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A FAST SEMIDIRECT LEAST SQUARES ALGORITHM FOR
HIERARCHICALLY BLOCK SEPARABLE MATRICES∗

KENNETH L. HO† AND LESLIE GREENGARD‡

Abstract. We present a fast algorithm for linear least squares problems governed by hierarchi-
cally block separable (HBS) matrices. Such matrices are generally dense but data sparse and can
describe many important operators including those derived from asymptotically smooth radial ker-
nels that are not too oscillatory. The algorithm is based on a recursive skeletonization procedure that
exposes this sparsity and solves the dense least squares problem as a larger, equality-constrained,
sparse one. It relies on a sparse QR factorization coupled with iterative weighted least squares meth-
ods. In essence, our scheme consists of a direct component, comprised of matrix compression and
factorization, followed by an iterative component to enforce certain equality constraints. At most
two iterations are typically required for problems that are not too ill-conditioned. For an M×N HBS
matrix with M ≥ N having bounded off-diagonal block rank, the algorithm has optimal O(M +N)
complexity. If the rank increases with the spatial dimension as is common for operators that are
singular at the origin, then this becomes O(M +N) in one dimension, O(M +N3/2) in two dimen-
sions, and O(M + N2) in three dimensions. We illustrate the performance of the method on both
overdetermined and underdetermined systems in a variety of settings, with an emphasis on radial
basis function approximation and efficient updating and downdating.
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1. Introduction. The method of least squares is a powerful technique for the
approximate solution of overdetermined systems and is often used for data fitting
and statistical inference in applied science and engineering. In this paper, we will
primarily consider the linear least squares problem

(1.1) min
x

‖Ax− b‖,

where A ∈ CM×N is dense and full rank with M ≥ N , x ∈ CN , b ∈ CM , and ‖ · ‖ is
the Euclidean norm. Formally, the solution is given by

(1.2) x = A+b,

where A+ is the Moore–Penrose pseudoinverse of A, and can be computed directly via
the QR decomposition at a cost ofO(MN2) operations [8, 42]. This can be prohibitive
when M and N are large. If A is structured so as to support fast multiplication,
then iterative methods such as LSQR [46] or GMRES [37, 49] present an attractive
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Table 1

Examples of radial kernels φ(r) admitting HBS representations: H
(1)
0 , zeroth order Hankel

function of the first kind; K0, zeroth order modified Bessel function of the second kind.

Type Name Kernel Notes
2D 3D

Green’s function

Laplace log r 1/r

Helmholtz H
(1)
0 (kr) eıkr/r k not too large

Yukawa K0(kr) e−kr/r
Polyharmonic r2n log r r2n−1 n = 1, 2, 3, . . .

Radial basis function
Multiquadric

√
r2 + c2

c not too large
Inverse multiquadric 1/

√
r2 + c2

alternative. However, such solvers still have several key disadvantages when compared
with their direct counterparts.

(i) The convergence rate of an iterative solver can depend strongly on the con-
ditioning of the system matrix, which, for least squares problems, can sometimes be
very poor. In such cases, the number of iterations required, and hence the compu-
tational cost, can be far greater than expected (if the solver succeeds at all). Direct
methods, by contrast, are robust in that their performance does not degrade with
conditioning. Thus, they are often preferred in situations where reliability is critical.

(ii) Standard iterative schemes are inefficient for multiple right-hand sides. With
direct solvers, on the other hand, following an expensive initial factorization, the
subsequent cost for each solve is typically much lower (e.g., only O(MN) work to
apply the pseudoinverse given precomputed QR factors). This is especially important
in the context of updating and downdating as the least squares problem is modified
by adding or deleting data, which can be viewed as low-rank updates of the original
system matrix.

In this paper, we present a fast semidirect least squares solver for a class of
structured dense matrices called hierarchically block separable (HBS) matrices. Such
matrices were introduced by Gillman, Young, and Martinsson [24] and possess a
nested low-rank property that enables highly efficient data-sparse representations.
The HBS matrix structure is closely related to that of H - and H 2-matrices [32,
33, 34, 35] and hierarchically semiseparable (HSS) matrices [15, 16, 56], and can be
considered a generalization of the matrix features utilized by multilevel summation
algorithms like the fast multipole method (FMM) [27, 28]. Many linear operators are
of HBS form, notably integral transforms with asymptotically smooth radial kernels.
These include those based on the Green’s functions of nonoscillatory elliptic partial
differential equations [9]. Some examples are shown in Table 1; we highlight, in
particular, the Green’s functions

φΔ (r) =
1

r
, φΔ2 (r) = r,

for the Laplace and biharmonic equations, respectively, in three dimensions, and their
regularizations, the inverse multiquadric and multiquadric kernels

φIMQ (r) =
1√

r2 + c2
, φMQ (r) =

√
r2 + c2,

respectively (for c not too large). The latter are well known within the radial basis
function (RBF) community and have been used to successfully model smooth surfaces
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Table 2

Asymptotic complexities for the least squares solver when applied to the operators in Table 1
on data embedded in a d-dimensional domain: M and N are the matrix dimensions; M ≥ N .

d Precomputation Solution
1 O(M +N) O(M +N)

2 O(M +N3/2) O(M +N logN)

3 O(M +N2) O(M +N4/3)

[13, 36]. Also of note is the two-dimensional (2D) biharmonic Green’s function, the
so-called thin plate spline

(1.3) φTPS (r) = r2 log r,

which minimizes a physical bending energy [22]. For an overview of RBFs, see [10, 47].
Remark. Although we focus in this paper on dense matrices, many sparse ma-

trices, e.g., those resulting from local finite-difference-type discretizations, are also of
HBS form.

Previous work on HBS matrices exploited their structure to build fast direct
solvers for the square M = N case [24, 39, 44] (similar methods are available for other
structured formats). Here, we extend the approach of [39] to the rectangular M ≥
N case. Our algorithm relies on the multilevel compression and sparsity-revealing
embedding of [39], and recasts the (unconstrained) dense least squares problem (1.1) as
a larger, equality-constrained, sparse one. This is solved via a sparse QR factorization
coupled with iterative weighted least squares methods. For the former, we use the
SuiteSparseQR package [20] by Davis, while for the latter, we employ the iteration of
Barlow and Vemulapati [5], which has been shown to require at most two steps for
problems that are not too ill-conditioned. Thus, our solver is a semidirect method
where the iteration often converges extremely quickly; in such cases, it retains all of
the advantages of traditional direct solvers.

It is useful to divide our algorithm into two phases: a direct precomputation
phase, comprising matrix compression and factorization, followed by an iterative so-
lution phase using the precomputed QR factors. Clearly, for a given matrix, only the
solution phase must be executed for each additional right-hand side. Table 2 lists
asymptotic complexities for both phases when applied to the operators in Table 1 on
data embedded in a d-dimensional domain for d = 1, 2, or 3. Although the estimates
generally worsen as d increases, the solver achieves optimal O(M + N) complexity
for both phases in any dimension in the special case that the source (column) and
target (row) data are separated (i.e., the domain and range of the continuous opera-
tor are disjoint). This may have applications, for example, in partial charge fitting in
computational chemistry [6, 23].

