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Abstract

This paper introduces the hierarchical interpolative factorization for elliptic par-
tial differential equations (HIF-DE) in two (2D) and three dimensions (3D). This
factorization takes the form of an approximate generalized LU/LDL decompo-
sition that facilitates the efficient inversion of the discretized operator. HIF-DE
is based on the nested dissection multifrontal method but uses skeletonization
on the separator fronts to sparsify the dense frontal matrices and thus reduce the
cost. We conjecture that this strategy yields linear complexity in 2D and quasi-
linear complexity in 3D. Estimated linear complexity in 3D can be achieved by
skeletonizing the compressed fronts themselves, which amounts geometrically to
a recursive dimensional reduction scheme. Numerical experiments support our
claims and further demonstrate the performance of our algorithm as a fast direct
solver and preconditioner. MATLAB® codes are freely available. © 2016 Wi-
ley Periodicals, Inc.

1 Introduction
This paper considers elliptic partial differential equations (PDEs) of the form

�r � .a.x/ru.x//C b.x/u.x/ D f .x/; x 2 � � Rd ;(1.1)

with appropriate boundary conditions on @�, where a.x/, b.x/, and f .x/ are given
functions, and d D 2 or 3. Such equations are of fundamental importance in
science and engineering and encompass (perhaps with minor modification) many
of the PDEs of classical physics, including the Laplace, Helmholtz, Stokes, and
time-harmonic Maxwell equations. We will further assume that (1.1) is not highly
indefinite. Discretization using local schemes such as finite differences or finite
elements then leads to a linear system

Au D f;(1.2)

where A 2 RN�N is sparse with u and f the discrete analogues of u.x/ and f .x/,
respectively. This paper is concerned with the efficient factorization and solution
of such systems.
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1.1 Previous Work
A large part of modern numerical analysis and scientific computing has been de-

voted to the solution of (1.2). We classify existing approaches into several groups.
The first consists of classical direct methods like Gaussian elimination or other
standard matrix factorizations [19], which compute the solution exactly (in princi-
ple, to machine precision, up to conditioning) without iteration. Naive implemen-
tations generally have O.N 3/ complexity but can be heavily accelerated by ex-
ploiting sparsity [10]. A key example is the nested dissection multifrontal method
(MF) [12, 15, 33], which performs elimination according to a special hierarchy of
separator fronts in order to minimize fill-in. These fronts correspond geometrically
to the cell interfaces in a domain partitioning and grow as O.N 1=2/ in two dimen-
sions (2D) andO.N 2=3/ in three dimensions (3D), resulting in solver complexities
of O.N 3=2/ and O.N 2/, respectively. This is a significant improvement and, in-
deed, MF has proven very effective in many environments. However, it remains
unsuitable for truly large-scale problems, especially in 3D.

The second group is that of iterative methods [36], with conjugate gradient
(CG) [29, 41] and multigrid [7, 24, 47] among the most popular techniques. These
typically work well when a.x/ and b.x/ are smooth, in which case the number of
iterations required is small and optimal O.N/ complexity can be achieved. How-
ever, the iteration count can grow rapidly in the presence of ill-conditioning, which
can arise when the coefficient functions lack regularity or have high contrast. In
such cases, convergence can be delicate and specialized preconditioners are often
required. Furthermore, iterative methods can be inefficient for systems involving
multiple right-hand sides or low-rank updates, which is an important setting for
many applications of increasing interest, including time stepping, inverse prob-
lems, and design.

The third group covers rank-structured direct solvers, which exploit the obser-
vation that certain off-diagonal blocks of A and A�1 are numerically low-rank
[4–6, 8] in order to dramatically lower the cost. The seminal work in this area is
due to Hackbusch et al. [25–27], whose H - and H 2-matrices have been shown
to achieve linear or quasilinear complexity. These methods were originally intro-
duced for integral equations characterized by structured dense matrices but apply
also to PDEs as a special case. Although their work has had significant theoretical
impact, in practice the constants implicit in the asymptotic scalings tend to be quite
large due to the recursive nature of the inversion algorithms, the use of expensive
hierarchical matrix-matrix multiplication, and the lack of sparsity optimizations.

More recent developments aimed at improving practical performance have com-
bined MF with structured matrix algebra on the dense frontal matrices only. This
better exploits the inherent sparsity of A and has been carried out under both the
H - [20, 39, 40] and hierarchically semiseparable (HSS) [16, 17, 42–44] matrix
frameworks, among other related schemes [1,2,34]. Those under the former retain
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FIGURE 1.1. Schematic of MF (top) and HIF-DE (bottom) in 2D. The
gray box (left) represents a uniformly discretized square; the lines in the
interior of the boxes (right) denote the remaining DOFs after each level
of elimination or skeletonization.

their quasilinear complexities and have improved constants but can still be some-
what expensive. On the other hand, those using HSS operations, which usually
have much more favorable constants, are optimal in 2D but require O.N 4=3/ work
in 3D. In principle, it is possible to further reduce this toO.N/ work by using mul-
tilayer HSS representations, but this procedure is quite complicated and has yet to
be achieved.

1.2 Contributions
In this paper, we introduce the hierarchical interpolative factorization for PDEs

(HIF-DE), which produces an approximate generalized LU/LDL decomposition
of A with linear or quasilinear complexity estimates. HIF-DE is based on MF but
augments it with frontal compression using a matrix sparsification technique that
we call skeletonization. The resulting algorithm is similar in structure to the accel-
erated MF solvers above and is sufficient for estimated scalings ofO.N/ in 2D and
O.N logN/ in 3D. Unlike [16, 17, 20, 39, 40, 44], however, which keep the entire
fronts but work with them implicitly using fast structured methods, our sparsifi-
cation approach allows us to reduce the fronts explicitly (see also [42, 43]). This
obviates the need for internal hierarchical matrix representations and substantially
simplifies the algorithm. Importantly, it also makes any additional compression
straightforward to accommodate, thereby providing a ready means to achieve esti-
matedO.N/ complexity in 3D by skeletonizing the compressed fronts themselves.
This corresponds geometrically to a recursive dimensional reduction, whose inter-
pretation is directly enabled by the skeletonization formalism.

Figure 1.1 shows a schematic of HIF-DE as compared to MF in 2D. In MF
(top), the domain is partitioned by a set of separators into “interior” square cells at
each level of a tree hierarchy. Each cell is eliminated starting from the finest level
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to the coarsest, leaving degrees of freedom (DOFs) only on the separators, which
constitute the so-called fronts. This process can be understood as the compression
of data from the cells to their interfaces, which evidently grow as we march up the
tree, ultimately leading to the observed O.N 3=2/ complexity.

In contrast, in HIF-DE (bottom), we start by eliminating interior cells as in
MF but, before proceeding further, perform an additional level of compression
by skeletonizing the separators. For this, we view the separator DOFs as living
on the interfacial edges of the interior cells then skeletonize each cell edge. This
respects the one-dimensional (1D) structure of the separator geometry and allows
more DOFs to be eliminated, in effect reducing each edge to only those DOFs
near its boundary. Significantly, this occurs without any loss of existing sparsity.
The combination of interior cell elimination and edge skeletonization is then re-
peated up the tree, with the result that the frontal growth is now suppressed. The
reduction from 2D (square cells) to 1D (edges) to zero dimensions (0D) (points)
is completely explicit. Extension to 3D is immediate by eliminating interior cubic
cells and then skeletonizing cubic faces at each level to execute a reduction from
3D to 2D to 1D at a total estimated cost ofO.N logN/. We can further reduce this
to O.N/ (but at the price of introducing some fill-in) by adding subsequent cubic
edge skeletonization at each level for full reduction to 0D. This tight control of the
front size is critical for achieving near-optimal scaling.

Once the factorization has been constructed, it can be used to rapidly apply
A�1 and therefore serves as a fast direct solver or preconditioner, depending on
the accuracy. (It can also be used to apply A itself, but this is not particularly
advantageous since A typically has only O.N/ nonzeros.) Other capabilities are
possible, too, though they will not be pursued here.

HIF-DE can also be understood in relation to the somewhat more general hi-
erarchical interpolative factorization for integral equations (HIF-IE) described in
the companion paper [31], which, like other structured dense methods, can apply
to PDEs as a special case. However, HIF-IE does not make use of sparsity and so is
not very competitive in practice. HIF-DE remedies this by essentially embedding
HIF-IE into the framework of MF in order to maximally exploit sparsity.

Extensive numerical experiments reveal strong evidence for quasilinear com-
plexity and demonstrate that HIF-DE can accurately approximate elliptic partial
differential operators in a variety of settings with high practical efficiency.

1.3 Outline
The remainder of this paper is organized as follows. In Section 2, we introduce

the basic tools needed for our algorithm, including our new skeletonization opera-
tion. In Section 3, we review MF, which will serve to establish the necessary algo-
rithmic foundation as well as to highlight its fundamental difficulties. In Section
4, we present HIF-DE as an extension of MF with frontal skeletonization corre-
sponding to recursive dimensional reduction. Although we cannot yet provide a
rigorous complexity analysis, estimates based on well-supported rank assumptions
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suggest that HIF-DE achieves linear or quasilinear complexity. This conjecture is
borne out by numerical experiments, which we detail in Section 5. Finally, Section
6 concludes with some discussion and future directions.

2 Preliminaries
In this section, we first list our notational conventions and then describe the basic

elements of our algorithm.
Uppercase letters will generally denote matrices, while the lowercase letters c,

p, q, r , and s denote ordered sets of indices, each of which is associated with a
DOF in the problem. For a given index set c, its cardinality is written jcj. The
(unordered) complement of c is given by cc, with the parent set to be understood
from the context. The uppercase letter C is reserved to denote a collection of
disjoint index sets.

