
Fast direct methods for molecular electrostatics

by

Kenneth L. Ho

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Program in Computational Biology

New York University

May 2012

Prof. Leslie Greengard

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3524158
Copyright 2012 by ProQuest LLC.

UMI Number: 3524158

c© Kenneth L. Ho

All rights reserved, 2012

Acknowledgements

First and foremost, I would like to thank my adviser, Prof. Leslie Greengard, whose

guidance and advice has been indispensable over these past five years. I am especially

grateful for the freedom that he has allowed in my research, as well as his unique

perspective on computational biology, which will no doubt shape my own philosophy

as I move forward.

Profs. Charlie Peskin, Jerry Percus, and Mark Tygert, and Dr. Jeff Bell have

likewise played an outsized role, and I am thankful to them, too, for their insight and

encouragement. I am also grateful to my committee for their continued interest and

support: Profs. Leslie Greengard, Rich Bonneau, Charlie Peskin, Yingkai Zhang, and

Dan Tranchina.

Thank you also to the many members of the group for the useful discussions, espe-

cially to Profs. Leslie Greengard, Mark Tygert, and June-Yub Lee; and Drs. Zydrunas

Gimbutas, Andras Pataki, Mike O’Neil, Andreas Klöckner, and Josef Sifuentes.

I am indebted as well to my fellow students (past and present), with whom I have

shared this incredible journey. Special thanks go to Andrew Matteson, Sandra May,

Heather Harrington, Segun Jung, Dharshi Devendran, Eduardo Corona, Kela Lushi,

and Emily Chan. I would also like to express my deep appreciation to the wonderful

staff at Courant: Tamar Arnon, Susan Mrsic, and Brittany Shields.

Lastly, I thank all my friends and family, but most of all my parents, who have

supported me without question throughout my time away, first in Pasadena and then

in New York—thank you for your kindness, your love, and your patience.

iv

Abstract

Electrostatic interactions are vital for many aspects of biomolecular structure and

function, including stability, activity, and specificity. Thus, a central problem in

biophysical modeling is the electrostatic analysis of biomolecular systems. Here, we

consider the numerical solution of the linearized Poisson-Boltzman equation (LPBE),

a widely used model for the electrostatic potential of a large, solvated biomolecule.

By combining boundary integral techniques with new multilevel matrix compression

algorithms, we develop a fast direct solver for the LPBE that is accurate, robust, and

can be more efficient than current methods by several orders of magnitude.

The fast direct solver is general and applies to a wide range of integral operators

based on non-oscillatory Green’s functions, including those for the Laplace, low-

frequency Helmholtz, Stokes, and LPBEs. The core algorithm uses the interpolative

decomposition to compress the matrix discretizations of such operators, producing

highly efficient representations that facilitate fast inversion. For boundary integral

equations in 2D, the solver has complexity O(N), where N is the number of dis-

cretization elements; in 3D, it incurs an O(N3/2) cost for precomputation, followed

by O(N logN) solves. As is typical of direct methods, each solve can be performed

extremely rapidly, though the cost of precomputation can be high. Thus, the solver

is particularly suited to problems where the precomputation time can be amortized,

e.g., systems with ill-conditioned matrices or involving multiple right-hand sides.

We demonstrate our solver on a number of examples and discuss various useful

extensions. Furthermore, we apply our methods to the calculation of protein pKa

v

values, which requires the computation of all pairwise titrating site energies. This

corresponds to solving the LPBE on the same molecular geometry with many different

boundary conditions on the protein surface, each manifesting as a different right-

hand side, and hence presents a prime candidate for acceleration using our direct

solver. Preliminary results are favorable and show the viability of our techniques for

molecular electrostatics.

Such fast direct methods could well have broad impact on many areas of computa-

tional science and engineering. We describe further applications in biology, chemistry,

and physics, and outline some directions for future work.

vi

Contents

Acknowledgements iv

Abstract v

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Electrostatics of biomolecular systems 2