Remark. The increase in cost with d is due to the singular nature of the kernels
in Table 1 at the origin, which leads to growth of the off-diagonal block ranks defining
the HBS form (section 5). If the data are separated or if the kernel itself is smooth,
then this rank growth does not occur. In this paper, we will not specifically address
this latter setting, viewing it instead as a special case of the one-dimensional problem.

Our methods can also be generalized to underdetermined systems (M < N) when
seeking the minimum-norm solution in L2, i.e., the equality-constrained least squares
problem

(1.4) min
Ax=b

‖x‖,
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provided that the solution, which is also given by (1.2), is not too ill-conditioned with
respect to A.

Fast direct least squares algorithms have been developed in other structured ma-
trix contexts as well, in particular within the H - and HSS matrix frameworks using
various structured orthogonal transformation schemes [7, 14, 21]. Our approach, how-
ever, is quite different and explicitly leverages the sparse representation of HBS ma-
trices and the associated sparse matrix technology (e.g., the state-of-the-art software
package SuiteSparseQR). This has the possible advantage of producing an algorithm
that is easier to implement, extend, and optimize. For example, although we consider
here only the standard Moore–Penrose systems (1.1) and (1.4), it is immediate that
our techniques can be applied to general equality-constrained least squares problems
with any combination of the system and constraint matrices being HBS (but with a
possible increase in cost). For related work on other structured matrices including
those of Toeplitz, Hankel, and Cauchy type, see, for instance, [30, 41, 52, 57] and
references therein.

The remainder of this paper is organized as follows. In the next two sections, we
collect and review certain mathematical preliminaries on HBS matrices (section 2)
and equality-constrained least squares problems (section 3). In section 4, we describe
our fast semidirect algorithm for both overdetermined and underdetermined systems.
Complexity estimates are given in section 5, while section 6 discusses efficient updating
and downdating in the context of our solver. Numerical results for a variety of radial
kernels are reported in section 7. Finally, in section 8, we summarize our findings and
end with some generalizations and concluding remarks.

2. HBS matrices. In this section, we define the HBS matrix property and
discuss algorithms to compress such matrices and to sparsify linear systems governed
by them. We will mainly follow the treatment of [39], extended to rectangular matrices
in the natural way.

Let A ∈ C
M×N be a matrix viewed with p×p blocks, with the ith row and column

blocks having dimensions mi, ni > 0, respectively, for i = 1, . . . , p.
Definition 2.1 (block separable matrix [24]). The matrix A is block separable

if each off-diagonal submatrix Aij can be decomposed as the product of three low-rank
matrices:

(2.1) Aij = LiSijRj for i �= j,

where Li ∈ Cmi×kr
i , Sij ∈ C

kr
i×kc

j , and Rj ∈ C
kc
j×nj , with (ideally) kri � mi and

kcj � nj, for i, j = 1, . . . , p.
Clearly, the block separability condition (2.1) is equivalent to requiring that the

off-diagonal block rows and columns have low rank (Figure 1). Observe that if A is
block separable, then it can be written as

(2.2) A = D + LSR,

Fig. 1. A block separable matrix has low-rank off-diagonal block rows and columns (black); its
diagonal blocks (white) can in general be full rank.
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Fig. 2. An example of a tree on the row and column index sets with depth λ = 3. The root
(node 1) contains all indices, which are hierarchically partitioned among its children.

where D = diag(Aii), L = diag(Li), R = diag(Ri), and S = (Sij) is dense with
Sii = 0.

Let us now define a tree structure on the row and column indices I = {1, . . . ,M}
and J = {1, . . . , N}, respectively, as follows. Associate with the root of the tree the
entire index sets I and J . If a given subdivision criterion is satisfied (e.g., based on
the sizes |I| and |J |), partition the root node into a set of children, each associated
with a subset of I and J such that they together span all the sets. Repeat this process
for each new node to be subdivided, partitioning its row and column indices among
its children. In other words, if we label each tree node with an integer i and denote
its row and column index sets by Ii and Ji, respectively, then

Ii =
⋃

j∈child(i)

Ij , Ji =
⋃

j∈child(i)

Jj ,

where child(i) gives the set of node indices belonging to the children of node i. Fur-
thermore, we also label the levels of the tree, starting with level 0 for the root at the
coarsest level to level λ for the leaves at the finest level; see Figure 2 for an example.

Remark. Although we require that the number of row and column partitions be
the same, we do not impose that |Ii| = |Ji| for any node i. Indeed, it is possible for
one of these sets to be empty.

Evidently, the tree defines a hierarchy among row and column index sets, each
level of which specifies a block partition of the matrix A.

Definition 2.2 (HBS matrix [24]). The matrix A is HBS if it is block separable
at each level of the tree hierarchy.

HBS matrices arise in many applications, for example, when discretizing the ker-
nels in Table 1 (up to a specified numerical precision), with row and column in-
dices partitioned according to an octree-type ordering on the corresponding data
[27, 28, 33, 39], which recursively groups together points that are geometrically collo-
cated [50].

2.1. Multilevel matrix compression. We now review algorithms [24, 39, 44]
for computing the low-rank matrices in (2.1) characterizing the HBS form. Our pri-
mary tool for this task is the interpolative decompositon (ID) [17].

Definition 2.3 (ID). An ID of a matrix A ∈ C
m×n with rank k is a factorization

A = BP , where B ∈ Cm×k consists of a subset of the columns of A and P ∈ Ck×n

contains the k × k identity matrix. We call B and P the skeleton and interpolation
matrices, respectively.

As stated, the ID clearly compresses the column space of A, but we can just
as well compress the row space by applying the ID to AT. Efficient algorithms for
adaptively computing an ID to any specified precision are available [17, 43, 55], i.e.,
the required rank k is an output of the ID.
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Fig. 3. Schematic of recursive skeletonization, comprising alternating steps of compression and
regrouping via ascension of the index tree. The diagonal blocks (white and gray) are extracted at
each level; they are shown here only to illustrate the regrouping process.

Definition 2.4 (row and column skeletons). The row indices corresponding to
the retained rows in the ID are called the row or incoming skeletons; the column indices
corresponding to the retained columns are called the column or outgoing skeletons.

A multilevel algorithm for the compression of HBS matrices then follows. For
simplicity, we describe the procedure for matrices with a uniform tree depth (i.e., all
leaves are at level λ), with the understanding that it extends easily to the adaptive
case. The following scheme [24, 39, 44] is known as recursive skeletonization (RS)
(Figure 3).

1. Starting at the leaves of the tree, extract the diagonal blocks and compress
the off-diagonal block rows and columns using the ID to a specified precision ε > 0
as follows. For each block i = 1, . . . , p, compress the row space of the ith off-diagonal
block row and call Li the corresponding row interpolation matrix. Similarly, for each
block j, compress the column space of the jth off-diagonal block column and call Rj

the corresponding column interpolation matrix. Let S be the “skeleton” submatrix of
A, with each off-diagional block Sij for i �= j defined by the row and column skeletons
associated with Li and Rj , respectively.

2. Since the off-diagonal blocks Sij are submatrices of the corresponding Aij ,
the compressed matrix S is HBS and so can itself be compressed in the same way.
Thus, move up one level in the tree, regroup the matrix blocks accordingly, and repeat.