Given a matrix A, Apq is the submatrix with rows and columns restricted to
the index sets p and q, respectively. We also use the MATLAB® notation AW;q to
denote the submatrix with columns restricted to q. The neighbor set of an index
set c with respect to A is then cN D fi … c W Ai;c or Ac;i ¤ 0g.

Throughout, k � k refers to the 2-norm.
For simplicity, we hereafter assume that the matrix A in (1.2) is symmetric,

though this is not strictly necessary [31].

2.1 Sparse Elimination
Let

A D

24App AT
qp

Aqp Aqq AT
rq

Arq Arr

35(2.1)

be a symmetric matrix defined over the indices .p; q; r/. This matrix structure often
appears in sparse PDE problems such as (1.2), where, for example, p corresponds
to the interior DOFs of a region D , q to the DOFs on the boundary @D , and r to
the external region � n xD , which should be thought of as large. In this setting, the
DOFs p and r are separated by q and hence do not directly interact, resulting in
the form (2.1).

Our first tool is quite standard and concerns the efficient elimination of DOFs
from such sparse matrices.

LEMMA 2.1. Let A be given by (2.1) and write App D LpDpLT
p in factored form,

where Lp is a unit triangular matrix (up to permutation). If App is nonsingular,
then

ST
pASp D

24Dp Bqq AT
rq

Arq Arr

35;(2.2)
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where

Sp D

24L�T
p

I

I

3524I �D�1p L�1p AT
qp

I

I

35
and Bqq D Aqq � AqpA�1ppA

T
qp is the associated Schur complement.

Note that the indices p have been decoupled from the rest. Regarding the sub-
system in (2.2) over the indices .q; r/ only, we may therefore say that the DOFs p
have been eliminated. The operator Sp carries out this elimination, which further-
more is particularly efficient since the interactions involving the large index set r
are unchanged. However, some fill-in is generated through the Schur complement
Bqq , which in general is completely dense. Clearly, the requirement that App be
invertible is satisfied if A is symmetric positive definite (SPD), as is the case for
many such problems in practice.

In this paper, we often work with a collection C of disjoint index sets, where
Ac;c0 D Ac0;c D 0 for any c; c0 2 C with c ¤ c0. Applying Lemma 2.1 to each
p D c, q D cN, and r D .c [ cN/c gives W TAW for W D

Q
c2C Sc , where each

set of DOFs c 2 C has been decoupled from the rest and the matrix product over
C can be taken in any order. The resulting matrix has a block diagonal structure
over the index groups

� D
�[
c2C

fcg
�
[

n
s n

[
c2C

c
o
;

where the outer union is to be understood as acting on collections of index sets
and s D f1; 2; : : : ; N g is the set of all indices, but with dense fill-in covering
.W TAW /cN;cN for each c 2 C .

2.2 Interpolative Decomposition
Our next tool is the interpolative decomposition (ID) [9] for low-rank matrices,

which we present in a somewhat nonstandard form below (see [31] for details).

LEMMA 2.2. Let A D AW;q 2 Rm�n with rank k � min.m; n/. Then there exist a
partitioning q D yq [ Lq with jyqj D k and a matrix Tq 2 Rk�n such that AW; Lq D
AW;yqTq .

We call yq and Lq the skeleton and redundant indices, respectively. Lemma 2.2
states that the redundant columns ofA can be interpolated from its skeleton columns.
The following shows that the ID can also be viewed as a sparsification operator.

COROLLARY 2.3. Let A D AW;q be a low-rank matrix. If q D yq [ Lq and Tq are
such that AW; Lq D AW;yqTq , then�

AW; Lq AW;yq
�� I

�Tq I

�
D
�
0 AW;yq

�
:



HIERARCHICAL INTERPOLATIVE FACTORIZATION: DIFFERENTIAL EQUATIONS 1421

In general, let AW; Lq D AW;yqTq C E for some error matrix E. If kTqk and kEk
are not too large, then the reconstruction of AW; Lq is stable and accurate. In this
paper, we use the algorithm of [9] based on a simple pivoted QR decomposition to
compute an ID that typically satisfies

kTqk �
p
4k.n � k/; kEk �

p
1C 4k.n � k/�kC1.A/;

where �kC1.A/ is the .k C 1/st largest singular value of A, at a cost of O.kmn/
operations. Fast algorithms based on random sampling are also available [28], but
these can incur some loss of accuracy (see also Section 4.5).

The ID can be applied in both fixed and adaptive rank settings. In the former, the
rank k is specified, while, in the latter, the approximation error is specified and the
rank adjusted to achieve (an estimate of) it. Hereafter, we consider the ID only in
the adaptive sense, using the relative magnitudes of the pivots to adaptively select k
such that kEk . �kAk for any specified relative precision � > 0.

2.3 Skeletonization
We now combine Lemmas 2.1 and 2.2 to efficiently eliminate redundant DOFs

from dense matrices with low-rank off-diagonal blocks.

LEMMA 2.4. Let

A D

�
App AT

qp

Aqp Aqq

�
be symmetric with Aqp low-rank, and let p D yp [ Lp and Tp be such that Aq Lp D
Aq ypTp. Without loss of generality, write

A D

264A Lp Lp AT
yp Lp

AT
q Lp

A yp Lp A yp yp AT
q yp

Aq Lp Aq yp Aqq

375
and define

Qp D

24 I

�Tp I

I

35:
Then

QT
pAQp D

24B Lp Lp BT
yp Lp

B yp Lp A yp yp AT
q yp

Aq yp Aqq

35;(2.3)

where

B Lp Lp D A Lp Lp � T
T
pA yp Lp � A

T
yp Lp
Tp C T

T
pA yp ypTp;

B yp Lp D A yp Lp � A yp ypTp;
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so

ST
Lp
QT
pAQpS Lp D

24D Lp B yp yp AT
q yp

Aq yp Aqq

35 � Zp.A/;(2.4)

where S Lp is the elimination operator of Lemma 2.1 associated with Lp and B yp yp D
A yp yp � B yp LpB

�1
Lp Lp
BT
yp Lp

, assuming that B Lp Lp is nonsingular.

In essence, the ID sparsifies A by decoupling Lp from q, thereby allowing it
to be eliminated by using efficient sparse techniques. We refer to this procedure
as skeletonization since only the skeletons yp remain. Note that the interactions
involving q D pc are unchanged. A very similar approach has previously been
described in the context of HSS Cholesky decompositions [45] by combining the
structure-preserving rank-revealing factorization [46] with reduced matrices [42].

In general, the ID often only approximately sparsifies A (for example, if its off-
diagonal blocks are low-rank only to a specified numerical precision) so that (2.3)
and consequently (2.4) need not hold exactly. In such cases, the skeletonization
operator Zp.�/ should be interpreted as also including an intermediate truncation
step that enforces sparsity explicitly. For notational convenience, however, we will
continue to identify the left- and right-hand sides of (2.4) by writing Zp.A/ �
ST
Lp
QT
pAQpS Lp, with the truncation to be understood implicitly.

In this paper, we often work with a collection C of disjoint index sets, where
Ac;cc and Acc;c are numerically low-rank for all c 2 C . Applying Lemma 2.4 to
all c 2 C gives

ZC .A/ � U
TAU; U D

Y
c2C

QcS Lc ;

where the redundant DOFs Lc for each c 2 C have been decoupled from the rest and
the matrix product over C can be taken in any order. The resulting skeletonized
matrix ZC .A/ is significantly sparsified and has a block diagonal structure over
the index groups

� D
�[
c2C

f Lcg
�
[

n
s n

[
c2C

Lc
o
:

3 Multifrontal Factorization
In this section, we review MF, which constructs a multilevel LDL decomposition

of A by using Lemma 2.1 to eliminate DOFs according to a hierarchical sequence
of domain separators. Our presentation will tend to emphasize its geometric as-
pects [15]; more algebraic treatments can be found in [12, 33].

We begin with a detailed description of MF in 2D before extending to 3D in the
natural way. The same presentation framework will also be used for HIF-DE in
Section 4, which we hope will help make clear the specific innovations responsible
for its improved complexity estimates.
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` D 0 ` D 1 ` D 2 ` D 3

FIGURE 3.1. Active DOFs at each level ` of MF in 2D.

3.1 Two Dimensions
Consider the PDE (1.1) on � D .0; 1/2 with zero Dirichlet boundary condi-

tions, discretized using finite differences via the five-point stencil over a uniform
n � n grid for simplicity. More general domains, boundary conditions, and dis-
cretizations can be handled without difficulty, but the current setting will serve to
fix ideas. Let h be the step size in each direction and assume that n D 1=h D 2Lm,
wherem D O.1/ is a small integer. Integer pairs j D .j1; j2/ index the grid points
xj D hj D h.j1; j2/ for 1 � j1; j2 � n � 1. The discrete system (1.2) then reads

�
1

h2
.aj�e1=2 C ajCe1=2 C aj�e2=2 C ajCe2=2/uj

�
1

h2

�
aj�e1=2uj�e1

C ajCe1=2ujCe1

C aj�e2=2uj�e2
C ajCe2=2ujCe2

�
C bjuj D fj

at each xj , where aj D a.hj / is sampled on the “staggered” dual grid for e1 D
.1; 0/ and e2 D .0; 1/ the unit coordinate vectors, bj D b.xj /, fj D f .xj /, and
uj is the approximation to u.xj /. The resulting matrix A is sparse and symmetric,
consisting only of nearest-neighbor interactions. The total number of DOFs is
N D .n � 1/2, each of which is associated with a point xj and an index in s.

The algorithm proceeds by eliminating DOFs level by level. At each level `,
the set of DOFs that have not been eliminated are called active with indices s`.
Initially, we set A0 D A and s0 D s. Figure 3.1 shows the active DOFs at each
level for a representative example.