1.2 Numerical solution of the Poisson-Boltzmann equation 7

1.3 Fast iterative solvers . 16

1.4 Fast direct solvers . 18

1.5 Outline of the dissertation . 20

2 A fast direct solver for non-oscillatory integral equations 23

2.1 Mathematical preliminaries . 24

2.2 Matrix compression . 31

2.3 Compressed matrix-vector multiplication 36

2.4 Compressed matrix inversion . 37

2.5 Complexity analysis . 39

2.6 Error analysis . 42

2.7 Implementation . 43

vii

2.8 Numerical results . 44

2.9 Summary . 65

3 Extensions of the direct solver 69

3.1 Block and composite operators . 70

3.2 Approximate inverse preconditioning 72

3.3 Local geometric perturbations . 81

3.4 Overdetermined least squares . 84

3.5 A compression-based fast multipole method 93

4 Application to protein pKa calculations 98

4.1 Theory of protein titration . 100

4.2 Mean field approximation . 106

4.3 Reduced site approximation . 107

4.4 Monte Carlo sampling . 108

4.5 Estimating the pKa . 111

4.6 Algorithm . 114

4.7 Numerical results . 117

4.8 Summary . 127

5 Generalizations and concluding remarks 135

5.1 Biomolecular charge optimization . 136

5.2 Protein structure prediction and design 137

5.3 Protein-protein docking . 138

5.4 Towards a near-optimal fast direct solver 139

5.5 Towards a fast direct solver for oscillatory kernels 140

viii

5.6 Conclusion . 141

Bibliography 143

ix

List of Figures

1.1 A solvated biomolecular system . 3

1.2 Well-separated point clusters with constant interaction rank. 17

1.3 Structure of a fast multipole matrix in 1D 18

2.1 An example of an index tree . 27

2.2 Matrix rank structure . 28

2.3 Single-level matrix compression . 32

2.4 Multilevel matrix compression . 32

2.5 Sparsification by recursive skeletonization 34

2.6 Accelerated compression using proxy surfaces 35

2.7 Calculation of adjacent interaction rank by recursive subdivision 40

2.8 CPU times for applying the Laplace kernel 47

2.9 CPU times for applying the Helmholtz kernel 51

2.10 CPU times for solving the Laplace equation 55

2.11 CPU times for solving the Helmholtz equation 59

2.12 Surface potential of DNA . 62

2.13 Intensities of pressure fields for multiple scattering example 67

3.1 Compression scaling with precision for quasi-2D Laplace problems 73

3.2 A space-filling grid of disks in 2D . 75

3.3 CPU times for solving the space-filling 2D example using preconditioning 76

x

3.4 Helmholtz potential on the unit sphere 78

3.5 CPU times for solving the 3D Helmholtz example using preconditioning . 79

3.6 Example sparsity pattern of a structured sparse QR decomposition. . . . 86

3.7 Least squares solver performance as a function of the relaxation parameter 93

3.8 CPU times for least squares charge fitting 94

4.1 Thermodynamic cycle for protein titration 101

4.2 Probability density of the finite geometric distribution 110

4.3 Numerical results for titrating BPTI . 120

4.4 Numerical results for titrating OMTKY3 120

4.5 Numerical results for titrating HEWL . 121

4.6 Numerical results for titrating RNase A 121

4.7 Numerical results for titrating RNase H 122

4.8 Accuracy of pKa calculations . 133

5.1 Schematic for skeleton recompression in 2D 139

xi

List of Tables

2.1 Numerical results for applying the Laplace kernel in the 2D surface case . 48

2.2 Numerical results for applying the Laplace kernel in the 2D volume case 49

2.3 Numerical results for applying the Laplace kernel in the 3D surface case . 49

2.4 Numerical results for applying the Laplace kernel in the 3D volume case 50

2.5 Numerical results for applying the Helmholtz kernel in the 2D surface case 52

2.6 Numerical results for applying the Helmholtz kernel in the 2D volume case 53

2.7 Numerical results for applying the Helmholtz kernel in the 3D surface case 53

2.8 Numerical results for applying the Helmholtz kernel in the 3D volume case 54

2.9 Numerical results for solving the Laplace equation in 2D 56

2.10 Numerical results for solving the Laplace equation in 3D 57

2.11 Numerical results for solving the Helmholtz equation in 2D 59

2.12 Numerical results for solving the Helmholtz equation in 3D 60

2.13 Numerical results for molecular electrostatics example 62

2.14 Numerical results for multiple scattering example 66

3.1 Empirical compression complexities of the direct solver in quasi-2D . . . 73

3.2 Numerical results for the space-filling 2D example using preconditioning . 77

3.3 Numerical results for the 3D Helmholtz example using preconditioning . 79

3.4 Numerical results for least squares charge fitting 92

4.1 Model pKa values for each titratable residue 115

xii

4.2 Summary statistics for titrated proteins 118

4.3 Numerical data for protein titration . 118

4.4 Calculated pKa values for BPTI . 123

4.5 Calculated pKa values for OMTKY3 . 125

4.6 Calculated pKa values for HEWL . 126

4.7 Calculated pKa values for RNase A . 128

4.8 Calculated pKa values for RNase H . 130

4.9 Summary statistics for calculated pKa values 134

xiii

1 Introduction

The study of macromolecular structure and function is central to modern biology

and has provided a rich history of mechanistic insights on such fundamental bio-

logical components as DNA [121, 199], protein kinases [113, 147], G protein-coupled

receptors [186], and the machinery of cell death [68] and degradation [56], among oth-

ers. Given a structure, its function and mode of action are in principle determined by

the corresponding physics, which at the molecular scale are commonly divided into

three classes:

1. bonded forces, characterizing the quantum physics of covalent bonds;

2. electrostatic forces, describing the interaction of charged ions; and

3. van der Waals forces, covering local but non-bonded interactions.

Among these, electrostatics is unique for its long range and hence its ability to co-

ordinate large-scale intra- and intermolecular processes [110]. Indeed, it has been

found to participate in many aspects of macromolecular structure and dynamics, in-

cluding conformational remodeling [33, 114], protein-protein interaction [173], protein

stability [206], and enzyme specificity [189]. Given its widespread importance, it is

clear that accurate electrostatic analysis is essential for a faithful physical descrip-

tion of biomolecular systems, and thus for a quantitative understanding of biological

structure and function at the molecular level.

1

In this dissertation, we develop new mathematical and computational techniques

for the electrostatics of large, solvated biomolecules. Our method relies on a con-

tinuum model of the solvent and calculates the electrostatic potential by solving the

linearized Poisson-Boltzmann equation (LPBE). The LPBE is recast as a second-

kind boundary integral equation, which gives it a strong mathematical foundation,

and then solved using a new fast algorithm that can be seen as an extension of the fast

multipole method (FMM) [86, 93] for Coulomb summation. In contrast to iteratve

FMM-based solvers, however, our algorithm directly computes the solution operator

for the LPBE and so can be far more efficient when many solves are required for the

same molecular geometry, e.g., with many different boundary conditions as induced

by different charge configurations. The result is a direct solver for macromolecular

electrostatics that is fast, accurate, and robust, with a well-understood mathematical

theory and a controlled numerical error.

We begin in the next section with a discussion of the electrostatic potential of a

biomolecular system.

1.1 Electrostatics of biomolecular systems

Consider a biomolecule represented explicitly as a collection of atoms, possibly charged,

immersed in a salt solution. Through van der Waals interactions, the atoms in the

molecule carve out a solvent-excluded region Ω1, which we define as the molecular vol-

ume; its exterior is composed of the solvent, which permeates all of space Ω0 ≡ R3\Ω1

(Figure 1.1). What is the electrostatic potential of this system?

One way of approaching this is to represent the solvent explicitly as well, discretiz-

ing Ω0 as a collection of solvent molecules, each itself composed of charged atoms,

2

Figure 1.1: A biomolecular system consisting of a solvent-excluded molecular volume

Ω1 with molecular surface Σ, immersed in a salt solution Ω0 = R3 \ Ω1.

and then to compute the electrostatic potential using Coulomb’s law:

ϕ(r) = ke
∑
i

qi
|r − ri|

,

where ke is the Coulomb constant, qi and ri are the charge and location, respectively,

of atom i, and the sum runs over all atoms, both in the molecule and in the solvent.

This is generally considered the most realistic treatment since it respects the atomic

nature of the solvent, and is the predominant method used in molecular dynamics

(MD) simulations [see 127], which are often employed to minimize the energies of

biomolecular systems. This realism, however, comes at a significant expense, as

a sufficiently large solvent volume must be discretized in order to capture its bulk

properties. For protein simulations in water, for example, standard MD protocols call

for enough water molecules to buffer the protein by at least 10 Å in each direction.

For moderately sized proteins on the order of 100 residues, say, this can add up to

3000 water molecules in total, giving about 104 extra atoms, thus vastly increasing

the system size.