The result is a telescoping matrix representation of the form

(2.3) A ≈ D(λ) + L(λ)
[
· · ·D(2) + L(2)

(
D(1) + L(1)D(0)R(1)

)
R(2) · · ·

]
R(λ),

cf. (2.2), where the superscript indexes the tree level l = 0, . . . , λ, that is accurate
to relative precision approximately ε. The algorithm is automatically adaptive in the
sense that the compression is more efficient if lower precision is required [24, 39, 44].

Remark. For the kernels in Table 1, which obey some form of Green’s theorem (at
least approximately), it is possible to substantially accelerate the preceding algorithm
by using a “proxy” surface to capture all far-field interactions (see also section 5). The
key idea is that any such interaction can be represented in terms of some equivalent
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density on an appropriate local bounding surface, which can be chosen so that it
requires only a constant number of points to discretize, irrespective of the actual
number of points in the far field or their detailed structure. This observation hence
replaces each global compression step with an entirely local one; see [17, 24, 26, 39,
44, 58] for details.

2.2. Structured sparse embedding. For M = N , the decomposition (2.3)
enables a highly structured sparse representation [15, 39] of the linear system Ax = b
as

(2.4)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D(λ) L(λ)

R(λ) −I

−I D(λ−1) . . .

. . .
. . . −I
−I D(1) L(1)

R(1) −I
−I D(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(λ)

y(λ)

...

...
x(1)

y(1)

x(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b
0
...
...
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

under the identifications

x(λ) = x, x(l) = R(l+1)x(l+1) for l = λ− 1, . . . , 0,(2.5a)

y(1) = D(0)x(0), y(l+1) = D(l)x(l) + L(l)y(l) for l = 1, . . . , λ− 1.(2.5b)

This expanded embedding clearly exposes the sparsity of HBS matrix equations and
permits the immediate application of existing fast sparse solvers (such as UMFPACK
[19] as in [39]).

If M ≥ N , however, then we have to deal with the overdetermined problem
(1.1), and (2.4) must be interpreted somewhat more carefully. In particular, the
identities (2.5) still hold, so only the first block row of (2.4) is to be solved in
the least squares sense. Thus, denoting the first block row of the sparse matrix
in (2.4) by E and the remainder (i.e., its last 2λ block rows) by C, and defining
x = (x(λ), y(λ), . . . , x(1), y(1), x(0))T, the analogue of (2.4) for (1.1) is the equality-
constrained least squares problem

(2.6) min
Cx=0

‖Ex− b‖,

where both E and C are sparse. It is easy to see that C has full row rank.
Similarly, if M < N and we seek to solve the underdetermined system (1.4), then

the corresponding problem is

(2.7) min
Mx=b1

‖I1x‖ ,

where

(2.8) M =

[
E
C

]
, b1 =

⎡
⎢⎢⎢⎣

b
0
...
0

⎤
⎥⎥⎥⎦ , I1 =

[
I 0 · · · 0

]
,

i.e., M is the entire sparse matrix on the left-hand side of (2.4), which also has full
row rank; b1 is the right-hand side of (2.4); and I1 is an operator that picks out the
first block row of the vector on which it acts.
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3. Equality-constrained least squares. We now turn to the solution of linear
least squares problems with linear equality constraints, with special attention to the
case that both governing matrices are sparse as in (2.6) and (2.7). For consistency
with the linear algebra literature, we adopt the notation of Barlow et al. [3, 4, 5],
which unfortunately conflicts somewhat with our previous definitions; the following
notation is thus meant to pertain only to this section.

Hence, consider the problem

(3.1) min
Cx=g

‖Ex− f‖,

where E ∈ Cm×n and C ∈ Cp×n, with

rank(C) = p, rank

([
E
C

])
= n

so that the solution is unique. Classical reduction schemes for solving (3.1), such
as the direct elimination and nullspace methods, require matrix products that can
destroy the sparsity of the resulting reduced, unconstrained systems [8, 42].

3.1. Weighted least squares. An attractive alternative when both E and C
are sparse is the method of weighting, which recasts (3.1) in the unconstrained form

(3.2) min
x

‖A(τ)x − b(τ)‖,

where

A(τ) =

[
E
τC

]
, b(τ) =

[
f
τg

]

for τ a suitably large weight. Clearly, as τ → ∞, the solution of (3.2) approaches that
of (3.1). The advantage, of course, is that (3.2) can be solved using standard sparse
techniques; this point of view is elaborated in [4, 53].

However, the choice of an appropriate weight can be a delicate matter: if τ is
too small, then (3.2) approximates (3.1) poorly, while if τ is too large, then (3.2)
can be ill-conditioned. An intuitive approach is to start with a small weight, then
carry out some type of iterative refinement, effectively increasing the weight with each
step. Such a scheme was first proposed by Van Loan [53], then further studied and
improved by Barlow [3] and Barlow and Vemulapati [5]; we summarize their results
in the next section.

3.2. Iterative reweighting by deferred correction. In [5], Barlow and Vem-
ulapati presented the following deferred correction procedure for the solution of the
equality-constrained least squares problem (3.1) via the successive solution of the
weighted problem (3.2) with a fixed weight τ .

1. Find

x(0) = arg min
x

‖A(τ)x − b(τ)‖

and set

r(0) = f − Ex(0), w(0) = g − Cx(0), λ(0) = τ2w(0).
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2. For k = 0, 1, 2, . . . until convergence, find

Δx(k) = arg min
x

‖A(τ)x− b(k)(τ)‖, b(k)(τ) =

[
r(k)

τw(k) + τ−1λ(k)

]

and update

x(k+1) = x(k) +Δx(k),

r(k+1) = r(k) − EΔx(k),

w(k+1) = w(k) − CΔx(k),

λ(k+1) = λ(k) + τ2w(k+1).

Terminate when the constraint residual ‖w(k+1)‖ is small.
Since τ is fixed, a single precomputed QR factorization of A(τ) can be used for all

iterations. This algorithm is a slight modification of that employed by Van Loan [53]
and has been shown to converge to the correct solution for τ appropriately chosen,
provided that (3.1) is not too ill-conditioned [3, 5, 53]. In particular, if implemented

in double precision, then for τ = ε
−1/3
mach ∼ 1.7×105, where εmach is the machine epsilon,

Barlow and Vemulapati [5] showed that their algorithm requires no more than two
iterations. Thus, for a broad class of problems for which it is reasonable to expect
an accurate answer, the above scheme often converges extremely rapidly (and can,
in some sense, even be considered a direct method, which can be made explicit by
running the iteration for exactly two steps).

Remark. Although Barlow and Vemulapati [5] considered (3.1) only over the reals,
there is no inherent difficulty in extending their solution procedure to the complex
case.

Remark. It was recently pointed out to us by Eduardo Corona (personal com-
munication, Aug. 2013) that deferred correction can be applied to ill-conditioned
systems as well, provided that τ is changed appropriately. The relevant analysis can

be found in [3, Corollary 3.1], which suggests choosing τ = ε
−1/3
mach[κ(M)]1/3, where

κ(M) = ‖M‖‖M+‖ is the condition number of the “stacked” matrix

(3.3) M =

[
E
C

]
.

Of course, setting τ now requires an estimate of κ(M), which may not always be
available; for this reason, we have elected simply to present our algorithm with τ =

ε
−1/3
mach.