Level 0

Defined at this stage are A0 and s0. Partition � by 1D separators mh.j1; � / and
mh. � ; j2/ for 1 � j1; j2 � 2L � 1 every mh D n=2L units in each direction
into interior square cells mh.j1 � 1; j1/ � mh.j2 � 1; j2/ for 1 � j1; j2 � 2L.
Observe that distinct cells do not interact with each other since they are buffered
by the separators. Let C0 be the collection of index sets corresponding to the active
DOFs of each cell. Then elimination with respect to C0 gives

A1 D W
T
0 A0W0; W0 D

Y
c2C0

Sc ;



1424 K. L. HO AND L. YING

where the DOFs
S
c2C0

c have been eliminated (and marked inactive). Let s1 D
s0 n

S
c2C0

c be the remaining active DOFs. The matrix A1 is block diagonal with
block partitioning

�1 D
� [
c2C0

fcg
�
[ fs1g:

Level `

Defined at this stage are A` and s`. Partition � by 1D separators 2`mh.j1; � /
and 2`mh. � ; j2/ for 1 � j1; j2 � 2L�` � 1 every 2`mh D n=2L�` units in
each direction into interior square cells 2`mh.j1 � 1; j1/ � 2`mh.j2 � 1; j2/ for
1 � j1; j2 � 2L�`. Let C` be the collection of index sets corresponding to the
active DOFs of each cell. Elimination with respect to C` then gives

A`C1 D W
T
` A`W`; W` D

Y
c2C`

Sc ;

where the DOFs
S
c2C`

c have been eliminated. The matrix A`C1 is block diago-
nal with block partitioning

�`C1 D
� [
c2C0

fcg
�
[ � � � [

� [
c2C`

fcg
�
[ fs`C1g;

where s`C1 D s` n
S
c2C`

c.

Level L

Finally, we have AL and sL, where D � AL is block diagonal with block
partitioning

�L D
� [
c2C0

fcg
�
[ � � � [

� [
c2CL�1

fcg
�
[ fsLg:

Combining over all levels gives

D D W T
L�1 � � �W

T
0 AW0 � � �WL�1;

where eachW` is a product of unit upper triangular matrices, each of which can be
inverted simply by negating its off-diagonal entries. Therefore,

A D W �T
0 � � �W

�T
L�1DW

�1
L�1 � � �W

�1
0 � F;(3.1a)

A�1 D W0 � � �WL�1D
�1W T

L�1 � � �W
T
0 D F

�1:(3.1b)

The factorization F is an LDL decomposition of A that is numerically exact (to
machine precision, up to conditioning), whose inverse F�1 can be applied as a fast
direct solver. Clearly, if A is SPD, then so are F and F�1; in this case, F can, in
fact, be written as a Cholesky decomposition by storing D in Cholesky form. We
emphasize that F and F�1 are not assembled explicitly and are used only in their
factored representations.

The entire procedure is summarized compactly as Algorithm 3.1. In general,
we can construct the cell partitioning at each level using an adaptive quadtree [38],
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which recursively subdivides the domain until each node contains onlyO.1/DOFs,
provided that some appropriate postprocessing is done to define “thin” separators
in order to optimally exploit sparsity (see Section 4.5).

Algorithm 3.1 MF.
A0 D A F initialize
for ` D 0; 1; : : : ; L � 1 do F loop from finest to coarsest level

A`C1 D W
T
`
A`W` F eliminate interior cells

end for
A D W �T

0 � � �W
�T
L�1ALW

�1
L�1 � � �W

�1
0 F LDL decomposition

3.2 Three Dimensions
Consider now the analogous setting in 3D, where � D .0; 1/3 is discretized

using the seven-point stencil over a uniform n� n� n mesh with grid points xj D
hj D h.j1; j2; j3/ for j D .j1; j2; j3/:

1

h2
.aj�e1=2 C ajCe1=2 C aj�e2=2 C ajCe2=2 C aj�e3=2 C ajCe3=2/uj

�
1

h2

�
aj�e1=2uj�e1

C ajCe1=2ujCe1
C aj�e2=2uj�e2

C ajCe2=2ujCe2

C aj�e3=2uj�e3
C ajCe3=2ujCe3

�
C bjuj D fj ;

where e1 D .1; 0; 0/, e2 D .0; 1; 0/, and e3 D .0; 0; 1/. The total number of DOFs
is N D .n � 1/3.

The algorithm extends in the natural way with 2D separators 2`mh.j1; � ; � /,
2`mh. � ; j2; � /, and 2`mh. � ; � ; j3/ for 1 � j1; j2; j3 � 2L�` � 1 every 2`mh D
n=2L�` units in each direction now partitioning � into interior cubic cells

2`mh.j1 � 1; j1/ � 2
`mh.j2 � 1; j2/ � 2

`mh.j3 � 1; j3/

at level ` for 1 � j1; j2; j3 � 2L�`. With this modification, the rest of the al-
gorithm remains unchanged. Figure 3.2 shows the active DOFs at each level for
a representative example. The output is again a factorization of the form (3.1).
General geometries can be treated using an adaptive octree.

3.3 Complexity Estimates
We next analyze the computational complexity of MF. This is determined by

the size jcj of a typical index set c 2 C`, which we write as k` D O.2.d�1/`/

following the separator structure. Note furthermore that jcNj D O.k`/ as well
since cN is restricted to the separators enclosing the DOFs c.
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` D 0 ` D 1 ` D 2

FIGURE 3.2. Active DOFs at each level ` of MF in 3D.

THEOREM 3.1 ([15]). The cost of constructing the factorization F in (3.1) using
MF is

tf D

LX
`D0

2d.L�`/O.k3` / D

(
O.N/; d D 1;

O.N 3.1�1=d//; d � 2;
(3.2)

while that of applying F or F�1 is

ta=s D

LX
`D0

2d.L�`/O.k2` / D

8̂<̂
:
O.N/; d D 1;

O.N logN/; d D 2;

O.N 2.1�1=d//; d � 3:

(3.3)

PROOF. Consider first the factorization cost tf . There are 2d.L�`/ cells at
level `, where each cell c 2 C` requires various local dense matrix operations
(due to fill-in) at a total cost of O..jcj C jcNj/3/ D O.k3

`
/, following Lemma 2.1.

Hence, we derive (3.2). A similar argument yields (3.3) by observing that each
c 2 C` requires local dense matrix-vector products with costO..jcjCjcNj/2/. �

Remark 3.2. If a tree is used, then there is also a cost of O.N logN/ for tree
construction, but the associated constant is tiny and so we can ignore it for all
practical purposes.

The memory cost to store F or F�1 is clearly mf D O.ta=s/ and so is also
given by (3.3). Theorem 3.1 is, in fact, valid for all d , including the 1D case where
k` D O.1/ and optimal linear complexity is achieved. It is immediate that the
suboptimal complexities in 2D and 3D are due to the geometric growth of k`.

4 Hierarchical Interpolative Factorization
In this section, we present HIF-DE, which builds upon MF by introducing addi-

tional levels of compression based on skeletonizing the separator fronts. The key
observation is that the Schur complements characterizing the dense frontal matrices
accumulated throughout the algorithm possess significant rank structures. This can
be understood by interpreting the matrix A�1pp in (2.2) as the discrete Green’s func-
tion of a local elliptic PDE. By elliptic regularity, such Green’s functions typically
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have numerically low-rank off-diagional blocks. The same rank structure essen-
tially carries over to the Schur complement Bqq itself, as indeed has previously
been recognized and successfully exploited [1, 2, 16, 17, 20, 34, 39, 40, 42–44].

The interaction ranks of the Schur complement interactions (SCIs) constituting
Bqq have been the subject of several analytic studies [4–6, 8], though none have
considered the exact type with which we are concerned in this paper. Such an
analysis, however, is not our primary goal, and we will be content simply with an
empirical description. In particular, we have found through extensive numerical
experimentation (Section 5) that standard multipole estimates [22, 23] appear to
hold for SCIs. We hereafter take this as an assumption, from which we can expect
that the skeletons of a given cluster of DOFs will tend to lie along its boundary
[30, 31], thus exhibiting a dimensional reduction.

We are now in a position to motivate HIF-DE. Considering the 2D case for
concreteness, the main idea is simply to employ an additional level `C 1

2
of edge

skeletonization after each level ` of interior cell elimination. This fully exploits
the 1D geometry of the active DOFs and effectively reduces each front to 0D. An
analogous strategy is adopted in 3D for reduction to either 1D by skeletonizing
cubic faces or to 0D by skeletonizing faces then edges. In principle, the latter is
more efficient but can generate fill-in and so must be used with care.

The overall approach of HIF-DE is closely related to that of [2,16,17,20,39,40,
44], but our sparsification framework permits a much simpler implementation and
analysis. As with MF, we begin first in 2D before extending to 3D.

4.1 Two Dimensions
Assume the same setup as Section 3.1. HIF-DE supplements interior cell elim-

ination (2D to 1D) at level ` with edge skeletonization (1D to 0D) at level ` C 1
2

for each ` D 0; 1; : : : ; L � 1. Figure 4.1 shows the active DOFs at each level for a
representative example.

Level `

Partition � by 1D separators 2`mh.j1; � / and 2`mh. � ; j2/ for 1 � j1; j2 �

2L�` � 1 into interior square cells 2`mh.j1 � 1; j1/ � 2`mh.j2 � 1; j2/ for 1 �
j1; j2 � 2

L�`. Let C` be the collection of index sets corresponding to the active
DOFs of each cell. Elimination with respect to C` then gives

A`C1=2 D W
T
` A`W`; W` D

Y
c2C`

Sc ;

where the DOFs
S
c2C`

c have been eliminated. The matrix A`C1=2 is block diag-
onal with block partitioning

�`C1=2 D
� [
c2C0

fcg
�
[

� [
c2C1=2

f Lcg
�
[ � � � [

� [
c2C`

fcg
�
[ fs`C1=2g;

where s`C1=2 D s` n
S
c2C`

c.
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` D 0 ` D 1
2

` D 1 ` D 3=2

` D 2 ` D 5=2 ` D 3

FIGURE 4.1. Active DOFs at each level ` of HIF-DE in 2D.