An alternative approach is to describe the solvent using a continuum theory. Here,

3

the fundamental equation is the Poisson equation

−∇ · (ε∇ϕ) = ρ, (1.1)

where ε(r) = εi for r ∈ Ωi is the dielectric constant, representing some macroscopic

average of the microscopic atomic motions, and ρ is the charge. This is a second-order

elliptic partial differential equation (PDE) whose study has been central to much of

applied mathematics [see, e.g., 211]. In the molecule, we assume that

ρ (r) ≡
∑
i

qiδ (r − ri) in Ω1

is composed of discrete interior point charges, where δ is the Dirac delta function;

thus, the electrostatic potential in the molecule satisfies

−∆ϕ =
1

ε1

∑
i

qiδ (r − ri) in Ω1. (1.2)

The situation in the solvent is slightly more complicated since we must account for

the presence of free ions, which can move in response to the electric field and act to

counter its effect. For this, using Boltzmann’s theory [122], we let

ρ (r) ≡
∑
i

qici (r) =
∑
i

qic
∞
i exp

[
−qiϕ (r)

kBT

]
in Ω0,

where ci is the concentration of ion species i, here taken as the mean field distribution

due to ϕ; c∞i is the corresponding bulk concentration; kB is the Boltzmann constant;

and T is the absolute temperature. Substituting this into (1.1), we obtain the Poisson-

Boltzmann equation (PBE)

−∆ϕ =
1

ε0

∑
i

qic
∞
i exp

[
−qiϕ (r)

kBT

]
in Ω0, (1.3)

a widely used model that captures the effect of ionic screening.

4

The PBE is often linearized by assuming that the electrostatic energy is small,

i.e., qiϕ(r)� kBT for all i. In this case,

exp

[
−qiϕ (r)

kBT

]
≈ 1− qiϕ (r)

kBT
,

so, to first order,

−∆ϕ =
1

ε0

∑
i

qic
∞
i

(
1− qiϕ

kBT

)
= − 1

ε0

∑
i

q2
i c
∞
i

kBT
ϕ in Ω0,

where the first term vanishes by bulk electroneutrality. This is more commonly

written as

−
(
∆− κ2

)
ϕ = 0 in Ω0, (1.4)

where

κ =

√
2IF 2

ε0RT

is the inverse Debye length, characterizing the distance over which the electric field

is screened, for

I =
1

2

∑
i

c∞i z
2
i

the ionic strength, where zi is the charge number of ion species i (so qi = zie, where e

is the elementary charge); F the Faraday constant; and R the gas constant. Observe

that the LPBE (1.4) reduces to the Poisson equation at κ = 0; thus, (1.4) is often

also called the screened Poisson equation.

Note 1.1. The LPBE also appears in the context of nuclear physics as the equation

describing the Yukawa interaction potential between elementary particles [210].

5

In this work, we focus only on the linearized form (1.4). This is due in part to

numerical considerations as the linear PDE is more straightforward to solve, especially

using FMM-based algorithms. Moreover, the validity of the nonlinear PBE (1.3) is

not entirely clear since in the regime of strong interactions, it may be important

to include also, e.g., finite size effects and ion correlations, which the PBE neglects

[58]. Nonetheless, it should be understood that the methods presented here also

have consequences for the nonlinear equation since nonlinear systems are typically

solved via iterative linearization. For further details on continuum electrostatic theory

and the PBE, we refer the reader to [58, 72, 172]; for an in-depth discussion of the

nonlinear PBE, we recommend the excellent treatment in Prof. Michael Holst’s thesis

[109].

Combining (1.2) and (1.4), the PDE for the electrostatic potential is therefore

−
(
∆− κ2

)
ϕ = 0 in Ω0, (1.5a)

−∆ϕ =
1

ε1

∑
i

qiδ (r − ri) in Ω1, (1.5b)

an interface LPBE system, with the interface conditions

[ϕ] =

[
ε
∂ϕ

∂ν

]
= 0 on Σ (1.6)

by continuity of the potential and its flux (cf. (1.1)), where Σ ≡ ∂Ω1 is the solvent-

excluded molecular surface separating Ω0 and Ω1 [see 52], ν is the unit outer surface

normal on Σ, and bracket notation denotes the jump across the interface, commonly

taken as the exterior value minus the interior value.

Remark 1.2. Several studies have found it useful to represent ions in the solvent

explicitly [172, and references therein]. We can incorporate these into the LPBE as

6

fixed counterions by including a source term:

−
(
∆− κ2

)
ϕ =

∑
i

qiδ (r − ri) in Ω0.

The same can be done for the solvent itself, at least for a few layers near the molecule,

which has been shown to be important in capturing surface effects [127, 132].

Remark 1.3. The above framework can also accomodate a system of multiple solvated

biomolecules by specifying an equation of the form

−∆ϕ =
1

εi

∑
j

qijδ (r − rij) in Ωi

for each molecule Ωi with dielectric εi for i = 1, 2, . . . , where qij and rij are the charge

and location, respectively, of atom j in Ωi. The interface conditions (1.6) must now

apply on each molecular surface Σi ≡ ∂Ωi.

1.2 Numerical solution of the Poisson-Boltzmann

equation

The LPBE (1.5) can be solved in many ways, perhaps the most popular of which is

via finite differences. In this approach, the Laplace operator ∆ is discretized on a grid

using, e.g., a seven-point stencil, and the resulting algebraic system solved using stan-

dard techniques [188]; the material parameters ε and κ are typically taken as spatially

varying and implicit define the molecular surface Σ. This forms the basis of the so-

called finite difference Poisson-Boltzmann methods (FDPB), which count among them

the very mature DelPhi program initially developed in Prof. Barry Honig’s lab (http:

//wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:DelPhi). For

a discussion of the various optimizations in DelPhi, including fast relaxation schemes,

7

http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:DelPhi
http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:DelPhi

electrostatic focusing, and extensions to the nonlinear PBE and multi-dielectric cases,

see [81, 148, 162]. Other FDPB schemes include [13, 42, 212].

Another approach is to use finite elements to discretize the solution space [187].

The finite element method has a rich mathematical theory and is routinely used by

the engineering community to perform complex structural analyses. One particu-

lar advantage of finite elements over finite differences is its support for unstructured

meshes, which allows for efficient adaptive refinement [10] of irregular geometries

such as molecular surfaces. Progress on finite element-based solvers for the PBE

has mainly been driven by the work of Holst and Baker [12, 43, 109, 108], particu-

larly through their software APBS (http://www.poissonboltzmann.org/apbs), but

results by others have been reported as well [55, 175]

Despite their prevalence, both finite difference and finite element methods have

the major drawback that the resulting system matrices are generally ill-conditioned.