4. Algorithm. We are now in a position to describe our fast semidirect method
for solving the overdetermined and underdetermined systems (1.1) and (1.4), re-
spectively, when A is HBS. Let ε > 0 be a specified numerical precision and set

τ = ε
−1/3
mach ∼ 1.7 × 105; we assume that all calculations are performed in double

precision.

4.1. Overdetermined systems. Let A ∈ CM×N be HBS with M ≥ N . Our
algorithm proceeds in two phases. First, for the precomputation phase:

1. Compress A to precision ε using RS [39];
2. compute a sparse QR factorization of the weighted sparse matrix

A =

[
E
τC

]
,

where E and C are as defined in section 2.2.
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This is followed by the solution phase, which, for a given right-hand side b, pro-
duces an approximate solution (1.2) by using the precomputed QR factors to solve the
equality-constrained least squares embedding (2.6) via deferred correction [5]. Clearly,
for a fixed matrix A, only the solution phase must be performed for each additional
right-hand side. Therefore, the cost of the precomputation phase is amortized over
all such solves.

Remark. The algorithm can also easily accommodate various modifications of the
standard system (1.1), e.g., the problem

(4.1) min
x

‖Ax− b‖2 + μ2‖x‖2

with Tikhonov regularization, which can be solved using

A =

⎡
⎣ E

μI1
τC

⎤
⎦ , b =

⎡
⎣ b

0
0

⎤
⎦

in the weighted formulation (3.2).

4.2. Underdetermined systems. Now let A ∈ C
M×N be HBS with M < N .

Then (1.4) can be solved using the same algorithm as above but with

A =

[
I1
τM

]
, b =

[
0
b1

]
.

4.3. Error analysis. We now give an informal discussion of the accuracy of our
method. Assume that M ≥ N and let κ(A) = ‖A‖‖A+‖ = σ1(A)/σN (A) be the
condition number of A, where σ1(A) ≥ · · · ≥ σN (A) ≥ σN+1(A) = · · · = σM (A) = 0
are the singular values of A. We first estimate the condition number of the compressed
matrix Aε in (2.3).

Proposition 4.1. Let Aε = A + E with ‖E‖ = O(ε‖A‖). If εκ(A) � 1, then
κ(Aε) = O(κ(A)).

Proof. By Weyl’s inequality,

|σi(Aε)− σi(A)| ≤ ‖E‖, i = 1, . . . , N,

so σi(Aε) = σi(A) + ei with |ei| = O(ε‖A‖). Therefore,

κ(Aε) =
σ1(Aε)

σN (Aε)
=

σ1(A) + e1
σN (A) + eN

= κ(A)

[
1 + e1/σ1(A)

1 + eN/σN (A)

]
,

where

|e1|
σ1(A)

=
|e1|
‖A‖ = O(ε),

|eN |
σN (A)

= eN‖A+‖ = O(εκ(A)),

so κ(Aε) = O(κ(A)).
In other words, if A is not too ill-conditioned, then neither is Aε. But the conver-

gence of deferred correction depends on the conditioning of the stacked matrix (3.3),
i.e., the sparse embedding M of Aε in (2.8). Although we have not explicitly studied
the spectral properties of M, numerical estimates suggest that κ(M) = O(κ(Aε)).
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Some evidence for this can be seen in the square, single-level case (2.2), for which the
analogue of M is

⎡
⎣ D L

R −I
−I S

⎤
⎦ =

⎡
⎣ I −LS −L

I
I

⎤
⎦
⎡
⎣ Aε

−I
−I S

⎤
⎦
⎡
⎣ I

−SR I
−R I

⎤
⎦ ,

with inverse

⎡
⎣ D L

R −I
−I S

⎤
⎦
−1

=

⎡
⎣ I LS L

I
I

⎤
⎦
⎡
⎣ A−1

ε

S −I
−I

⎤
⎦
⎡
⎣ I

SR I
R I

⎤
⎦ .

Assume without loss of generality that ‖A‖ = 1. Since S is a submatrix of A, this
also implies that ‖S‖ ≤ 1. Furthermore, it is typically the case that ‖L‖ and ‖R‖ are
not too large since they come from the ID [17]. It then follows that ‖M‖ = O(‖Aε‖)
and ‖M−1‖ = O(‖A−1

ε ‖); thus, κ(M) = O(κ(Aε)) = O(κ(A)).
This argument can be extended to the multilevel setting (2.4), but only for square

matrices. Still, in practice, we observed that the claim seems to hold also for rect-
angular matrices, so that if κ(A) is not too large then neither is κ(M) and we may
expect deferred correction to succeed.

Even if the iteration converges to the exact solution, however, there is still an error
arising from the use of Aε in place of A itself. The extent of this error is governed
by standard perturbation theory. The following is a restatement of Theorem 20.1 in
[38], originally due to Wedin, specialized to the current setting.

Theorem 4.2 (Wedin). Let A ∈ CM×N be full-rank with M ≥ N , and let

x = arg min
y

‖Ay − b‖, xε = arg min
y

‖Aεy − b‖

be the solutions of the corresponding overdetermined systems, with residuals

r = b−Ax, rε = b−Aεxε,

respectively. If εκ(A) < 1, then

‖x− xε‖
‖x‖ ≤ εκ(A)

1− εκ(A)

[
1 + κ(A)

‖r‖
‖A‖‖x‖

]
,

‖r − rε‖
‖b‖ ≤ 2εκ(A).

A somewhat simpler bound holds for underdetermined systems [38, Theorem 21.1].
Theorem 4.3 (Demmel and Higham). Let A ∈ CM×N be full rank with M < N ,

and let x and xε be the minimum-norm solutions to the underdetermined systems
Ax = b and Aεxε = b, respectively, for b �= 0. If ‖A+(A−Aε)‖ < 1, then

‖x− xε‖
‖x‖ ≤ 2εκ(A).

A more rigorous analysis is not yet available, but we note that our numerical
results (section 7) indicate that the algorithm is accurate and stable.

5. Complexity analysis. In this section, we analyze the complexity of our
solver for a representative example: the HBS matrix A defined by a kernel from
Table 1, acting on source and target data distributed uniformly over the same d-
dimensional domain (but at different densities). We follow the approach of [39].
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Sort both sets of data together in one hyperoctree (the multidimensional gener-
alization of an octree; cf. [50]) as outlined in section 2, subdividing each node until
it contains no more than a set number of combined row and column indices, i.e.,
|Ii| + |Ji| = O(1) for each leaf i. For each tree level l = 0, . . . , λ, let pl denote the
number of matrix blocks; ml and nl, the row and column block sizes, respectively,
in the compressed representation (2.3), assumed equal across all blocks for simplic-
ity; and kl, the skeleton block size, which is clearly of the same order for both rows
and columns as it depends only on min{O(ml),O(nl)} (this can be made precise by
explicitly considering proxy compression, which produces interaction matrices of size
O(ml)×O(nl)). Note that ml and nl are not the row and column block sizes in the
tree; they are the result of hierarchically “pulling up” skeletons during the compres-
sion process; see (iv) below. Moreover, since M �= N in general, we can define an
additional level parameter λ′ ≤ λ corresponding to the depth of the tree constructed
via the same process on only the smaller of the source or target data, e.g., on only the
source data if M ≥ N . For the remainder of this discussion, we assume that M ≥ N .
Analogous results can be recovered for M < N simply by switching the roles of M
and N in what follows. We start with some useful observations:

(i) By construction, pλ(mλ + nλ) = M + N ∼ M , where mλ, nλ = O(1), so
pλ ∼ M . Similarly, pλ′ ∼ N ;

(ii) each subdivision increases the number of blocks by a factor of roughly 2d,
so pl+1 ∼ 2dpl. In particular, p0 = 1, so λ ∼ (1/d) logM and λ′ ∼ (1/d) logN ;

(iii) for l = λ′ + 1, . . . , λ, kl = O(1) since min{O(ml),O(nl)} = O(1), while for
l = 0, . . . , λ′, it can be shown [39] that

(5.1) kl ∼
{

l if d = 1,

2(d−1)l if d > 1;

(iv) the total number of row and column indices at level l < λ is equal to the
total number of skeletons at level l+1, i.e., plml = plnl = pl+1kl+1, so ml, nl ∼ kl+1.