Level ` C
1
2

Partition � into Voronoi cells [3] about the edge centers 2`mh.j1; j2 � 1
2
/ for

1 � j1 � 2
L�` � 1, 1 � j2 � 2L�` and 2`mh.j1 � 1

2
; j2/ for 1 � j1 � 2L�`,

1 � j2 � 2
L�` � 1. Let C`C1=2 be the collection of index sets corresponding to

the active DOFs of each cell. Skeletonization with respect to C`C1=2 then gives

A`C1 D ZC`C1=2
.A`C1=2/ � U

T
`C1=2A`C1=2U`C1=2;

U`C1=2 D
Y

c2C`C1=2

QcS Lc ;

where the DOFs
S
c2C`C1=2

Lc have been eliminated. Note that no fill-in is gener-
ated since the DOFs yc for each c 2 C`C1=2 are already connected via SCIs from
elimination at level `. The matrix A`C1 is block diagonal with block partitioning

�`C1 D
� [
c2C0

fcg
�
[

� [
c2C1=2

f Lcg
�
� � � [

� [
c2C`

fcg
�
[

� [
c2C`C1=2

f Lcg
�
[ fs`C1=2g;

where s`C1 D s`C1=2 n
S
c2C`

Lc.

Level L

Combining over all levels gives

D � AL � U
T
L�1=2W

T
L�1 � � �U

T
1=2W

T
0 AW0U1=2 � � �WL�1UL�1=2

or, more simply,

D � V T
L�1=2 � � �V

T
1=2V

T
0 AV0V1=2 � � �VL�1=2;
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where

V` D

(
W`; ` D 0; 1; : : : ; L � 1;

U`; otherwise;
(4.1)

so

A � V �T
0 V �T

1=2 � � �V
�T
L�1=2DV

�1
L�1=2 � � �V

�1
1=2V

�1
0 � F;(4.2a)

A�1 � V0V1=2 � � �VL�1=2D
�1V T

L�1=2 � � �V
T
1=2V

T
0 D F

�1:(4.2b)

This is a factorization very similar to that in (3.1) except
(1) it has twice as many factors,
(2) it is now an approximation, and
(3) the skeletonization matrices U` are composed of both upper and lower tri-

angular factors and so are not themselves triangular (but are still easily
invertible).

We call (4.2) an approximate generalized LDL decomposition, with F�1 serving
as a direct solver at high accuracy or as a preconditioner otherwise.

Unlike MF, if A is SPD, then D and hence F now only approximate SPD ma-
trices. The extent of this approximation is governed by Weyl’s inequality.

THEOREM 4.1. If A;B 2 RN�N are symmetric, then

j�i .A/ � �i .B/j � kA � Bk; i D 1; 2; : : : ; N;

where �i .�/ returns the i th largest eigenvalue of a symmetric matrix.

COROLLARY 4.2. If A is SPD with F D ACE symmetric such that kEk � �kAk
for ��.A/ < 1, where �.A/ D kAkkA�1k is the condition number of A, then F is
SPD.

PROOF. By Theorem 4.1, j�i .A/ � �i .F /j � kEk D �kAk for all i D 1; 2;

: : : ; N , so ˇ̌̌̌
�i .A/ � �i .F /

�i .A/

ˇ̌̌̌
�

ˇ̌̌̌
�i .A/ � �i .F /

�N .A/

ˇ̌̌̌
� �kAkkA�1k D ��.A/:(4.3)

This implies that �i .F / � .1 � ��.A// �i .A/, so �i .F / > 0 if ��.A/ < 1 since
�i .A/ > 0 by assumption. �

Remark 4.3. Equation (4.3) actually proves a much more general result, namely
that all eigenvalues are approximated to relative precision ��.A/.

The requirement that ��.A/ < 1 is necessary for F�1 to achieve any accuracy
whatsoever and hence is quite weak. Therefore, F is SPD under very mild condi-
tions, in which case (4.2) can be interpreted as a generalized Cholesky decomposi-
tion. Its inverse F�1 is then also SPD and can be used, e.g., as a preconditioner in
CG.

The entire procedure is summarized as Algorithm 4.1.
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Algorithm 4.1 HIF-DE.
A0 D A F initialize
for ` D 0; 1; : : : ; L � 1 do F loop from finest to coarsest level

A`C1=2 D W
T
`
A`W` F eliminate interior cells

A`C1 D ZC`C1=2
.A`C1=2/ � U

T
`C1=2

A`C1=2U`C1=2 F skeletonize edges
(faces)

end for
A � V �T

0 V �T
1=2
� � �V �T

L�1=2
ALV

�1
L�1=2

� � �V �1
1=2
V �10 F generalized LDL

decomposition

` D 0 ` D 1
2

` D 1

` D 3
2

` D 2

FIGURE 4.2. Active DOFs at each level ` of HIF-DE in 3D.

4.2 Three Dimensions
Assume the same setup as in Section 3.2. There are two variants of HIF-DE in

3D: a direct generalization of the 2D algorithm by combining interior cell elimi-
nation (3D to 2D) with face skeletonization (2D to 1D) and a more complicated
version adding also edge skeletonization (1D to 0D) afterward. We will continue
to refer to the former simply as HIF-DE and call the latter “HIF-DE in 3D with
edge skeletonization.” For unity of presentation, we will discuss only HIF-DE
here, postponing the alternative formulation until Section 4.5. Figure 4.2 shows
the active DOFs at each level for HIF-DE on a representative example.

Level `

Partition � by 2D separators 2`mh.j1; � ; � /, 2`mh. � ; j2; � /, and 2`mh. � ; � ; j3/
for 1 � j1; j2; j3 � 2L�` � 1 into interior cubic cells

2`mh.j1 � 1; j1/ � 2
`mh.j2 � 1; j2/ � 2

`mh.j3 � 1; j3/



HIERARCHICAL INTERPOLATIVE FACTORIZATION: DIFFERENTIAL EQUATIONS 1431

for 1 � j1; j2; j3 � 2L�`. Let C` be the collection of index sets corresponding to
the active DOFs of each cell. Elimination with respect to C` then gives

A`C1=2 D W
T
` A`W`; W` D

Y
c2C`

Sc ;

where the DOFs
S
c2C`

c have been eliminated.

Level ` C
1
2

Partition � into Voronoi cells about the face centers

2`mh

�
j1; j2 �

1

2
; j3 �

1

2

�
; 1 � j1 � 2

L�`
� 1; 1 � j2; j3 � 2

L�`;

2`mh

�
j1 �

1

2
; j2; j3 �

1

2

�
; 1 � j2 � 2

L�`
� 1; 1 � j1; j3 � 2

L�`;

2`mh

�
j1 �

1

2
; j2 �

1

2
; j3

�
; 1 � j3 � 2

L�`
� 1; 1 � j1; j2 � 2

L�`:

Let C`C1=2 be the collection of index sets corresponding to the active DOFs of
each cell. Skeletonization with respect to C`C1=2 then gives

A`C1 D ZC`C1=2
.A`C1=2/ � U

T
`C1=2A`C1=2U`C1=2;

U`C1=2 D
Y

c2C`C1=2

QcS Lc ;

where the DOFs
S
c2C`C1=2

Lc have been eliminated.

Level L

Combining the approximation over all levels gives a factorization of the form
(4.2). The overall procedure is the same as that in Algorithm 4.1.

4.3 Accelerated Compression
A dominant contribution to the cost of HIF-DE is computing IDs for skeletoniza-

tion. The basic operation required is the construction of an ID of .A`C1=2/cc;c ,
where c 2 C`C1=2 and cc D s`C1=2 n c, following Lemma 2.4. We hereafter
drop the dependence on ` for notational convenience. Note that Acc;c is a tall-and-
skinny matrix of size O.N/ � jcj, so forming its ID takes at least O.N jcj/ work.
By construction, however, Acc;c is very sparse and can be written without loss of
generality as

Acc;c D

�
AcN;c

0

�
;

where the DOFs cN are restricted to the immediately adjacent edges or faces, as
appropriate. Thus, jcNj D O.jcj/ and an ID of the much smaller matrix AcN;c

of size O.jcj/ � jcj suffices. In other words, the global compression of Acc;c can
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FIGURE 4.3. Accelerated compression by exploiting sparsity. In 2D,
the number of neighboring edges (left) that must be included when skele-
tonizing a given edge (gray outline) can be substantially reduced by re-
stricting to only the interior DOFs of that edge (right). An analogous
setting applies for faces in 3D.

be performed via the local compression of AcN;c . This observation is critical for
reducing the asymptotic complexity.

We can pursue further acceleration by optimizing jcNj as follows. Consider
the reference domain configuration depicted in Figure 4.3, which shows the active
DOFs s`C1=2 after interior cell elimination at level ` in 2D. The Voronoi parti-
tioning scheme clearly groups together all interior DOFs of each edge, but those
at the corner points 2`mh.j1; j2/ for 1 � j1; j2 � 2L�` � 1 are equidistant to
multiple Voronoi centers and can be assigned arbitrarily (or, in fact, not at all). Let
c 2 C`C1=2 be a given edge and suppose that it includes both of its endpoints.
Then its neighbor set cN includes all immediately adjacent edges as shown (left).
But the only DOFs in c that interact with the edges to the left or right are precisely
the corresponding corner points. Therefore, we can reduce cN to only those edges
belonging to the two cells on either side of the edge defining c by restricting to only
its interior DOFs (right); i.e., we exclude from C`C1=2 all corner points. This can
also be interpreted as preselecting the corner points as skeletons (as must be the
case because of the sparsity pattern of Acc;c) and suitably modifying the remaining
computation. In 2D, this procedure lowers the cost of the ID by about a factor of
17=6 D 2:8333 : : : . In 3D, an analogous situation holds for faces with respect to
“corner” edges and the cost is reduced by a factor of 37=5 D 7:4.