Specifically, the condition number of the corresponding matrix A typically scales as

κ(A) = O(1/h2), where h is the minimum mesh width, meaning that past a certain

threshold, the error actually increases with additional refinement due to the amplifi-

cation of numerical noise. This is in contrast to integral equation methods [97, 184],

which can be formulated in a well-conditioned manner, i.e., κ(A) = O(1), and hence

enable more robust convergence. This is one of the reasons that we have adopted

an integral equation approach. Furthermore, integral equations for problems such as

(1.5) often require unknowns only on the domain boundary, leading to a dimensional

reduction in the linear system to be solved. In this sense, integral equations reveal the

true size of a problem, in contrast to finite differences or finite elements, which must

discretize the entire volume, with artificial truncation of infinite domains [24, 145]. Of

course, the boundary must now be represented explicitly, which can be a challenging

8

http://www.poissonboltzmann.org/apbs

problem in computational geometry, though with the advantage that boundary con-

ditions can be enforced exactly for the discretized system [cf. 42, 212]. Lastly, integral

equation methods also support the accurate computation of derivatives by analytic

differentiation of the integral kernel (i.e., no numerical differentiation is required),

which can be important, e.g., for force calculations.

For a review of recent developments in numerical methods for the PBE, including

finite difference, finite volume, finite element, boundary element, and hybrid schemes,

see [134].

We now turn to a brief treatment of integral equations, using the Laplace equation

as an example. For a more complete account, including potential and Fredholm

theory, we refer the interested reader to [91, 97, 184].

Example 1.1. Consider the interior Dirichlet problem for the Laplace equation in a

simply connected domain Ω ⊂ R3 with boundary ∂Ω:

−∆u = 0 in Ω, u = f on ∂Ω.

Potential theory suggests a solution in the form of a double-layer potential:

u (r) ≡
∫
∂Ω

∂G

∂νs

(r, s)µ (s) dSs in Ω, (1.7)

where

G (r, s) =
1

4π |r − s|

is the Green’s function (fundamental solution) for the Laplace equation and µ is an

unknown surface density. Note that (1.7) satisfies the PDE by construction since

−∆G (r, s) = δ (r − s) = 0

9

for r ∈ Ω and s ∈ ∂Ω; the idea then is to use µ to match the boundary data.

Physically, (1.7) represents the electric field due to a surface dipole layer of

strength µ. We can therefore think of each local surface patch as an ideal capac-

itor, which from elementary physics gives rise to a discontinuous field [158]. Hence

the double-layer potential should experience a jump in crossing ∂Ω; we formalize this

observation with the following theorem.

Theorem 1.1. Assuming that the quantities involved are all sufficiently smooth, the

double-layer potential (1.7) satisfies

u
(
r±
)

= ±1

2
µ (r) + u (r) ,

∂u

∂ν

(
r+
)

=
∂u

∂ν

(
r−
)

on ∂Ω,

where r± denotes the limit from R3 \Ω and Ω, respectively, and all integrals are taken

in the principal value sense.

Returning now to our example, taking the limit of (1.7) as r → ∂Ω thus yields

−1

2
µ (r) +

∫
∂Ω

∂G

∂νs

(r, s)µ (s) dSs = f (r) on ∂Ω, (1.8)

a second-kind integral equation for µ that is provably well-conditioned. Once µ has

been obtained, the solution can be evaluated at any point r ∈ Ω using (1.7).

Example 1.2. We can proceed similarly for the interior Neumann problem

−∆u = 0 in Ω,
∂u

∂ν
= g on ∂Ω,

provided that the integral of g is zero since otherwise we have an unphysical steady-

state heat conduction problem with non-vanishing boundary flow [184]. We use now

a single-layer potential

u (r) ≡
∫
∂Ω

G (r, s)σ (s) dSs, (1.9)

10

which corresponds to the field due to a surface charge layer of strength σ and satisfies

the following jump relations:

Theorem 1.2. Under the same conditions as Theorem 1.1, the single-layer potential

(1.9) satisfies

u
(
r+
)

= u
(
r−
)
,

∂u

∂ν

(
r±
)

= ∓1

2
σ (r) +

∂u

∂ν
(r) on ∂Ω.

Hence taking the limit as r → ∂Ω, we have the second-kind integral equation

1

2
σ (r) +

∫
∂Ω

∂G

∂νr

(r, s)σ (s) dSs on ∂Ω. (1.10)

Remark 1.4. We use so-called indirect representations such as (1.7) or (1.9) since the

direct representation

u (r) ≡
∫
∂Ω

[
∂G

∂νs

(r, s)u (s)−G (r, s)
∂u

∂ν
(s)

]
dSs

from Green’s identity using the actual boundary data often gives only integral equa-

tions of the first kind, e.g.,∫
∂Ω

G (r, s)
∂u

∂ν
(s) dSs = −f (r) +

∫
∂Ω

∂G

∂νs

(r, s) f (s) dSs on ∂Ω

for the Dirichlet problem. Here, the unknown ∂u/∂ν appears only under the integral,

which is a smoothing operator and hence ill-conditioned to invert. In contrast, second-

kind integral operators such as (1.8) and (1.10) are of the form I +K, where I is the

identity and K is compact, which affords superior solvability properties.

Remark 1.5. The same jump conditions and second-kind integral equations hold for

the LPBE (1.4) if we use the Green’s function

Gκ (r, s) ≡ e−κ|r−s|

4π |r − s|
.

In this notation, the Laplace Green’s function is just G0.

11

Definition 1.1. Hereafter, we use the shorthand

Sk [σ] (r) ≡
∫

Γ

Gk (r, s)σ (s) dSs, Dk [µ] (r) ≡
∫

Γ

∂Gk

∂νs

(r, s)µ (s) dSs

for the single- and double-layer potentials, respectively, where Γ is to be understood

from the context. We will also make use of prime notation to denote normal differ-

entiation, i.e., S ′k ≡ ∂Sk/∂ν and D′k ≡ ∂Dk/∂ν.