5.1. Matrix compression. From [17, 43, 55], the cost of computing a rank-k
ID of an m× n matrix is O(kmn). If proxy compression is used, then m ∼ ml for a
block at level l. Therefore, the total cost of matrix compression is

Tcm ∼
λ∑

l=0

plklmlnl ∼
λ∑

l=0

plk
3
l .

We break this into two sums, one over l = λ′+1, . . . , λ and another over l = 0, . . . , λ′,
with estimates

λ∑
l=λ′+1

plk
3
l ∼ M,

λ′∑
l=0

plk
3
l ∼

{
N if d = 1,

N3(1−1/d) if d > 1,

respectively. Hence,

(5.2) Tcm ∼
{

M +N if d = 1,
M +N3(1−1/d) if d > 1.

5.2. Compressed QR factorization. We consider the QR decomposition of
a block tridiagonal matrix with the same sparsity structure as that of M in (2.4),
computed using Householder reflections. This clearly encompasses the factorization
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Fig. 4. Sparsity structure of QR factors for the structured embedding (2.4) with M = N , where
the orthogonal matrix Q is given in terms of the elementary Householder reflectors qi.

Fig. 5. Sparsity structure of the triangular QR factor R for the structured embedding (2.4) in
the M > N (left) and M < N (right) cases.

of A = QR for both overdetermined and underdetermined systems. We begin by
studying the square M = N case, for which it is immediate that R is block upper
bidiagonal (Figure 4), so the cost of Householder triangularization is

(5.3) Tqr ∼
λ∑

l=0

plmln
2
l ∼

λ∑
l=0

plk
3
l ∼

{
M +N if d = 1,
M +N3(1−1/d) if d > 1,

following the structure of R. The M > N and M < N cases are easily analyzed
by noting that only the blocks at level λ are rectangular (in the asymptotic sense),
so any nonzero propagation during triangularization is limited and both essentially
reduce to the square case above (Figure 5).

The complexities (5.2) and (5.3) of compression and factorization, respectively,
together constitute the cost of the precomputation phase.

5.3. Compressed pseudoinverse application. We now examine the cost of
applying the pseudoinverse to solve the weighted least squares problem (3.2) using the
precomputed QR factors. For this, we suppose that the solution is determined via the
equation Rx = Q∗b, which requires one application of Q∗, assumed to be performed
using elementary Householder transformations, and one backsolve with R, whose cost
is clearly on the same order as multiplying by R. Then from the arguments above, it
is evident that both operations have complexity

Tsv ∼
λ∑

l=0

plmlnl ∼
λ∑

l=0

plk
2
l ∼

⎧⎨
⎩

M +N if d = 1,
M +N logN if d = 2,

M +N2(1−1/d) if d > 2.

Since the total number of such problems to be solved is constant for each outer
problem (2.6), assuming fast convergence (section 3.2), this is also the complexity of
the solution phase. As with classical matrix factorizations, the prefactor for Tsv is
typically far smaller than that for Tcm or Tqr.
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Remark. One can also use the seminormal equations R∗Rx = A∗b, which do
not require the orthogonal matrix Q [8]. However, one step of iterative refinement is
necessary for stability, so the total cost is three applications of A or A∗ (one each for
the original and refinement solves, plus another to compute the residual), and four
solves with R or R∗. In practice, we found this approach to be slower than that
involving Q by a factor of about four.

5.4. Some remarks. For all complexities above, the constants implicit in the
estimates are of the form O(2d logα ε) for modest α, i.e., they are exponential in the
dimension and polylogarithmic in the precision [27, 28].

In the special case that the source and target data are separated, kl = O(1) for all
l, so Tcm, Tqr, and Tsv all have optimal complexity O(M +N) in any dimension. This
describes, for example, the fitting of atomic partial charges to reproduce electrostatic
potential values on “shells” around a molecule [6, 23], the computation of equivalent
densities in the kernel-independent FMM [58], and even the calculation of the ID in
RS [24, 39, 44], which requires a least squares solve [17].

6. Updating and downdating. We now discuss an important feature of our
solver: its capacity for efficient updating and downdating in response to dynamically
changing data. Our methods are based on the augmented system approach of [26],
extended to the least squares setting, and exploit the ability to rapidly apply A+

via the solution phase of our algorithm, which we hereafter take as a computational
primitive. Thus, suppose that we are given some base linear system (1.1), focusing for
simplicity on the overdetermined case, for which we have precomputed a compressed
QR factorization of A. We consider the addition and deletion of both rows and
columns, corresponding to the modification of observations and regression variables,
respectively. Furthermore, we assume that such modifications are small, in particular
so that the system remains overdetermined, and accommodate each case within the
framework of the general equality-constrained least squares problem

(6.1) min
Cx=g

‖Ex− f‖.

6.1. Adding and deleting rows. To add pr rows to the matrix A = (aij), and
correspondingly to the vector b = (b1, . . . , bM )T, in (1.1), we simply use (6.1) with

(6.2) E =

[
A
Cr

+

]
, C = 0, x = x, f =

[
b
b+

]
, g = 0,

where Cr
+ ∈ C

pr×N describes the influence of the variables x on the new data b+. To
delete qr rows with indices k1, . . . , kqr , we add qr degrees of freedom to those rows to
be deleted in order to enforce strict agreement with those observations as follows:

E =
[
A Br

−
]
, C =

[
Cr

− I
]
, x =

[
x
xr
−

]
, f = b, g = d,

where Br
− = (δkij) ∈ CM×qr , Cr

− = (akij) ∈ Cqr×N , and d = (bk1 , . . . , bkqr
)T; here,

δij =

{
1 if i = j,
0 if i �= j

is the Kronecker delta. The simultaneous addition and deletion of rows can be
achieved via a straightforward combination of the above:

E =

[
A Br

−
Cr

+

]
, C =

[
Cr

− I
]
, x =

[
x
xr
−

]
, f =

[
b
b+

]
, g = d.
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6.2. Adding and deleting columns. To add pc columns to A and hence to
the vector x = (x1, . . . , xN )T, we let

E =
[
A Bc

+

]
, C = 0, x =

[
x
xc
+

]
, f = b, g = 0,

where Bc
+ ∈ CM×pc describes the influence of the new variables xc

+ on the data. To
delete qc columns with indices l1, . . . , lqc , we add qc “antivariables” annihilating their
effects:

E =
[
A Bc

−
]
, C =

[
Cc

− I
]
, x =

[
x
xc
−

]
, f = b, g = 0,

where Bc
− = (ailj ) ∈ CM×qc and Cc

− = (δilj ) ∈ Cqc×N . Finally, to add and delete
columns simultaneously, we take

E =
[
A Bc

+ Bc−
]
, C =

[
Cc− 0 I

]
, x =

⎡
⎣ x

xc
+

xc
−

⎤
⎦ , f = b, g = 0.