It is also possible to accelerate the ID using fast randomized methods [28] based
on compressing ˆcAcN;c , where ˆc is a small Gaussian random sampling matrix.
However, we did not find a significant improvement in performance and so did not
use this optimization in our tests for simplicity (see also Section 4.5).

4.4 Optimal Low-Rank Approximation
Although we have built our algorithms around the ID, it is actually not essential

(at least with HIF-DE as presently formulated) and other low-rank approximations
can just as well be used. Perhaps the most natural of these is the singular value
decomposition (SVD), which is optimal in the sense that it achieves the minimal
approximation error for a given rank [19]. Recall that the SVD of a matrix A 2
Rm�n is a factorization of the formA D U†V T, whereU 2 Rm�m and V 2 Rn�n
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are orthogonal, and † 2 Rm�n is diagonal with the singular values of A as its
entries. The following is the analogue of Corollary 2.3 using the SVD.

LEMMA 4.4. Let A 2 Rm�n with rank k � min.m; n/ and SVD

A D U†V T
D
�
U1 U2

��0
†2

��
V1 V2

�T
;

where †2 2 Rk�k . Then

U TA D †V T
D

�
0

†2V
T
2

�
; AV D U† D

�
0 U2†2

�
:

The analogue of Lemma 2.4 is then the following:

LEMMA 4.5. Let

A D

�
App AT

qp

Aqp Aqq

�
be symmetric for Aqp low-rank with SVD

Aqp D Apc;p D Up†pV
T
p D

�
Up;1 Up;2

��0
†p;2

��
Vp;1 Vp;2

�T
:

If Qp D diag.Vp; I /, then

(4.4)

QT
pAQp D

24 V T
p AppVp

�
0

†p;2U
T
p;2

�
�
0 Up;2†p;2

�
Aqq

35
�

24Bp1;p1
BT
p2;p1

Bp2;p1
Bp2;p2

†p;2U
T
p;2

Up;2†p;2 Aqq

35
on conformably partitioning p D p1 [ p2, so

ST
p1
QT
pAQpSp1

D

24Dp1

zBp2;p2
†p;2U

T
p;2

Up;2†p;2 Aqq

35;
where Sp1

is the elimination operator of Lemma 2.1 associated with p1 and

zBp2;p2
D Bp2;p2

� Bp2;p1
B�1p1;p1

BT
p2;p1

;

where we assume that Bp1;p1
is nonsingular.

The external interactions Up;2†p;2 with the SVD “skeletons” p2 are a linear
combination of the original external interactions Aqp involving all of p. Thus, the
DOFs p2 are, in a sense, delocalized across all points associated with p, though
they can still be considered to reside on the separators.

The primary advantages of using the SVD over the ID are that (1) it can achieve
better compression since a smaller rank may be required for any given precision
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(A) Face skeletonization. (B) Edge configuration from top view
at interior slice.

FIGURE 4.4. Loss of sparsity from edge skeletonization in 3D. Face
skeletonization (left) typically leaves several layers of DOFs along the
perimeter, which lead to thick edges (right) that connect DOFs across
cubic cell boundaries upon skeletonization (3 � 3 grid of cells shown in
example with a thick edge outlined in gray).

and (2) the sparsification matrix Qp in (4.4) is orthogonal, which provides im-
proved numerical stability, especially when used in a multilevel setting such as
(4.2). However, there are several disadvantages as well, chief among them:

� the extra computational cost, which typically is about 2 to 3 times larger;
� the need to overwrite matrix entries involving the index set q in (4.4),

which we remark is still sparse; and
� the loss of precise geometrical information associated with each DOF.

Of these, the last is arguably the most important since it destroys the dimensional
reduction interpretation of HIF-DE, which is crucial for achieving estimatedO.N/
complexity in 3D, as we shall see next.

4.5 Three-Dimensional Variant with Edge Skeletonization
In Section 4.2, we presented a “basic” version of HIF-DE in 3D based on interior

cell elimination and face skeletonization, which from Figure 4.2 is seen to retain
active DOFs only on the edges of cubic cells. All fronts are hence reduced to 1D,
which yields estimated O.N logN/ complexity for the algorithm (Section 4.6).
Here, we seek to further accelerate this to O.N/ by skeletonizing each cell edge
and reducing it completely to 0D, as guided by our assumptions on SCIs. How-
ever, a complication now arises in that fill-in can occur, which can be explained as
follows.

Consider the 3D problem and suppose that both interior cell elimination and face
skeletonization have been performed. Then as noted in Section 4.3, the remaining
DOFs with respect to each face will be those on its boundary edges plus a few
interior layers near the edges (Figure 4.4(A)) (the depth of these layers depends on
the compression tolerance �). Therefore, grouping the active DOFs by cell edge
gives “thick” edges consisting not only of the DOFs on the edges themselves but
also those in the interior layers in the four transverse directions surrounding each
edge (Figure 4.4(B)). Skeletonizing these thick edges then generates SCIs acting
on the skeletons of each edge group by Lemma 2.4, which generally causes DOFs
to interact across cubic cell boundaries. The consequence of this is that the next
level of interior cell elimination must take into account, in effect, thick separators
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` D 0 ` D 1
3

` D 2
3

` D 1

` D 4
3

` D 5
3

` D 2

FIGURE 4.5. Active DOFs at each level ` of HIF-DE in 3D with edge
skeletonization.

of width twice the layer depth, which can drastically reduce the number of DOFs
eliminated and thus increase the cost. Of course, this penalty does not apply at
any level ` before edge skeletonization has occurred. As a rule of thumb, edge
skeletonization should initially be skipped until it reduces the number of active
DOFs by a factor of at least the resulting separator width.

For completeness, we now describe HIF-DE in 3D with edge skeletonization
following the structure of Section 4.2, where interior cell elimination (3D to 2D)
at level ` is supplemented with face skeletonization (2D to 1D) at level `C 1

3
and

edge skeletonization (1D to 0D) at level `C 2
3

for each ` D 0; 1; : : : ; L�1. Figure
4.5 shows the active DOFs at each level for a representative example, from which
we observe that further compression is clearly achieved on comparing with Figure
4.2.

Level `

Partition � by separators into interior cells. If ` D 0, then these are the same as
those in the standard HIF-DE (Section 4.2), but if ` � 1, then this must, in general,
be done somewhat more algebraically according to the sparsity pattern of A`. We
propose the following procedure. First, partition all active DOFs into Voronoi cells
about the cell centers 2`mh.j1 � 1

2
; j2 �

1
2
; j3 �

1
2
/ for 1 � j1; j2; j3 � 2L�`.

This creates an initial geometric partitioning C`, which we remark is unbuffered
(no separators) and so does not satisfy the hypotheses of Section 2.1. Then for each
c 2 C` in some order:
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(1) Let

cE
D fi 2 c W .A`/cc;i ¤ 0g; cc

D

� [
c02C`

c0
�
n c

be the set of indices of the DOFs in c with external interactions.
(2) Replace c by c n cE in C`.

On termination, this process produces a collection C` of interior cells with minimal
separators adaptively constructed. Elimination with respect to C` then gives

A`C1=3 D W
T
` A`W`; W` D

Y
c2C`

Sc ;

where the DOFs
S
c2C`

c have been eliminated.

Level ` C
1
3

Partition � into Voronoi cells about the face centers

2`mh

�
j1; j2 �

1

2
; j3 �

1

2

�
; 1 � j1 � 2

L�`
� 1; 1 � j2; j3 � 2

L�`;

2`mh

�
j1 �

1

2
; j2; j3 �

1

2

�
; 1 � j2 � 2

L�`
� 1; 1 � j1; j2 � 2

L�`;

2`mh

�
j1 �

1

2
; j2 �

1

2
; j3

�
; 1 � j3 � 2

L�`
� 1; 1 � j1; j2 � 2

L�`:

Let C`C1=3 be the collection of index sets corresponding to the active DOFs of
each cell. Skeletonization with respect to C`C1=3 then gives

A`C2=3 D ZC`C1=3
.A`C1=3/ � U

T
`C1=3A`C1=3U`C1=3;

U`C1=3 D
Y

c2C`C1=3

QcS Lc ;

where the DOFs
S
c2C`C1=3

Lc have been eliminated.

Level ` C
2
3

Partition � into Voronoi cells about the edge centers

2`mh

�
j1; j2; j3 �

1

2

�
; 1 � j1; j2 � 2

L�`
� 1; 1 � j3 � 2

L�`;

2`mh

�
j1; j2 �

1

2
; j3

�
; 1 � j1; j3 � 2

L�`
� 1; 1 � j2 � 2

L�`;

2`mh

�
j1 �

1

2
; j2; j3

�
; 1 � j2; j3 � 2

L�`
� 1; 1 � j1 � 2

L�`:
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Let C`C2=3 be the collection of index sets corresponding to the active DOFs of
each cell. Skeletonization with respect to C`C2=3 then gives

A`C1 D ZC`C2=3
.A`C2=3/ � U

T
`C2=3A`C2=3U`C2=3;

U`C2=3 D
Y

c2C`C2=3

QcS Lc ;

where the DOFs
S
c2C`C2=3

Lc have been eliminated.

Level L

Combining the approximation over all levels gives

D � AL � V
T
L�1=3 � � �V

T
2=3V

T
1=3V

T
0 AV0V1=3V2=3 � � �VL�1=3;

where V` is as defined in (4.1), so

A � V �T
0 V �T

1=3V
�T
2=3 � � �V

�T
L�1=3DV

�1
L�1=3 � � �V

�1
2=3V

�1
1=3V

�1
0 � F;(4.5a)

A�1 � V0V1=3V2=3 � � �VL�1=3D
�1V T

L�1=3 � � �V
T
2=3V

T
1=3V

T
0 D F

�1:(4.5b)

As in Section 4.1, if A is SPD, then so are F and F�1 provided that very mild
conditions hold. We summarize the overall scheme as Algorithm 4.2.

