lippmann–Schwinger equation for
Helmholtz scattering of an incoming wave with frequency k,

σ(x) + k2
∫
Ω

K(‖x− y‖)w(y)σ(y) dΩ(y) = f(x), x ∈ Ω = (0, 1)2.(5.6)

Here, K(r) = (i/4)H
(1)
0 (kr) is the fundamental solution of the Helmholtz equation

written in terms of the zeroth order Hankel function of the first kind, H
(1)
0 (x), and

w(x) is a function representing the scatterer. Although this kernel is derived from an
elliptic partial differential equation, it is oscillatory with the frequency of oscillation
and thus the relative smoothness of the kernel dependent on k. Assuming that w(x)
is nonnegative, we can make the change of variables u(x) =

√
w(x)σ(x) to obtain the

symmetric form

u(x) + k
√
w(x)

∫
Ω

K(‖x− y‖)
[
k
√
w(y)

]
u(y) dΩ(y) =

√
w(x)f(x), x ∈ Ω,(5.7)

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

62 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

Table 2

Timing results for Example 2: Lippmann–Schwinger with hif as we vary the ID tolerance ε
and the total number of points N . Note the slow growth with respect to N of the time to update in
response to modifying a constant number of points, tu,n, when the wave number κ is small.

κ = 0.1 κ = 1 κ = 10

ε N tf (s) tu,n (s) tf (s) tu,n (s) tf (s) tu,n (s)

10−3
5122 2.1e+2 2.5e+1 2.9e+2 3.8e+1 3.2e+2 5.6e+1
10242 8.5e+2 4.4e+1 1.2e+3 6.4e+1 1.3e+3 1.2e+2
20482 3.2e+3 8.0e+1 5.0e+3 9.2e+1 5.3e+3 1.6e+2

10−6
5122 6.9e+2 1.7e+2 1.2e+3 4.8e+2 1.5e+3 6.0e+2
10242 2.7e+3 2.5e+2 5.2e+3 1.4e+3 7.0e+3 2.4e+3
20482 1.1e+4 3.6e+2 2.0e+4 2.1e+3 3.1e+4 6.8e+3

which affords a speedup of about a factor of two.
Given w(x), we discretize (5.7) using a uniform

√
N×√

N grid, where the diagonal
entries Aii of the matrix A are computed adaptively and the off-diagonal entries Aij

are approximated using one-point quadratures. For this example, we will consider
starting with the function

w0(x) = exp(−16‖x− c‖2),(5.8)

a Gaussian centered at c = [0.5, 0.5]T , and then modifying the scatterer by adding a
perturbation that is essentially localized to construct

w1(x) = w0(x) + exp(−s‖x− d‖2),(5.9)

where the perturbation is a Gaussian centered at d = [0.8, 0.8]T truncated to machine
precision and s = s(N) is an adaptive scale parameter. In particular, we choose s(N)
such that roughly 340 points lie within the region where the perturbation is greater
than machine precision, which isolates the perturbation to a number of leaf-level boxes
of the quadtree that is independent of N . An example perturbed scatterer can be
seen in Figure 7. The box in each test has sides of unit length, and we choose the
frequency as k = 2πκ for wave numbers κ = 0.1, κ = 1, and κ = 10. The data for this
example can be seen in Table 2, with the corresponding scaling plot in Figure 9. We
see that, for larger κ, correspondingly larger N is required to reach the asymptotic
regime.

6. Conclusions. Our examples indicate that the updating algorithm behaves as
expected given our theoretical results, with linear scaling in the total number of leaf-
boxes containing DOFs that have been directly modified and poly-log scaling in the
total number of DOFs. This is a result that is perhaps not surprising theoretically but
should prove to be of great utility for real-world implementations of these algorithms.

In contrast to the Sherman–Morrison–Woodbury (SMW) strategy for solving per-
turbed systems in [12], the end result of our algorithm is the factorization correspond-
ing to the new system. Furthermore, this process is exact; i.e., it results in exactly
the same approximate factorization as if a new one had been computed from scratch.
One advantage of this strategy is that it allows for subsequent updates to a new set
of localized DOFs, possibly located in a different region of the domain.

When a constant number m of points are modified, our updating strategy has
asymptotic cost O(m log4 N) to update and O(N) for the subsequent solve—that is

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

UPDATING HIERARCHICAL FACTORIZATIONS 63

N

T
im

e
(s
)

100

102

104

1282 5122 20482

N

T
im

e
(s
)

100

102

104

1282 5122 20482

N

T
im

e
(s
)

100

102

104

1282 5122 20482

Fig. 9. Timing results for Example 2 with hif on the Lippmann–Schwinger example, updating
a constant number of points for wave number κ = 0.1 (left), κ = 1 (center), and κ = 10 (right).
Circular markers denote factor times and square markers denote update times for tolerances ε of
10−3 (black) and 10−6 (gray). The top guide line is O(N), and the bottom is O (

log4N
)
.

to say, updating is (asymptotically) essentially free if one is interested in using the
updated factorization to solve a system. Compared to the O(mN) cost of updating
with the SMW strategy, we can obtain a significantly better asymptotic complexity
considering that the small perturbations made in Example 2 lead to m on the order
of 340.

For the recursive skeletonization factorization, our updating process is not dif-
ficult to implement. Our examples show that in cases where we update even large
portions of the domain, it is possible to recover the constant factor complexity differ-
ence between updating and complete refactorization. For the hierarchical interpolative
factorization, we saw that updating requires more bookkeeping than for rskelf due
to the diagonal updates at the edge levels. However, the updating algorithm still
shows the same asymptotic scaling.