We are now armed with the necessary tools to formulate a well-conditioned integral

equation for the molecular electrostatics system (1.5). To this end, we write the

solution as a combination of Laplace and Yukawa single- and double-layer potentials

on the molecular surface Σ:

ϕ ≡


Sκσ +Dκµ in Ω0,

S0σ + αD0µ+ ϕs in Ω1,

(1.11)

where α ≡ ε0/ε1 is the dielectric ratio, and

ϕs (r) ≡ 1

ε1

∑
i

qiG0 (r, ri)

is the potential due to the sources. By Theorems 1.1 and 1.2,

lim
r→Σ

ϕ (r) =


µ/2 + Sκσ +Dκµ in Ω0,

−αµ/2 + S0σ +D0µ+ ϕs in Ω1,

and

lim
r→Σ

∂ϕ

∂ν
(r) =


−σ/2 + S ′κσ +D′κµ in Ω0,

σ/2 + S ′0σ + αD′0µ+ ϕ′s in Ω1,

12

so enforcing the interface conditions (1.6) gives

1

2
(1 + α)µ+ (Sκ − S0)σ + (Dκ − αD0)µ = ϕs,

−1

2
(1 + α)σ + (αS ′κ − S ′0)σ + α (D′κ −D′0)µ =

∂ϕs
∂ν

,

or, in operator notation, the block system

(I + λK)

µ
σ

 = λ

 ϕs

−∂ϕs/∂ν

 , (1.12)

where λ = 2/(1 + α) and

K =

 Dκ − αD0 Sκ − S0

−α (D′κ −D′0) − (αS ′κ − S ′0)

 .
Note the difference D′κ −D′0, which mollifies the hypersingular terms D′κ and D′0 by

singularity subtraction [117]; essentially the same approach was taken by Juffer et

al. in [116]. The system (1.12) is a well-conditioned second-kind boundary integral

equation for σ and µ.

Remark 1.6. This formulation extends naturally to the case of multiple biomolecules,

viz. Remark 1.3, for which the analogue of (1.11) is

ϕ ≡


∑

i (Sκσi +Dκµi) in Ω0,

S0σi + αiD0µi + ϕs,i in Ωi,

where σi and µi are layer densities on Σi, αi ≡ ε0/εi, and

ϕs,i (r) ≡ 1

εi

∑
j

qijG0 (r − rij) .

13

The resulting system then becomes

(I +K)



µ1

σ1

µ2

σ2

...


=



λ1ϕs,1

−λ1ϕ
′
s,1

λ2ϕs,2

−λ2ϕ
′
s,2

...


,

where λi = 2/(1 + αi) and K is composed of 2× 2 blocks of the form

Kii = λi

 Dκ − αiD0 Sκ − S0

−αi (D′κ −D′0) − (αiS
′
κ − S ′0)


with

Kij = λi

 Dκ Sκ

−αiD′κ −αiS ′κ

 for i 6= j.

Equation (1.12) is an exact statement for the continuous functions σ and µ, and

must be discretized to render it amenable to numerical computation. For this, we

represent Σ as a collection of flat triangles Ti, on each of which we take σ and µ

as constant with values σi and µi, respectively. This is a first-order discretization;

second-order methods based on curved triangles and polynomial densities have re-

cently been developed [4, 17], but this is sufficient for our current purposes. Many

programs are available for producing such triangulations, including [53, 156, 169].

We complete the discretization by employing a collocation scheme and enforcing the

14

integral equation at each centroid ci of Ti, which gives

(I + λK)



µ1

σ1

...

µNtri

σNtri


= λ



ϕs (c1)

−ϕ′s (c1)

...

ϕs (cNtri
)

−ϕ′s (cNtri
)


, (1.13)

where Ntri is the total number of triangles and the operators in K are now specified

in discrete form as the matrix entries

Sk (ci) =
∑
j

∫
Tj

Gk (ci, s) dSs, Dk (ci) =
∑
j

∫
Tj

∂Gk

∂νs

(ci, s) dSs,

and similarly for their derivatives; the operators in (1.11) for computing ϕ once the σi

and µi have been recovered are discretized in the same way. For k = 0, these integrals

are evaluated analytically, while for k 6= 0, Gauss-Legendre quadrature is used on the

smooth difference, e.g., Sk − S0, and the result added to S0. The discretized system

(1.13) is a matrix equation of the form Ax = b, where A ∈ RN×N for N = 2Ntri.

Note 1.7. On flat surfaces,∫
Ti

∂Gk

∂νci

(ci, s) dSs =

∫
Ti

∂Gk

∂νs

(ci, s) dSs = 0 for all i.

In other words, the operators S ′k and Dk in (1.13) vanish on the diagonal.

Note 1.8. Although we consider only collocation here, it is worthwhile to point out

alternative discretization schemes such as qualocation [178], which has been shown to

be particularly effective for integrated quantities [18, 192], and the Galerkin method

[e.g., 28], which is more expensive as it requires double integrals but has the benefit

of symmetrizing A.

15

We now turn to the problem of solving (1.13). Following our discussion above,

the system matrix is nonsingular, well-conditioned, and nonsymmetric; it is, how-

ever, also dense, in contrast to matrices produced by finite difference or finite ele-

ment discretizations, which are generally sparse and so enable highly efficient inver-

sion schemes [75, 166]. Thus, sophisticated techniques are required to treat (1.13)

in a computationally tractable way, in particular to beat the O(N3) cost of direct

inversion, which severely limits the size and resolution of any possible numerical sim-

ulation. In the following sections, we briefly review the current state of the art for

solving dense integral equation systems, starting with those based on iteration.

1.3 Fast iterative solvers

The first fast solvers for integral equations appeared in the late 1980s and were based

on two key developments:

1. Krylov subspace methods like GMRES [167] and BiCGSTAB [195], which can

solve linear systems on the basis of only matrix-vector products; and

2. fast algorithms to rapidly compute such products [87], e.g., tree codes [9, 20],

panel clustering methods [101], and FMMs [36, 48, 86], among others [3, 31,

157].

Since A is well-conditioned, the number of iterations required for convergence is typ-

ically quite small and independent of N , i.e., O(1). Therefore, the cost of performing

a solve is simply proportional to that of applying A to a vector, which the methods

above have all been very successful at reducing from the generic O(N2) to the optimal

or near-optimal O(N) or O(N logN), respectively.

16

Figure 1.2: Well-separated point clusters with constant interaction rank.

Such fast multiplication schemes were originally designed for the Laplace kernel

G0, e.g., for gravitational or Coulombic potentials, and exploited the simple observa-

tion that, to any specified precision ε > 0, a separated point cluster can be accurately

described by only a constant number of degrees of freedom of the order O(log(1/ε)),

irrespective of the number of points in the cluster or its detailed structure (Figure

1.2). This is supported by physical intuition, wherein a collection of charges, for

instance, can be replaced by a single effective charge provided that the observation

point is sufficiently far away, i.e., in the so-called far field. In linear algebraic terms,

this means that large submatrices of A are low-rank and hence can be approximated

very efficiently. Combining this with a hierarchical decomposition of space via, e.g.,

an octree [168], we can apply this idea in a multiscale manner, resulting in a highly

compressed representation of A requiring only O(N logN) entries (Figure 1.3). The

optimal O(N) estimate for FMMs requires some additional machinery relating to

recursively merging and splitting data-sparse cluster representations; for details, see

[86, 93].