6.3. Simultaneous modification of rows and columns. The general case of
modifying both rows and columns can be treated using (6.1) with

E =

[
A Bc

+ Br− Bc−
Cr

+ D+ 0 D−

]
, C =

[
Cr− 0 I 0
Cc

− 0 0 I

]

and

x =

⎡
⎢⎢⎣

x
xc
+

xr−
xc
−

⎤
⎥⎥⎦ , f =

[
b
b+

]
, g =

[
d
0

]
,

where D+ ∈ Cpr×pc describes the influence of xc
+ on b+, D− = (cilj ) ∈ Cpr×qc for

Cr
+ = (cij) accounts for the effect of column deletion on b+ (alternatively, one can zero

out the relevant columns in Cr
+), and all other quantities are as defined previously.

6.4. Solution methods. The augmented system (6.1) can be solved by deferred
correction [5], where the matrix to be considered at each step is

A =

[
E
τC

]
≡

[
A B
C D

]
∈ C

(M+m)×(N+n)

for B ∈ CM×n, C ∈ Cm×N , and D ∈ Cm×n, where m = pr + qr + qc and n =
pc + qr + qc. If m and n are small, then an efficient approach is to compute A+

by using A+ in various block pseudoinverse formulas (see, e.g., [11]) or by invoking
Greville’s method [12, 29], which can constructA+ via a sequence of rank-one updates
to A+. Alternatively, one can appeal to iterative methods like GMRES [49], using
A+ as a preconditioner. In this approach, instead of solving

min
x

‖Ax− b‖, b =

[
f
τg

]
,

we consider instead, say, the left preconditioned system

min
x

‖BAx−Bb‖
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for an appropriate choice of the preconditioner B ∈ C(N+n)×(M+m). Hayami, Yin,
and Ito [37] showed that GMRES converges provided that range(A) = range(B∗) and
range(A∗) = range(B). Therefore, suitable choices of B include, e.g.,

[
A+ C∗

B∗ D∗

]
,

[
A+ C∗

B∗ D+

]

(the latter if D is not rank deficient), for which only one application of A+ is required
per iteration. Such methods also have the possible advantage of being more flexible
and robust. If the total number of iterations is small, the cost of updating is therefore
only O(Tsv) instead of O(Tcm+Tqr) for computing the QR factorization anew, which
is typically much larger (section 5).

Remark. IfM+m > N+n, then it is more efficient to solve the left preconditioned
system of dimension N + n. Similarly, if M +m < N + n, then it is more efficient to
solve the right preconditioned system of dimension M +m.

7. Numerical results. In this section, we report some numerical results for our
fast semidirect solver, compared against LAPACK/ATLAS [1, 54] and an accelerated
GMRES solver [37, 49] using an FMM-type scheme. We considered problems in both
two and three dimensions. All matrices were block partitioned using quadtrees in
two dimensions and octrees in three dimensions, uniformly subdivided until all leaf
nodes contained no more than a fixed number of combined rows and columns (cf.
sections 2.1 and 5), while adaptively pruning all empty nodes during the refinement
process. The RS algorithm was implemented in Fortran and employed as described
in [39]. Sparse QR factorizations were computed using SuiteSparseQR [20] through a
MATLAB R2012b interface, keeping all orthogonal matrices in compact Householder
form. The deferred correction procedure [5] was implemented in MATLAB. All cal-
culations were performed in double-precision real arithmetic on a single 3.10 GHz
processor with 4 GB of RAM.

For each case, where appropriate, we report the following data:
• M , N : the uncompressed row and column dimensions, respectively;
• Kr, Kc: the final row and column skeleton dimensions, respectively;
• Tcm: the matrix compression time (s);
• Tqr: the sparse QR factorization time (s);
• Tsv: the pseudoinverse application time (s);
• niter: the number of iterations required for deferred correction;
• E: the relative error ‖x− xε‖ /‖x‖ with respect to the solution x produced
by LAPACK/ATLAS (if the problem is small enough) or FMM/GMRES;

• R: the relative residual ‖Axε − b‖ /‖b‖ with respect to the true operator.
Note that E and R are not the true relative error and residual but nevertheless provide
a useful measure of accuracy.

7.1. Laplace’s equation. For benchmarking purposes, we first applied our
method to Laplace’s equation

Δu = 0 in Ω ∈ Rd, u = f on ∂Ω

in a simply connected interior domain with Dirichlet boundary conditions, which can
be solved by writing the solution in the form of a double-layer potential

u(�x) =

∫
∂Ω

∂G

∂ν�y
(‖�x− �y‖) σ(�y) d�y for �x ∈ Ω,
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Fig. 6. CPU times for solving Laplace’s equation in two and three dimensions using
LAPACK/ATLAS (LP), FMM/GMRES (FMM), and RS as a function of the system size N . For
LP and RS, the computation is split into two parts: precomputation (pc), for LP consisting of ma-
trix formation and factorization, and for RS of matrix compression and factorization; and system
solution (sv), consisting of matrix (pseudo) inverse application via precomputed QR factors. The
precision of FMM and RS was set at ε = 10−9 in two dimensions and 10−6 in three dimensions.
Dotted lines indicate extrapolated data; for RS in three dimensions, only factorization and inversion
(as executed through MATLAB) are extrapolated.

where

G(r) =

{ −1/(2π) log r if d = 2,
1/(4πr) if d = 3

is the free-space Green’s function, ν�y is the unit outer normal at �y ∈ ∂Ω, and σ is
an unknown surface density. Letting �x approach the boundary, standard results from
potential theory [31] yield the second-kind Fredholm boundary integral equation

(7.1) −1

2
σ(�x) +

∫
∂Ω

∂G

∂ν�y
(‖�x− �y‖) σ(�y) d�y = f(�x)

for σ, assuming that ∂Ω is smooth. This is not a least squares problem, but it allows
us to compare the performance of the sparse QR approach with our previous sparse
LU results [39]. Of course, since the system (7.1) is square, the corresponding sparse
embedding (2.4) can be solved without iteration.

In two dimensions, we took as the problem geometry a 2:1 ellipse, discretized via
the trapezoidal rule, while in three dimensions, we used the unit sphere, discretized
as a collection of flat triangles with piecewise constant densities. We also compared
our algorithm against an FMM-accelerated GMRES solver driven by the open-source
FMMLIB software package [25], which is a fairly efficient implementation (but not
optimized using the plane wave representations of [28]). Timing results for each case
are shown in Figure 6, with detailed data for the RS scheme given in Tables 3 and 4.
The precision was set to ε = 10−9 in two dimensions and 10−6 in three dimensions.

It is evident that our method scales as predicted, with precomputation and solu-
tion complexities of O(N) in two dimensions (d = 1), and O(N3/2) and O(N logN),
respectively, in three dimensions (d = 2). In two dimensions, both phases are very
fast, easily beating the uncompressed LAPACK/ATLAS solver in both time (O(N3)
and O(N2) for precomputation and solution, respectively) and memory, and coming
quite close to the FMM/GMRES solver as well. The same is essentially true in three
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Table 3

Numerical results for solving Laplace’s equation in two dimensions at precision ε = 10−9.