Algorithm 4.2 HIF-DE in 3D with edge skeletonization.
A0 D A F initialize
for ` D 0; 1; : : : ; L � 1 do F loop from finest to coarsest level

A`C1=3 D W
T
`
A`W` F eliminate interior cells

A`C2=3 D ZC`C1=3
.A`C1=3/ � U

T
`C1=3

A`C1=3U`C1=3 F skeletonize faces
A`C1 D ZC`C2=3

.A`C2=3/ � U
T
`C2=3

A`C2=3U`C2=3 F skeletonize edges
end for
A � V �T

0 V �T
1=3
� � �V �T

L�1=3
DV �1

L�1=3
� � �V �1

1=3
V �10 F generalized LDL

decomposition

Unlike for the standard HIF-DE, randomized methods (Section 4.3) now tend to
be inaccurate when compressing SCIs. This could be remedied by considering in-
stead ˆc.AcN;cA

T
cN;c

/AcN;c for some small integer  D 1; 2; : : : , but the expense
of the extra multiplications usually outweighed any efficiency gains.

4.6 Complexity Estimates
We now investigate the computational complexity of HIF-DE. For this, we need

to estimate the skeleton size jycj for a typical index set c 2 C` at fractional level `.
This is determined by the rank behavior of SCIs, which we assume satisfy standard
multipole estimates [22, 23] as motivated by experimental observations. Then it
can be shown [30, 31] that the typical skeleton size is

k` D

(
O.`/; ı D 1;

O.2.ı�1/`/; ı � 2;
(4.6)



1438 K. L. HO AND L. YING

where ı is the intrinsic dimension of a typical DOF cluster at level `, i.e., ı D 1 for
edges (2D and 3D) and ı D 2 for faces (3D only). Note that we have suggestively
used the same notation as for the index set size jcj in Section 3.3, which can be
justified by recognizing that the active DOFs c 2 C` for any ` are obtained by
merging skeletons from at most one integer level prior. We emphasize that (4.6)
has yet to be proven, so all following results should formally be understood as
conjectures, albeit ones with strong numerical support (Section 5).

THEOREM 4.6. Assume that (4.6) holds. Then the costs of constructing the fac-
torization F in (4.2) or (4.5) using HIF-DE with accelerated compression and of
applying F or F�1 are, respectively, tf ; ta=s D O.N/ in 2D; tf D O.N logN/
and ta=s D O.N/ in 3D; and tf ; ta=s D O.N/ in 3D with edge skeletonization.

PROOF. The costs of constructing and applying the factorization are clearly

tf D

LX0

`D0

O
�
2d.L�`/k3`

�
; ta=s D

LX0

`D0

O
�
2d.L�`/k2`

�
;

where prime notation denotes summation over all levels, both integer and frac-
tional, and k` is as given by (4.6) for ı appropriately chosen. In 2D, all fronts are
reduced to 1D edges, so ı D 1; in 3D, compression on 2D faces has ı D 2; and in
3D with edge skeletonization, we again have ı D 1. The claim follows by direct
computation. �

5 Numerical Results
In this section, we demonstrate the efficiency of HIF-DE by reporting numerical

results for some benchmark problems in 2D and 3D. All algorithms and examples
were implemented in MATLAB® and are freely available at https://github.
com/klho/FLAM/. In what follows, we refer to MF as mf2 in 2D and mf3 in 3D.
Similarly, we call HIF-DE hifde2 and hifde3, respectively, and denote by hifde3x
the 3D variant with edge skeletonization. All codes are fully adaptive and built
on quadtrees in 2D and octrees in 3D. The average block size jcj at level 0 (and
hence the tree depth L) was chosen so that roughly half of the initial DOFs are
eliminated. In select cases, the first few fractional levels of HIF-DE were skipped
to optimize the running time. Diagonal blocks, i.e., App in Lemma 2.1, were
factored using the Cholesky decomposition if A is SPD and the (partially pivoted)
LDL decomposition otherwise.

For each example, the following are given:
� �: relative precision of the ID;
� N : total number of DOFs in the problem;
� jsLj: number of active DOFs remaining at the highest level;
� tf : wall clock time for constructing the factorization F in seconds;
� mf : memory required to store F in GB;
� ta=s: wall clock time for applying F or F�1 in seconds;

https://github.com/klho/FLAM/
https://github.com/klho/FLAM/
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FIGURE 5.1. Scaling results for Example 1. Wall clock times tf (ı) and
ta=s (�) and storage requirementsmf (˘) are shown for mf2 (white) and
hifde2 (black) at precision � D 10�9. Dotted lines denote extrapolated
values. Included also are reference scalings (gray dashed lines) ofO.N/
and O.N 3=2/ (left, from bottom to top), and O.N/ and O.N logN/
(right). The lines for ta=s (bottom left) lie nearly on top of each other.

� ea: a posteriori estimate of kA � F k=kAk (see below);
� es: a posteriori estimate of kI � AF�1k � kA�1 � F�1k=kA�1k;
� ni : number of iterations to solve (1.2) using CG [29, 41] (if SPD) or GM-

RES [37] with preconditioner F�1 to a tolerance of 10�12, where f is a
standard uniform random vector.

We also compare against MF, which is numerically exact.
The operator errors ea and es were estimated using power iteration with a stan-

dard uniform random start vector [11, 32] and a convergence criterion of 10�2 rel-
ative precision in the matrix norm. This has a small probability of underestimating
the error but seems to be quite robust in practice.

For simplicity, all PDEs were defined over � D .0; 1/d with (arbitrary) Dirich-
let boundary conditions as in Section 3, discretized on a uniform n�n or n�n�n
mesh using second-order central differences via the five-point stencil in 2D and the
seven-point stencil in 3D.

All computations were performed in MATLAB® R2010b on a single core (with-
out parallelization) of an Intel Xeon E7-4820 CPU at 2.0 GHz on a 64-bit Linux
server with 256 GB of RAM.

5.1 Two Dimensions
We begin first in 2D, where we present three examples.

Example 1. Consider (1.1) with a.x/ � 1, b.x/ � 0, and � D .0; 1/2, i.e.,
a simple Laplacian in the unit square. The resulting matrix A is SPD, which we
factored using both mf2 and hifde2 at � D 10�6, 10�9, and 10�12 (the compression
tolerances are for HIF-DE only). The data are summarized in Tables 5.1 and 5.2
with scaling results shown in Figure 5.1.
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TABLE 5.1. Factorization results for Example 1.

mf2 hifde2
� N jsLj tf mf jsLj tf mf

10�06

10232 — — — 56 5:5eC1 7:9e�1
20472 — — — 57 2:4eC2 3:2eC0
40952 — — — 57 1:0eC3 1:3eC1
81912 — — — 52 4:0eC3 5:1eC1

10�09

10232 — — — 85 6:1eC1 8:2e�1
20472 — — — 93 2:7eC2 3:3eC0
40952 — — — 99 1:1eC3 1:3eC1
81912 — — — 102 4:5eC3 5:3eC1

10�12

10232 — — — 114 6:7eC1 8:4e�1
20472 — — — 125 2:9eC2 3:4eC0
40952 — — — 134 1:3eC3 1:4eC1
81912 — — — 144 5:1eC3 5:5eC1

—
10232 2045 8:6eC1 1:1eC0 — — —
20472 4093 4:5eC2 4:8eC0 — — —
40952 8189 2:5eC3 2:1eC1 — — —

TABLE 5.2. Matrix application results for Example 1.

mf2 hifde2
� N ta=s ta=s ea es ni

10�06

10232 — 2:1eC0 8:3e�06 2:4e�03 6

20472 — 9:1eC0 2:1e�05 1:5e�02 7

40952 — 3:9eC1 8:4e�05 2:6e�01 13

81912 — 1:8eC2 1:1e�04 6:3e�01 15

10�09

10232 — 2:1eC0 5:5e�09 8:7e�07 4

20472 — 8:6eC0 1:4e�08 6:5e�06 4

40952 — 3:8eC1 2:9e�08 2:0e�05 4

81912 — 1:9eC2 5:3e�08 1:0e�04 3

10�12

10232 — 2:1eC0 5:5e�12 8:0e�10 3

20472 — 8:9eC0 9:4e�12 3:0e�09 3

40952 — 4:2eC1 3:2e�11 2:2e�08 3

81912 — 1:8eC2 6:3e�11 6:5e�08 3

—
10232 2:4eC0 — — — —
20472 1:0eC1 — — — —
40952 4:4eC1 — — — —

It is evident that jsLj � kL behaves as predicted, with HIF-DE achieving signifi-
cant compression over MF (but, of course, at the cost of introducing approximation
error). Consequently, we find strong support for asymptotic complexities consis-
tent with Theorems 3.1 and 4.6, though MF scales much better than predicted due
to its favorable constants. We remark that obtaining a speedup in 2D is not our
primary goal since MF is already so efficient in this regime. Still, we see a modest
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FIGURE 5.2. Sample realization of a quantized high-contrast random
field in 2D.

increase in performance and memory savings that allow us to run HIF-DE up to
N D 81912, for which MF was not successful.

For all problem sizes tested, tf and mf are always smaller for HIF-DE, though
ta=s is quite comparable. This is because ta=s is dominated by memory access (at
least in our current implementation), which also explains its relative insensitivity
to �. Furthermore, we observe that ta=s � tf for both methods, which makes them
ideally suited to systems involving multiple right-hand sides.