The same reasoning gives rise to fast algorithms for other integral kernels based

on Green’s functions for non-oscillatory elliptic PDEs, including the Yukawa kernel

Gk [30, 95, 112, 130]. This has led to the construction of kernel-independent FMMs

based only on smooth interpolation [73, 83, 141, 208]. FMMs for oscillatory kernels

such as those for the Helmholtz and Maxwell equations have also been developed, but

17

Figure 1.3: Structure of an FMM matrix on the line, where gray blocks denote full-

rank near-field interactions, and white blocks denote low-rank far-field interactions.

All white blocks have the same rank.

these rely on somewhat different techniques [45, 46, 69, 70, 164, 181]. Altogether,

such fast algorithms have had a tremendous impact on computational science and

engineering [49, 133, 150, and references therein], and are now used to solve problems

that previously would have been infeasible [103, 123, 160, 209].

1.4 Fast direct solvers

Despite their successes, however, the fast solvers above are still iterative by nature,

and as such have several significant disadvantages when compared with their direct

counterparts:

1. Although second-kind integral equation systems are well-conditioned with re-

spect to N , they can still be ill-conditioned with respect to some problem pa-

rameter. Such ill conditioning arises, for example, in the solution of problems

near resonance (particularly in the high-frequency regime), in geometries with

18

“close-to-touching” interactions, and in multi-component physics models with

large material contrasts [see 90]. Under these circumstances, the number of it-

erations required by an iterative solver can be far greater than expected. Direct

methods, on the other hand, are robust in the sense that their solution time

does not degrade with conditioning. Thus, they are often preferred in produc-

tion environments, where reliability of the solver and predictability of the solve

time are important.

2. When solving a collection of problems governed by a fixed matrix and multiple

right-hand sides, as often occurs in the modeling of physical processes in fixed

geometries [see, e.g., 15, 50], most iterative methods are unable to effectively

exploit the fact that the system matrix is the same and simply treat each right-

hand side anew [cf. 39, 71, 196]. In contrast, direct methods are highly efficient

in this regard: once the system matrix has been factored, the matrix inverse

can be applied to each right-hand side at a much lower cost.

3. In much the same way, when solving problems where the system matrix is

altered by low-rank modifications, e.g., in the context of optimization and de-

sign, standard iterative methods similarly experience no speedup, whereas di-

rect methods can update the matrix factorization using the Sherman-Morrison-

Woodbury formula [102] or use the existing factorization as a preconditioner.

Of course, their strengths notwithstanding, the overriding weakness of all classical

direct methods is their O(N3) cost. A natural question, therefore, is to ask to what

extent direct solvers can be likewise accelerated.

This task was first addressed in 1D by Greengard, Rokhlin, and Starr in [94, 124,

185]. The approach was then analyzed by Hackbusch et al. in a more general context

19

as part of a research program on fast linear algebra for so-called H -matrices [98–

100]; for a discussion of current H -matrix methods, see [29]. Since then, a number

of fast direct solvers have been developed, most notably within the framework of

hierarchically semiseparable matrices [40, 41, 204] and skeletonization procedures [77,

78, 88, 139], among others [35, 155]. All are very closely related and rely on essentially

the same FMM-type compression machinery. To date, however, such solvers have

largely been shown to be practical only for boundary integral equations in 2D; with

few exceptions, effective, multilevel solvers in higher dimensions have been lacking

[cf. 200].

In this dissertation, we describe a multilevel fast direct solver for non-oscillatory

integral equations that is quite general and formulated without reference to the un-

derlying physical problem dimension. Special attention has been paid to keeping the

presentation clear and describing the algorithm in purely linear algebraic terms; this

also greatly simplifies its implementation. The solver is based heavily on [88, 139]

and uses a recursive skeletonization scheme to produce a data-sparse matrix repre-

sentation that serves as a platform for fast matrix algebra, including matrix-vector

multiplication, matrix factorization, and matrix inverse application. For boundary

integral equations in 3D, e.g., the electrostatics system (1.13), our algorithm is ca-

pable of O(N logN) solves (following precomputation) that are extremely efficient,

often beating FMM/GMRES by several orders of magnitude.

1.5 Outline of the dissertation

The remainder of this dissertation is organized as follows.

In Chapter 2, we give a complete description of our fast direct solver, starting

20

with an analysis of the hierarchical low-rank block structure of non-oscillatory inte-

gral equation matrices and how to exploit it using the interpolative decomposition,

a recently introduced matrix approximation technique. We then give algorithms for

multilevel matrix compression, compressed matrix-vector multiplication, and com-

pressed matrix factorization and inverse application via a highly structured sparse

embedding. This is followed by complexity and error estimates, which we verify

through extensive numerical experiments, including results on low-frequency wave

scattering. Much of this chapter has previously appeared as [107].

In Chapter 3, we discuss some extensions of the direct solver, e.g., for block and

composite operators, preconditioning, local geometric perturbations, and overdeter-

mined least squares. The first three are rather straightforward applications of the

existing technology; the last is slightly more involved and constitutes a semi-direct

approach comprising a fast sparse QR factorization followed by rapid iterative correc-

tions. We also describe how the same framework can support an O(N) compression-

based FMM as a higher dimensional generalization of [141], which should prove quite

useful for kernels which are difficult to handle analytically.

In Chapter 4, we apply our techniques to protein pKa calculations, which forms

one example in which the LPBE (1.13) must be solved with many different right-hand

sides, each corresponding to a different charge configuration. Thus, this presents an

enticing opportunity for our direct solver, which can achieve an impressive speedup

through its relative efficiency. In this regard, our work here can be considered a heav-

ily accelerated version of [115], which used a similar integral equation approach but

was limited by classical numerical methods. Furthermore, our program incorporates

various optimizations including the reduced site approximation [22], a novel proce-

dure for sampling tightly coupled charge clusters, and a simple statistical technique

21

for estimating pKa errors. The validity of the overall approach is confirmed with

results for several commonly studied proteins.