N Kr Kc Tcm Tqr Tsv E
1024 30 30 3.1E−2 9.4E−2 5.8E−3 1.1E−9
2048 29 30 6.5E−2 5.8E−2 1.8E−2 4.5E−9
4096 30 30 1.3E−1 1.2E−1 3.7E−2 1.5E−8
8192 30 31 2.6E−1 2.6E−1 5.7E−2 1.4E−8

16384 31 31 5.2E−1 6.0E−1 9.2E−2 1.7E−8
32768 30 30 1.1E+0 1.0E+0 2.0E−1 1.2E−8
65536 30 30 2.1E+0 2.0E+0 3.4E−1 1.6E−8

131072 29 29 4.1E+0 4.7E+0 6.8E−1 2.2E−8

Table 4

Numerical results for solving Laplace’s equation in three dimensions at precision ε = 10−6.
Parentheses denote extrapolated values.

N Kr Kc Tcm Tqr Tsv E
320 320 320 2.3E−1 5.1E−2 4.5E−3 1.5E−10
720 628 669 1.1E+0 1.6E−1 9.3E−3 5.1E−07

1280 890 913 3.7E+0 5.0E−1 3.2E−2 1.0E−06
2880 1393 1400 1.7E+1 1.9E+0 9.1E−2 1.2E−06
5120 1886 1850 4.7E+1 6.0E+0 1.6E−1 2.2E−06

11520 2750 2754 1.4E+2 (1.9E+1) (3.9E−1)
20480 3592 3551 3.1E+2 (4.6E+1) (7.4E−1)

dimensions over the range of problem sizes tested, though it should be emphasized
that FMM/GMRES has optimal O(N) complexity and so should prevail asymptot-
ically. However, as observed previously [26, 39, 44], the solve time using recursive
skeletonization following precomputation (comprising one application of Q∗ and one
backsolve with R) is much faster than an individual FMM/GMRES solve: e.g., in
two dimensions at N = 131072, TFMM = 3.9 s, while Tsv = 0.7 s. This is significantly
slower when compared with our UMFPACK-based sparse LU solver (Tsv ∼ 0.1 s) [39].
The difference may be due, in part, both to a higher constant inherent in the QR ap-
proach and to the overhead from interfacing with MATLAB. Unfortunately, we were
unable to perform the sparse QR factorizations in-core for the three-dimensional case
beyondN ∼ 104; the corresponding data are extrapolated from the results of section 5.

7.2. Least squares fitting of thin plate splines. We next turned to an
overdetermined problem involving 2D function interpolation using thin plate splines;
see (1.3). More specifically, we sought to compute the coefficients aj of the interpolant

g(�x) =

N∑
j=1

ajφTPS(‖�x− �cj‖)

that best matches a given function

f(x, y) = sin(4πx) + cos(2πy) sin(3πxy) for �x ≡ (x, y)

in the least squares sense on some set of randomly chosen targets �xi ∈ [0, 1]2 for
i = 1, . . . ,M . The points �cj for j = 1, . . . , N denote the centers of the splines and
lie on a uniform tensor product grid on [0, 1]2. This is an inconsistent linear system.
Since the problem is somewhat ill-conditioned, we also add Tikhonov regularization
with regularization parameter μ = 0.1 as indicated in (4.1).

Timing results for various M and N at a fixed ratio of M/N = 4 with ε = 10−6

are shown in Figure 7, with detailed data in Table 5. The results are in line with our
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Fig. 7. CPU times for overdetermined thin plate spline fitting in two dimensions at precision
ε = 10−6 using LAPACK/ATLAS, FMM/GMRES, and RS as a function of the system row di-
mension M , with the column dimension fixed proportionally at N = M/4; all other notation as in
Figure 6.

Table 5

Numerical results for overdetermined thin plate spline fitting in two dimensions at precision
ε = 10−6.

M N Kr Kc Tcm Tqr Tsv niter E R
1024 256 174 148 7.7E−2 1.7E−1 5.3E−2 1 4.1E−5 1.4E−1
4096 1024 260 247 5.7E−1 3.1E−1 1.6E−1 1 8.3E−5 4.4E−2

16384 4096 399 391 3.1E+0 1.5E+0 1.0E+0 1 3.9E−4 1.6E−2
65536 16384 564 574 1.5E+1 7.0E+0 4.7E+0 1 2.0E−6 6.7E−3

complexity estimates of O(M +N3/2) and O(M +N logN) for precomputation and
solution, respectively. This compares favorably with the uncompressed complexities of
O(MN2) andO(MN), respectively, for LAPACK/ATLAS. We also tested an iterative
GMRES solver, which required from 33 up to 130 iterations on the largest problem
considered using AT as a left preconditioner. Direct timings are unavailable since we
did not have an FMM to apply the thin plate spline kernel (or its transpose). The
results are instead estimated using RS and an established benchmark FMM rate of
about 105 points per second in two dimensions. It is immediate that our fast solver
outperforms FMM/GMRES due to the rapidly growing iteration count. Note also the
convergence in the relative residual of roughly second order. In all cases, the deferred
correction procedure converged with just one iteration.

7.3. Underdetermined charge fitting. We then considered an underdeter-
mined problem: seeking a minimum-norm charge distribution in two dimensions. The
setup is as follows. Let �xj for j = 1, . . . , N be uniformly spaced points on the unit
circle, each associated with a random charge qj . We measure their induced field

f(�x; q) = − 1

2π

N∑
j=1

qj log ‖�x− �xj‖

on a uniformly sampled outer ring of radius 1 + δ, and compute an equivalent set of
charges q̃j with minimal Euclidean norm reproducing those measurements. Here, we
set δ = 10−4 and sampled at M = N/8 observation points over a range of N .

Timing results at precision ε = 10−9 are shown in Figure 8, with detailed data
given in Table 6. Since the source and target points are separated (by an annular
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Fig. 8. CPU times for underdetermined charge fitting in two dimensions at precision ε = 10−9

using LAPACK/ATLAS, FMM/GMRES, and RS as a function of the system column dimension N ,
with the row dimension fixed proportionally at M = N/8; all other notation as in Figure 6.

Table 6

Numerical results for underdetermined charge fitting in two dimensions at precision ε = 10−9.

M N Kr Kc Tcm Tqr Tsv niter E R
128 1024 69 72 1.7E−2 2.1E−2 1.6E−2 1 1.6E−9 1.6E−15
256 2048 80 80 4.4E−2 4.3E−2 5.8E−2 2 1.3E−8 1.1E−15
512 4096 89 90 9.6E−2 8.7E−2 1.3E−1 2 6.1E−8 1.9E−15

1024 8192 99 100 2.0E−1 1.8E−1 2.5E−1 2 5.5E−8 3.0E−15
2048 16384 108 110 4.0E−1 3.8E−1 5.1E−1 2 3.6E−8 1.8E−15
4096 32768 119 119 8.1E−1 8.2E−1 1.2E+0 2 3.5E−8 2.1E−15
8192 65536 128 131 1.6E+0 2.0E+0 2.6E+0 2 4.8E−9 7.1E−09

16384 131072 134 138 3.3E+0 4.0E+0 5.5E+0 2 6.6E−9 7.5E−09

region of width δ), our algorithm has optimal O(M +N) complexity, which is readily
observed. Furthermore, as we have solved an approximate, compressed system, we
cannot in general fit the data exactly (with respect to the true operator). Indeed,
we see relative residuals of order O(ε) as predicted by the compression tolerance.
Thus, our algorithm is especially suitable in the event that observations need to be
matched only to a specified precision. Our semidirect method vastly outperformed
both LAPACK/ATLAS and FMM/GMRES, which required from 42 up to 880 iter-
ations using AT as a right preconditioner. Deferred correction was successful in all
cases within two steps.