The forward approximation error ea D O.�/ for all N and seems to increase
only mildly with N . This indicates that the local accuracy of the ID provides a
good estimate of the overall accuracy of the algorithm, which is not easy to prove
since the multilevel matrix factors constituting F are not orthogonal. On the other
hand, we expect the inverse approximation error to scale as es D O.�.A/ea/,
where �.A/ D O.N/ for this example, and indeed we see that es is much larger
due to ill-conditioning. When using F�1 to precondition CG, however, the number
of iterations required is always very small. This indicates that F�1 is a highly
effective preconditioner.

Example 2. Consider now the same setup as in Example 1 but with a.x/ a quan-
tized high-contrast random field defined as follows:

(1) Initialize by sampling each staggered grid point aj from the standard uni-
form distribution.

(2) Impose some correlation structure by convolving faj g with an isotropic
Gaussian of width 4h.

(3) Quantize by setting

aj D

(
10�2; aj � �;

10C2; aj > �;

where � is the median of faj g.

Figure 5.2 shows a sample realization of such a high-contrast random field in 2D.
The matrix A now has condition number �.A/ D O.�N/, where � D 104 is
the contrast ratio. Such high-contrast problems are typically extremely difficult to
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TABLE 5.3. Factorization results for Example 2.

mf2 hifde2
� N jsLj tf mf jsLj tf mf

10�09

10232 — — — 97 6:5eC1 8:3e�1
20472 — — — 110 2:8eC2 3:3eC0
40952 — — — 113 1:2eC3 1:3eC1
81912 — — — 141 4:6eC3 5:4eC1

10�12

10232 — — — 134 7:4eC1 8:7e�1
20472 — — — 148 3:2eC2 3:5eC0
40952 — — — 160 1:4eC3 1:4eC1
81912 — — — 191 5:5eC3 5:7eC1

—
10232 2045 8:4eC1 1:1eC0 — — —
20472 4093 4:6eC2 4:8eC0 — — —
40952 8189 2:5eC3 2:1eC1 — — —

TABLE 5.4. Matrix application results for Example 2.

mf2 hifde2
� N ta=s ta=s ea es ni

10�09

10232 — 2:3eC0 3:1e�09 2:0e�4 3

20472 — 9:3eC0 2:5e�09 2:4e�4 3

40952 — 3:9eC1 3:4e�08 3:1e�4 8

81912 — 1:9eC2 4:5e�09 1:2e�3 4

10�12

10232 — 2:3eC0 1:8e�12 1:7e�7 2

20472 — 8:9eC0 2:3e�12 3:0e�7 2

40952 — 4:0eC1 3:5e�12 5:8e�7 2

81912 — 1:9eC2 4:5e�12 6:0e�7 2

—
10232 2:5eC0 — — — —
20472 1:0eC1 — — — —
40952 4:1eC1 — — — —

solve by iteration. Data for mf2 and hifde2 at � D 10�9 and 10�12 are given in
Tables 5.3 and 5.4.

As expected, factorization results for MF are essentially the same as those in
Example 1 since the elimination procedure is identical. Results are also very simi-
lar for HIF-DE, with only slightly increased skeleton sizes, presumably to resolve
the more detailed structure of a.x/. Thus, high-contrast problems do not appear
to pose any challenge. However, es naturally suffers due to the additional ill-
conditioning, though F�1 remains a very good preconditioner for CG in all cases
tested.

Example 3. We then turn to the Helmholtz equation (1.1) with a.x/ � 1 and
b.x/ � �k2, where k D 2�� is the wave frequency for � the number of wave-
lengths in �. We kept a fixed number of 32 DOFs per wavelength by increasing k
with n D

p
N . The resulting matrix is indefinite and was factored using both mf2

and hifde2 with � D 32, 64, and 128 at � D 10�6, 10�9, and 10�12. Since A
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TABLE 5.5. Factorization results for Example 3.

mf2 hifde2
� N � jsLj tf mf jsLj tf mf

10�06

10232 32 — — — 156 5:7eC1 1:2eC0
20472 64 — — — 271 2:4eC2 4:8eC0
40952 128 — — — 408 1:0eC3 1:9eC1

10�09

10232 32 — — — 180 6:2eC1 1:2eC0
20472 64 — — — 286 2:7eC2 4:9eC0
40952 128 — — — 442 1:2eC3 2:0eC1

10�12

10232 32 — — — 207 6:9eC1 1:3eC0
20472 64 — — — 310 3:0eC2 5:1eC0
40952 128 — — — 482 1:3eC3 2:0eC1

—
10232 32 2045 1:1eC2 1:6eC0 — — —
20472 64 4093 7:2eC2 7:1eC0 — — —
40952 128 8189 4:9eC3 3:0eC1 — — —

TABLE 5.6. Matrix application results for Example 3.

mf2 hifde2
� N � ta=s ta=s ea es ni

10�06

10232 32 — 2:4eC0 5:5e�06 3:1e�3 4

20472 64 — 9:7eC0 6:8e�06 7:4e�3 7

40952 128 — 4:0eC1 3:7e�05 2:3e�2 10

10�09

10232 32 — 2:3eC0 3:8e�09 2:7e�6 2

20472 64 — 9:5eC0 5:9e�09 2:9e�5 6

40952 128 — 3:7eC1 3:5e�08 8:5e�6 6

10�12

10232 32 — 2:2eC0 4:8e�12 3:9e�9 2

20472 64 — 9:6eC0 5:7e�12 1:1e�8 2

40952 128 — 4:3eC1 6:8e�11 1:7e�8 2

—
10232 32 2:6eC0 — — — —
20472 64 1:1eC1 — — — —
40952 128 4:6eC1 — — — —

is no longer SPD, F�1 now applies as a preconditioner for GMRES. The data are
summarized in Tables 5.5 and 5.6 with scaling results in Figure 5.3.

Overall, the results are very similar to those in Example 1 but with larger skele-
ton sizes and some extra ill-conditioning of order O.k/. We remark, however, that
HIF-DE is effective only at low to moderate frequency since the rank structures
employed break down as k ! 1. This can be understood by analogy with the
Helmholtz Green’s function, whose off-diagonal blocks are full-rank in the limit
(though other rank structures are possible [13, 14]). Indeed, we can already see an
increasing trend in jsLj beyond that observed in Examples 1 and 2. In the high-
frequency regime, the only compression available is due to sparsity, with HIF-DE



1444 K. L. HO AND L. YING

FIGURE 5.3. Scaling results for Example 3, comparing mf2 (white) with
hifde2 (black) at precision � D 10�9; all other notation as in Figure 5.1.

TABLE 5.7. Factorization results for Example 4.

mf3 hifde3 hifde3x
� N jsLj tf mf jsLj tf mf jsLj tf mf

10�3
313 — — — 950 1:0eC1 1:1e�1 331 1:0eC1 9:4e�2
633 — — — 2019 1:9eC2 1:2eC0 578 1:7eC2 9:6e�1
1273 — — — 4153 2:8eC3 1:3eC1 890 2:2eC3 9:0eC0

10�6
313 — — — 1568 1:1eC1 1:2e�1 931 1:1eC1 1:0e�1
633 — — — 3607 3:0eC2 1:7eC0 2466 3:2eC2 1:3eC0
1273 — — — 7651 6:2eC3 2:0eC1 3562 6:2eC3 1:6eC1

10�9
313 — — — 2030 1:3eC1 1:3e�1 1495 1:3eC1 1:1e�1
633 — — — 5013 4:3eC2 2:0eC0 4295 4:7eC2 1:6eC0
1273 — — — 11037 1:1eC4 2:6eC1 7288 1:1eC4 2:1eC1

— 313 2791 1:6eC1 1:6e�1 — — — — — —
633 11719 8:2eC2 3:0eC0 — — — — — —

essentially reducing to MF. Nonetheless, our results reveal no significant appar-
ent failure and demonstrate that HIF-DE achieves linear complexity up to at least
� � 102.

5.2 Three Dimensions
We next present three examples in 3D generalizing each of the 2D cases above.

Example 4. Consider the 3D analogue of Example 1, i.e., (1.1) with a.x/ � 1,
b.x/ � 0, and � D .0; 1/3. Data for mf3, hifde3, and hifde3x at � D 10�3, 10�6,
and 10�9 are given in Tables 5.7 and 5.8 with scaling results shown in Figure 5.4.

It is immediate that tf D O.N 2/ and ta=s D O.N 4=3/ for MF, which consider-
ably degrades its performance for large N . Indeed, we were unable to run mf3 for
N D 1273 because of the excessive memory cost. In contrast, HIF-DE scales much
better, with jsLj growing consistently with (4.6) for both variants. This provides
strong evidence for Theorem 4.6. However, the skeleton size is substantially larger
than in 2D, and neither hifde3 nor hifde3x quite achieve quasilinear complexity as
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TABLE 5.8. Matrix application results for Example 4.

mf3 hifde3 hifde3x
� N ta=s ta=s ea es ni ta=s ea es ni

10�3
313 — 1:8e�1 2:1e�03 5:6e�2 7 1:5e�1 3:6e�03 7:0e�2 8

633 — 1:8eC0 5:0e�03 3:4e�1 11 1:3eC0 4:3e�03 3:3e�1 11

1273 — 1:9eC1 7:8e�03 7:5e�1 19 1:2eC1 4:8e�03 6:8e�1 17

10�6
313 — 1:9e�1 8:5e�07 7:5e�6 3 1:4e�1 9:8e�07 9:8e�6 3

633 — 2:1eC0 3:9e�06 5:8e�5 3 1:4eC0 2:5e�06 4:4e�5 3

1273 — 2:6eC1 2:3e�05 1:3e�3 4 1:9eC1 9:1e�06 2:6e�4 4

10�9
313 — 1:5e�1 6:1e�10 3:4e�9 2 1:6e�1 7:4e�10 4:0e�9 2

633 — 2:0eC0 4:0e�09 3:5e�8 2 1:7eC0 2:0e�09 2:1e�8 2

1273 — 3:3eC1 1:7e�08 4:6e�7 2 2:7eC1 6:4e�09 1:5e�7 2

— 313 2:0e�1 — — — — — — — —
633 3:3eC0 — — — — — — — —

FIGURE 5.4. Scaling results for Example 4, comparing mf3 (white) with
hifde3 (gray) and hifde3x (black) at precision � D 10�6. Included
also are reference scalings of O.N/ and O.N 2/ (left), and O.N/ and
O.N 4=3/ (right); all other notation as in Figure 5.1. The lines for hifde3
and hifde3x lie nearly on top of each other; for tf (top left), they overlap
almost exactly.

predicted: the empirical scaling for tf for both algorithms at, e.g., � D 10�6 is
approximately O.N 1:4/. We believe this to be a consequence of the large interac-
tion ranks, which make the asymptotic regime rather difficult to reach. In parallel
with Example 1, ea D O.�/ but es is somewhat larger due to ill-conditioning.
We found F�1 to be a very effective preconditioner throughout. There were no
significant differences in either computation time or accuracy between hifde3 and
hifde3x, though the latter does provide some appreciable memory savings.