Finally, in Chapter 5, we end with some generalizations and concluding remarks,

including prescriptions on adapting our algorithm to other biophysical problems such

as biomolecular charge optimization, protein structure prediction and design, and

protein-protein docking. These are all characterized by immense search spaces and

so provide very attractive applications for our direct solver. We also offer some

brief comments and observations on future fast direct solvers, including those for the

oscillatory case. The dissertation concludes with a summary of our main results and

contributions.

22

2 A fast direct solver for

non-oscillatory integral

equations

In this chapter, we present a fast direct solver for structured linear systems based

on multilevel matrix compression. The relevant matrix structure is characterized by

a hierarchical block low-rank property similar to that utilized by fast matrix-vector

product techniques like the fast multipole method (FMM). Such matrices commonly

arise from the discretization of integral equations, e.g., the molecular electrostatics

system (1.13), where the rank structure can be understood in terms of far-field in-

teractions between point clusters, but the algorithm is general and makes no a priori

assumptions about rank. Our scheme is a multilevel extension of [88], which itself

is based on the fast direct solver for 2D boundary integral equations developed by

Martinsson and Rokhlin [139]. We have also constructed what we hope is a useful for-

malism that simplifies the theoretical analysis and allows for a more straightforward

implementation.

The core algorithm in our work computes a compressed matrix representation us-

ing the interpolative decomposition [47, 131, 203] via a multilevel procedure that we

call recursive skeletonization. Once obtained, the compressed representation enables

fast matrix-vector multiplication, matrix factorization, and matrix inverse applica-

23

tion. As a fast matrix-vector product scheme, the algorithm may be viewed as a

generalized or kernel-independent FMM [73, 83, 141, 208]; we explore this application

in §2.8. For matrix inversion, the additional steps involve embedding the compressed

representation into an equivalent sparse system much in the style of [40, 155], and

then using standard sparse direct solver technology such as UMFPACK [62], SuperLU

[64], MUMPS [5], or PARDISO [170]. For maximum flexibility, the solver is divided

into two phases: a precomputation phase comprising matrix compression and factor-

ization, followed by a solution phase to apply the matrix inverse. As expected, the

solution phase is very inexpensive, often beating the FMM by several orders of mag-

nitude. For boundary integral equations without highly oscillatory kernels, e.g., the

Green’s functions for the Laplace or low-frequency Helmholtz equations, both phases

typically have complexity O(N) in 2D, where N is the system size; in 3D, these are

O(N3/2) and O(N logN) for precomputation and solution, respectively.

A particularly interesting aspect of our algorithm is that its specification is purely

algebraic, while its performance is due to analysis, namely approximation theory.

Thus, it achieves a powerful combination of both efficiency and robustness. A version

of this chapter has previously appeared as [107].

2.1 Mathematical preliminaries

Let A ∈ CN×N be a matrix whose index vector J ≡ (1, 2, . . . , N) is grouped into p

contiguous blocks of ni elements each, where
∑p

i=1 ni = N :

Ji =

(
i−1∑
j=1

nj + 1,
i−1∑
j=1

nj + 2, . . . ,
i∑

j=1

nj

)
for i = 1, . . . , p.

24

Then the linear system Ax = b can be written in the form

p∑
j=1

Aijxj = bi for i = 1, . . . , p,

where xi, bi ∈ Cni and Aij ∈ Cni×nj . Solution of the full system by classical Gaussian

elimination is well-known to require O(N3) work [84].

Definition 2.1. The matrix A is said to be block separable if each off-diagonal sub-

matrix Aij can be decomposed as the product of three low-rank matrices:

Aij = LiSijRj for i 6= j, (2.1)

where Li ∈ Cni×kr
i , Sij ∈ Ckr

i×kc
j , and Rj ∈ Ckc

j×nj , with kr
i , k

c
i � ni. Note that the

left matrix Li depends only on the index i and the right matrix Rj only on the index

j.

We will see how such a factorization arises below. The term “block separable”

was introduced in [78] and is closely related to that of semiseparable matrices [40, 41,

204] and H -matrices [98–100]. In [88], the term “structured” was used, but “block

separable” is somewhat more informative.

Definition 2.2. The ith off-diagonal block row of A is the submatrix[
Ai1 · · · Ai(i−1) Ai(i+1) · · · Aip

]
consisting of the ith block row of A with the diagonal block Aii deleted; the off-

diagonal block columns of A are defined analogously.

Clearly, the block separability condition (2.1) is equivalent to requiring that the

off-diagonal block rows and columns have low rank.

25

When A is block separable, it can be written as

A = D + LSR, (2.2)

where

D =


A11

. . .

App

 ∈ CN×N

is block diagonal, consisting of the diagonal blocks of A,

L =


L1

. . .

Lp

 ∈ CN×Kr , R =


R1

. . .

Rp

 ∈ CKc×N

are block diagonal, with Kr =
∑p

i=1 k
r
i and Kc =

∑p
i=1 k

c
i , and

S =



0 S12 · · · S1p

S21 0 · · · S2p

...
...

. . .
...

Sp1 Sp2 · · · 0


∈ CKr×Kc

is dense with zero diagonal blocks. It is convenient to let z ≡ Rx and y ≡ Sz. We

can then write the original system as
D L

R −I

−I S



x

y

z

 =


b

0

0

 , (2.3)

which is highly structured and sparse, and can be factored efficiently using standard

sparse matrix techniques. If we assume that each block corresponds to ni ≡ N/p

26

Figure 2.1: An example of a tree structure imposed on the index vector (1, 2, . . . , N).

At each level of the hierarchy, a contiguous block of indices is divided into a set of

children, each of which corresponds to a contiguous subset of those indices.

unknowns and that the ranks kr
i = kc

i ≡ k of the off-diagonal blocks are all the same,

it is straightforward to see [78, 88] that a scheme based on (2.2) or (2.3) requires an

amount of work of the order O(p(N/p)3 + p3k3).

In many contexts, including integral equations, the notion of block separability

is applicable on a hierarchy of subdivisions of the index vector. That is to say, a

decomposition of the form (2.2) can be constructed at each level of the hierarchy.

When a matrix has this structure, much more powerful solvers can be developed.

Hence assume now that a tree τ is imposed on J which is λ+ 1 levels deep. At level

l, we assume that there are pl nodes, with each such node J
(l)
i corresponding to a

contiguous subsequence of J such that
{
J

(l)
1 , J

(l)
2 , . . . , J

(l)
pl

}
= J . We denote the finest

level as level 1 and the coarsest level as level λ + 1, which consists of a single block.