7.4. Thin plate splines with updating. In our final example, we demonstrate
the efficiency of our updating and downdating methods in the typical setting of fitting
additional observations to an already specified overdetermined system. For this, we
employed the thin plate spline approximation problem of section 7.2 with M = 16384
and N = 4096, followed by the addition of 50 new random target points. From
section 6, the perturbed system can be written as (6.1) with (6.2), i.e.,

Ex � f , where E =

[
A
Cr

+

]
.

We used GMRES with the left preconditioner B = [A+, (Cr
+)

∗], which, since A
has full column rank, gives BE = I + (Cr

+)
∗Cr

+; hence the preconditioned system is

(7.2)
[
I + (Cr

+)
∗Cr

+

]
x � Bf .
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Note that only one application of A+ is necessary, independent of the number of itera-
tions required. Solving this in MATLAB took 17 iterations and a total of 1.9 s, with 1.6
s going towards setting up (7.2). The relative residual on the new data was 7.7×10−3.
This should be compared with the roughly 6 s required to solve the problem without
updating, treating it instead as a new system via our compressed algorithm (Table 5).
Although this difference is perhaps not very dramatic, it is worth emphasizing that
the complexity here scales as O(M + N logN) with updating versus O(M + N3/2)
without, as the former needs only to apply A+ while the latter needs also to compress
and factor E. Therefore, the asymptotics for updating are much improved.

8. Generalizations and conclusions. In this paper, we have presented a fast
semidirect algorithm for overdetermined and underdetermined least squares problems
involving HBS matrices, and exhibited its efficiency and practical performance in
a variety of situations including RBF interpolation and dynamic updating. In one
dimension (including boundary problems in two dimensions and problems with sepa-
rated data in all dimensions), the solver achieves optimal O(M +N) complexity and
is extremely fast, but it falters somewhat in higher dimensions, due primarily to the
growing ranks of the compressed matrices as expressed by (5.1). Developments for
addressing this growth are now underway for square linear systems [18, 40], and we
expect these ideas to carry over to the present setting. Significantly, the term involv-
ing the larger matrix dimension is linear in all complexities (i.e., only O(M) instead
of O(MN2) as for classical direct methods), which makes our algorithm ideally suited
to large, rectangular systems where both M and N increase with refinement.

Remark. If only one dimension is large so that the matrix is strongly rectangular,
then standard methods are usually sufficient; see also [45, 48, 51].

Although we have not explicitly considered least squares problems with HBS
equality constraints (we have only done so implicitly through our treatment of un-
derdetermined systems), it is evident that our methods generalize. However, our
complexity estimates can depend on the structure of the system matrix. In particu-
lar, if it is sparse, e.g., a diagonal weighting matrix, then our estimates are preserved.
We can also, in principle, handle HBS least squares problems with HBS constraints
simply by expanding out both matrices in sparse form.

This flexibility is one of our method’s main advantages, though it can also create
some difficulties. In particular, the fundamental problem is no longer the uncon-
strained least squares system (1.1) but the more complicated equality-constrained
system (3.1). Accordingly, more sophisticated iterative techniques [3, 5, 53] are used,
but these can fail if the problem is too ill-conditioned. This is perhaps the greatest
drawback of the proposed scheme. Still, our numerical results suggest that the algo-
rithm remains effective for moderately ill-conditioned problems that are already quite
challenging for standard iterative solvers. For severely ill-conditioned problems, other
methods may be preferred.

Finally, it is worth noting that fast direct solvers can be leveraged for other least
squares techniques as well. This is straightforward for the normal equations, which
are subject to well-known conditioning issues, and for the somewhat better behaved
augmented system version [2, 8]:

[
I A
A∗

] [
r
x

]
=

[
b
0

]
.

This approach has the advantage of being immediately amenable to fast inversion
techniques but at the cost of “squaring” and enlarging the system. Thus, all com-
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plexity estimates involve M + N instead of M and N separately. In particular, the
current generation of fast direct solvers would require, e.g., O((M + N)3(1−1/d)) in-
stead of O(M+N3(1−1/d)) work. With the development of a next generation of linear
or nearly linear time solvers [18, 33, 40], this distinction may become less critical.
Memory usage and high-performance computing hardware issues will also play im-
portant roles in determining which methods are most competitive. We expect these
issues to become settled in the near future.

Acknowledgment. We would like to thank the anonymous referees for their
careful reading and insightful remarks, which have improved the paper tremendously.
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[9] S. Börm, Data-sparse approximation of non-local operators by H 2-matrices, Linear Algebra

Appl., 422 (2007), pp. 380–403.
[10] M. D. Buhmann, Radial Basis Functions: Theory and Implementation, Cambridge University

Press, Cambridge, 2003.
[11] F. Burns, D. Carlson, E. Haynsworth, and T. Markham, Generalized inverse formulas

using the Schur complement, SIAM J. Appl. Math., 26 (1974), pp. 254–259.
[12] S. L. Campbell and C. D. Meyer Jr., Generalized Inverses of Linear Transformations,

Pitman, London, 1979.
[13] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. Mc-

Callum, and T. R. Evans, Reconstruction and representation of 3D objects with radial
basis functions, in Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, Los Angeles, CA, ACM, New York, 2001, pp. 67–76.

[14] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A. J. Van Der Veen, and

D. White, Some fast algorithms for sequentially semiseparable representations, SIAM J.
Matrix Anal. Appl., 27 (2005), pp. 341–364.

[15] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals, A fast solver for HSS
representations via sparse matrices, SIAM J. Matrix Anal. Appl., 29 (2006), pp. 67–81.

[16] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically
semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622.

[17] H. Cheng, Z. Gimbutas, P.-G. Martinsson, and V. Rokhlin, On the compression of low
rank matrices, SIAM J. Sci. Comput., 26 (2005), pp. 1389–1404.

[18] E. Corona, P.-G. Martinsson, and D. Zorin, An O(N) direct solver for integral equations
on the plane, Appl. Comput. Hamon. Anal., to appear.

[19] T. A. Davis, Algorithm 832: UMFPACK V 4.3—an unsymmetric-pattern multifrontal method,
ACM Trans. Math. Software, 30 (2004), pp. 196–199.

[20] T. A. Davis, Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse
QR factorization, ACM Trans. Math. Software, 38 (2011), 8.

[21] P. Dewilde and S. Chandrasekaran, A hierarchical semi-separable Moore-Penrose equation
solver, in Wavelets, Multiscale Systems and Hypergeometric Analysis, Oper. Theory Adv.
Appl. 167, D. Alpay, A. Luger, and H. Woracek, eds., Birkhäuser, Basel, 2006, pp. 69–85.
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