While here we have only discussed updating for 2D integral equations, all the
ideas presented in this paper extend directly to the 3D case. In fact, it is for 3D
problems that we expect to see the biggest performance gain from using an updating
procedure instead of completely refactoring the system. The reason for this stems
again from simple box counting; the number of white nodes in the 3D analogue of
Figure 5 grows more quickly with respect to the depth of the tree.

Additionally, just as hif can be carried out in the partial differential equation
case as described in [18], so too can the updating procedure described here. The ideas
of box-marking and keeping track of diagonal interactions extend directly, but now
the DOFs in the linear system come from, e.g., a finite difference discretization. This
is current work that we will present in a future publication.

Acknowledgments. The authors thank L. Ryzhik for computing resources, as
well as A. Benson, B. Nelson, N. Skochdopole, and the anonymous reviewers for useful
comments on drafts of this paper.

REFERENCES

[1] S. Ambikasaran and E. Darve, An O(N logN) fast direct solver for partial hierarchically
semi-separable matrices, J. Sci. Comput., 57 (2013), pp. 477–501.

[2] J. Bremer, A fast direct solver for the integral equations of scattering theory on planar curves
with corners, J. Comput. Phys., 231 (2012), pp. 1879–1899.

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

64 V. MINDEN, A. DAMLE, K. L. HO, AND L. YING

[3] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals, A fast solver for HSS
representations via sparse matrices, SIAM J. Matrix Anal. Appl., 29 (2006), pp. 67–81.

[4] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically
semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622.

[5] Y. Chen, A fast, direct algorithm for the Lippmann-Schwinger integral equation in two dimen-
sions, Adv. Comput. Math., 16 (2002), pp. 175–190.

[6] H. Cheng, Z. Gimbutas, P.G. Martinsson, and V. Rokhlin, On the compression of low rank
matrices, SIAM J. Sci. Comput., 26 (2005), pp. 1389–1404.

[7] E. Corona, P.G. Martinsson, and D. Zorin, An O(N) direct solver for integral equations
on the plane, Appl. Comput. Harmon. Anal., 38 (2015), pp. 284–317.

[8] J. Djokić, Efficient Update of Hierarchical Matrices in the Case of Adaptive Discretization
Schemes, Ph.D. thesis, Universität Leipzig, Leipzig, Germany, 2006.

[9] P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright, Maintaining LU factors of a
general sparse matrix, Linear Algebra Appl., 88–89 (1987), pp. 239–270.

[10] A. Gillman, P.M. Young, and P.G. Martinsson, A direct solver with O(N) complexity for
integral equations on one-dimensional domains, Front. Math. China, 7 (2012), pp. 217–247.

[11] G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[12] L. Greengard, D. Gueyffier, P.G. Martinsson, and V. Rokhlin, Fast direct solvers for
integral equations in complex three-dimensional domains, Acta Numer., 18 (2009), pp. 243–
275.

[13] L. Greengard and V. Rokhlin, On the numerical solution of two-point boundary value prob-
lems, Comm. Pure Appl. Math., 44 (1991), pp. 419–452.

[14] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to
H-matrices, Computing, 62 (1999), pp. 89–108.

[15] W. Hackbusch and S. Börm, Data-sparse approximation by adaptive H2-matrices, Comput-
ing, 69 (2002), pp. 1–35.

[16] W. Hackbusch and B.N. Khoromskij, A sparse H-matrix arithmetic. Part II: Application
to multi-dimensional problems, Computing, 64 (2000), pp. 21–47.

[17] K.L. Ho and L. Greengard, A fast direct solver for structured linear systems by recursive
skeletonization, SIAM J. Sci. Comput., 34 (2012), pp. A2507–A2532.

[18] K.L. Ho and L. Ying, Hierarchical interpolative factorization for elliptic operators: Differen-
tial equations, Comm. Pure Appl. Math., DOI 10.1002/cpa.21582 (2015).

[19] K.L. Ho and L. Ying, Hierarchical interpolative factorization for elliptic operators: Integral
equations, Comm. Pure Appl. Math., DOI 10.1002/cpa.21577 (2015).

[20] E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, and M. Tygert, Randomized algo-
rithms for the low-rank approximation of matrices, Proc. Natl. Acad. Sci. USA, 104 (2007),
pp. 20167–20172.

[21] P.G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in two
dimensions, J. Comput. Phys., 205 (2005), pp. 1–23.

[22] X.M. Pan, J.G. Wei, Z. Peng, and X.Q. Sheng, A fast algorithm for multiscale electromag-
netic problems using interpolative decomposition and multilevel fast multipole algorithm,
Radio Science, 47 (2012).

[23] E.S. Quintana-Ort́ı and R.A. Van De Geijn, Updating an LU factorization with pivoting,
ACM Trans. Math. Software, 35 (2008), 11.

[24] P. Starr and V. Rokhlin, On the numerical solution of two-point boundary value problems
II, Comm. Pure Appl. Math., 47 (1994), pp. 1117–1159.

[25] J. Xia, Efficient structured multifrontal factorization for general large sparse matrices, SIAM
J. Sci. Comput., 35 (2013), pp. A832–A860.

[26] J. Xia, S. Chandrasekaran, M. Gu, and X.S. Li, Fast algorithms for hierarchically semi-
separable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.

[27] L. Ying, G. Biros, and D. Zorin, A kernel-independent adaptive fast multipole algorithm in
two and three dimensions, J. Comput. Phys., 196 (2004), pp. 591–626.

D
ow

nl
oa

de
d

01
/1

2/
16

 to
 1

28
.1

22
.4

9.
11

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