Example 5. Now consider the 3D analogue of Example 2, i.e., Example 4 but with
a.x/ a quantized high-contrast random field as previously defined, extended to 3D
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TABLE 5.9. Factorization results for Example 5.

mf3 hifde3 hifde3x
� N jsLj tf mf jsLj tf mf jsLj tf mf

10�6
313 — — — 1441 1:1eC1 1:1e�1 948 1:1eC1 1:0e�1
633 — — — 3271 2:5eC2 1:5eC0 2337 2:8eC2 1:2eC0
1273 — — — 6679 4:9eC3 1:7eC1 3294 4:9eC3 1:4eC1

10�9
313 — — — 1893 1:2eC1 1:2e�1 1423 1:3eC1 1:1e�1
633 — — — 4755 3:6eC2 1:8eC0 3924 4:0eC2 1:4eC0
1273 — — — 10913 9:4eC3 2:4eC1 7011 9:9eC3 1:9eC1

— 313 2791 1:5eC1 1:6e�1 — — — — — —
633 11719 8:4eC2 3:0eC0 — — — — — —

TABLE 5.10. Matrix application results for Example 5.

mf3 hifde3 hifde3x
� N ta=s ta=s ea es ni ta=s ea es ni

10�6
313 — 1:8e�1 5:1e�07 6:1e�3 6 1:6e�1 6:4e�07 1:1e�2 5

633 — 2:0eC0 2:1e�06 6:4e�2 7 1:6eC0 1:5e�06 5:8e�2 12

1273 — 2:2eC1 8:8e�06 3:4e�1 16 1:6eC1 6:0e�06 3:3e�1 16

10�9
313 — 1:9e�1 3:3e�10 1:5e�5 4 1:4e�1 3:8e�10 1:3e�5 4

633 — 2:2eC0 1:6e�09 1:7e�4 6 1:8eC0 1:9e�09 1:7e�4 4

1273 — 3:1eC1 1:8e�08 3:7e�3 8 2:3eC1 1:2e�08 3:5e�3 8

— 313 2:0e�1 — — — — — — — —
633 3:4eC0 — — — — — — — —

in the natural way. Data for mf3, hifde3, and hifde3x at � D 10�6 and 10�9 are
given in Tables 5.9 and 5.10.

Again, the results are quite similar to those in Example 5 but with es necessarily
larger by a factor of about � due to ill-conditioning. There are no evident difficulties
arising from the high contrast ratio for either hifde3 or hifde3x.

Example 6. Finally, we consider the 3D analogue of Example 3, where now k D

2�� is increased in proportion to n D N 1=3 at a fixed resolution of 8 DOFs per
wavelength. The matrix A is once again indefinite, which we factored using mf3,
hifde3, and hifde3x with � D 4, 8, and 16 at � D 10�6 and 10�9. The data are
summarized in Tables 5.11 and 5.12 with scaling results in Figure 5.5.

All algorithms behave essentially as expected, but the skeleton size is substan-
tially larger for hifde3 than in the Laplace case (Example 4). The same increase,
however, was not observed for hifde3x. We take this to imply that the 1D nature
of hifde3x is less sensitive to the oscillatory character of the Helmholtz problem,
at least at low frequency, though any definitive conclusion is difficult to draw. The
empirical complexity at � D 10�6 is now tf ' O.N 1:5/ for hifde3 and O.N 1:3/

for hifde3x. Both solvers remain quite favorable compared to mf3 and give very
good preconditioners for GMRES.
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TABLE 5.11. Factorization results for Example 6

mf3 hifde3 hifde3x
� N � jsLj tf mf jsLj tf mf jsLj tf mf

10�6
313 4 — — — 1702 2:4eC1 1:8e�1 1215 1:8eC1 1:5e�1
633 8 — — — 4275 8:2eC2 2:5eC0 2934 5:1eC2 1:9eC0
1273 16 — — — 10683 1:9eC4 3:0eC1 4071 8:1eC3 2:2eC1

10�9
313 4 — — — 2144 3:7eC1 2:1e�1 1685 2:5eC1 1:7e�1
633 8 — — — 5614 1:3eC3 3:1eC0 4684 9:3eC2 2:3eC0
1273 16 — — — 14088 3:4eC4 3:9eC1 7806 1:7eC4 2:9eC1

— 313 4 2791 6:4eC1 2:5e�1 — — — — — —
633 8 11719 5:5eC3 4:9eC0 — — — — — —

TABLE 5.12. Matrix application results for Example 6.

mf3 hifde3 hifde3x
� N � ta=s ta=s ea es ni ta=s ea es ni

10�6
313 4 — 1:6e�1 8:2e�07 3:4e�6 3 1:7e�1 6:5e�07 1:3e�5 3

633 8 — 2:0eC0 2:4e�06 3:3e�5 3 1:8eC0 2:0e�06 4:5e�5 3

1273 16 — 3:0eC1 3:7e�06 1:3e�3 8 2:1eC1 9:7e�06 4:7e�4 4

10�9
313 4 — 1:9e�1 5:0e�10 2:4e�9 2 1:7e�1 5:9e�10 1:1e�8 2

633 8 — 2:4eC0 1:7e�09 2:1e�8 2 2:2eC0 2:0e�09 3:2e�8 2

1273 16 — 3:3eC1 3:3e�09 1:2e�6 6 2:6eC1 5:2e�09 1:4e�7 2

— 313 4 2:1e�1 — — — — — — — —
633 8 2:6eC0 — — — — — — — —

FIGURE 5.5. Scaling results for Example 6, comparing mf3 (white) with
hifde3 (gray) and hifde3x (black) at precision � D 10�6; all other nota-
tion as in Figure 5.4.

6 Generalizations and Conclusions
In this paper, we have introduced HIF-DE for the efficient factorization of dis-

cretized elliptic partial differential operators in 2D and 3D. HIF-DE combines
MF [12, 15, 33] with recursive dimensional reduction via frontal skeletonization to
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construct an approximate generalized LU/LDL decomposition at estimated quasi-
linear cost. The latter enables significant compression over MF and is critical for
improving the asymptotic complexity, while the former is essential for optimally
exploiting sparsity and hence for achieving good practical performance. The result-
ing factorization allows the rapid application of the matrix inverse, which provides
a fast direct solver or preconditioner, depending on the accuracy. Furthermore,
although we have focused here only on symmetric matrices, our techniques gen-
eralize also to the unsymmetric case by defining analogous two-sided elimination
operators Rp and Sp in (2.2) as in [31] and by compressing

Bc D

�
AcN;c

Ac;cN

�
instead of just AcN;c .

While we have reported numerical data only for PDEs with Dirichlet boundary
conditions, HIF-DE extends trivially to other types of boundary conditions as well.
Preliminary tests with mixed Dirichlet-Neumann conditions reveal no discernible
change in performance.

The skeletonization operator at the core of HIF-DE can be interpreted in several
ways. For example, we can view it as an approximate local change of basis in order
to gain sparsity. Unlike traditional approaches, however, this basis is determined
optimally on the fly using the ID. Skeletonization can also be regarded as adaptive
numerical upscaling or as implementing specialized restriction and prolongation
operators in the context of multigrid methods [7, 24, 47].

Although we have presently only considered sparse matrices arising from PDEs,
the same basic approach can also be applied to structured dense matrices such as
those derived from the integral equation formulations of elliptic PDEs. This is
described in detail as algorithm HIF-IE in the companion paper [31], which uses
skeletonization for all compression steps and likewise has quasilinear complexity
estimates in both 2D and 3D. In particular, HIF-DE can be viewed as a heavily
specialized version of HIF-IE by embedding it into the framework of MF in order
to exploit sparsity. The elimination operations in MF can also be seen as a trivial
form of skeletonization acting on overlapping subdomains. Indeed, [31] shows
that recursive skeletonization [18, 21, 30, 35], a precursor of HIF-IE based on cell
compression, is essentially equivalent to MF.

Some important directions for future research include:

� Obtaining analytical estimates of the interaction rank for SCIs, even for
the simple case of the Laplacian. This would enable a much more precise
understanding of the complexity of HIF-DE, which has yet to be rigorously
established.
� Parallelizing HIF-DE, which, like MF, is organized according to a tree

structure where each node at a given level can be processed independently
of the rest. In particular, the frontal matrices are now much more compact,
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which should support better parallelization, and we anticipate that the over-
all scheme will have significant impact on practical scientific computing.
This is currently in active development.
� Investigating alternative strategies for reducing skeleton sizes in 3D, which

can still be quite large, especially at high precision.
� Understanding the extent to which our current techniques can be adapted to

highly indefinite problems, some of which have a Helmholtz character and
possess rank structures of a different type than that exploited here [13,14].
Such problems can be very challenging to solve iteratively and present a
prime target area for future fast direct solvers.
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