Each node J
(l)
i at level l > 1 has a finite number of children at level l − 1 whose

concatenation yields the indices in J
(l)
i (Figure 2.1).

Following [78], we say that A is hierarchically block separable (or hierarchically

structured) if it is block separable at each level of the hierarchy defined by τ . In

27

Figure 2.2: Matrix rank structure. At each level of the index tree, the off-diagonal

block rows and columns (black) must have low numerical rank; the diagonal blocks

(white) can in general be full-rank.

other words, it is structured in the sense of the present chapter if, on each level of

τ , the off-diagonal block rows and columns are low-rank (Figure 2.2). Such matrices

arise, for example, when discretizing integral equations with non-oscillatory kernels

(up to a specified precision).

Example 2.1. Consider the integral operator

φ (r) ≡
∫
G (r, s) ρ (s) dVs (2.4)

where

G (r, s) ≡ − 1

2π
log |r − s| (2.5)

is the Green’s function for the 2D Laplace equation, and the domain of integration

is a square B in the plane. This is a 2D volume integral operator. Suppose now that

we discretize (2.4) on a
√
N ×

√
N grid:

φ (ri) =
1

N

∑
j 6=i

G (ri, rj) ρ (rj) . (2.6)

(This is not a high-order quadrature but that is really a separate issue.) Let us

superimpose on B a quadtree of depth λ+ 1, where B is the root node at level λ+ 1.

28

Level λ is obtained from level λ+ 1 by subdividing the box B into four equal squares

and reordering the points ri so that each child holds a contiguous set of indices. This

procedure is carried out until level 1 is reached, reordering the nodes at each level

so that the points contained in every node at every level correspond to a contiguous

set of indices. It is clear that, with this ordering, the matrix corresponding to (2.6)

is hierarchically block separable since the interactions between non-adjacent boxes at

each level are low-rank from standard multipole estimates [86, 93]; adjacent boxes

are low-rank for a more subtle reason (see §2.5 and Figure 2.7).

Example 2.2. Suppose now that we wish to solve an interior Dirichlet problem for

the Laplace equation in a simply connected 3D domain Ω with boundary ∂Ω:

∆u = 0 in Ω, u = f on ∂Ω, (2.7)

viz. Example 1.1. Proceeding as before, we write the solution in the form of a double-

layer potential

u (r) ≡
∫
∂Ω

∂G

∂νs

(r, s)σ (s) dSs in Ω, (2.8)

where

G (r, s) =
1

4π |r − s|
(2.9)

is the Green’s function for the 3D Laplace equation, ν is the unit outer surface normal

on ∂Ω, and σ is an unknown surface density. Letting r approach the boundary, this

gives rise to the second-kind Fredholm equation

−1

2
σ (r) +

∫
∂Ω

∂G

∂νs

(r, s)σ (s) dSs = f (r) . (2.10)

Using a standard collocation scheme over a triangulated surface, we enclose ∂Ω in

a box and bin sort the triangle centroids using an octree where, as in the previous

29

example, we reorder the nodes so that each box in the hierarchy contains contiguous

indices. It can be shown that the resulting matrix is also hierarchically block separable

(see §2.5 and [88]).

We turn now to a discussion of the interpolative decomposition (ID), the compres-

sion algorithm that we will use to compute low-rank approximations of off-diagonal

blocks. Many decompositions exist for low-rank matrix approximation, including

the singular value decomposition, which is well-known to be optimal [84]. Here, we

consider instead the ID [47, 131, 203], which produces a near-optimal representation

that is more effective for our purposes as it permits an efficient scheme for multilevel

compression when applied in a hierarchical setting. A useful feature of the ID is that

it is able to compute the rank of a matrix on the fly, since the exact ranks of the

blocks are difficult to ascertain a priori—that is to say, the ID is rank-revealing.

Definition 2.3. Let A ∈ Cm×n be a matrix, and ‖ · ‖ the matrix 2-norm. A rank-k

approximation of A in the form of an interpolative decomposition (ID) is a representa-

tion A ≈ BP , where B ∈ Cm×k, whose columns constitute a subset of the columns of

A, and P ∈ Ck×n, a subset of whose columns makes up the k×k identity matrix, such

that ‖P‖ is small and ‖A−BP‖ ∼ σk+1, where σk+1 is the (k+ 1)st greatest singular

value of A. We call B and P the skeleton and projection matrices, respectively.

Clearly, the ID compresses the column space of A; to compress the row space,

simply apply the ID to AT, which produces an analogous representation A = P̃ B̃,

where P̃ ∈ Cm×k and B̃ ∈ Ck×n.

Definition 2.4. The indices corrresponding to the retained rows in the ID are called

the row or incoming skeletons. Similarly, the indices corrresponding to the retained

columns are called the column or outgoing skeletons.

30

Reasonably efficient schemes for constructing an ID exist [47, 131, 203]. By com-

bining such schemes with methods for estimating the approximation error, we can

compute an ID to any relative precision ε > 0 by adaptively determining the required

rank k [131]. This is the sense in which we will use the ID. While previous related

work [88, 139] employed the deterministic O(kmn) algorithm of [47], we take ad-

vantage here of the latest compression technology based on random sampling, which

typically requires only O(mn log k + k2n) operations [131, 203].

2.2 Matrix compression

In this section, we describe our fast multilevel matrix compression algorithm, which

forms the basis of our fast matrix algebra techniques. Thus, let A ∈ CN×N be a

matrix with p× p blocks, structured in the sense of §2.1, and ε > 0 a target relative

precision. We first outline a one-level matrix compression scheme:

1. For i = 1, . . . , p, use the ID to compress the row space of the ith off-diagonal

block row to precision ε. Let Li denote the corresponding row projection matrix.

2. Similarly, for j = 1, . . . , p, use the ID to compress the column space of the

jth off-diagonal block column to precision ε. Let Rj denote the corresponding

column projection matrix.

3. Approximate the off-diagonal blocks of A by Aij ≈ LiSijRj for i 6= j, where

Sij is the submatrix of Aij defined by the row and column skeletons associated

with Li and Rj, respectively.

This yields precisely the matrix structure discussed in §2.1, following (2.1). The

one-level scheme is illustrated graphically in Figure 2.3.

31

Figure 2.3: One level of matrix compression, obtained by sequentially compressing

the off-diagonal block rows and columns. At each step, the matrix blocks whose row

or column spaces are being compressed are highlighted in white.

Figure 2.4: Multilevel matrix compression, comprising alternating steps of compres-

sion and regrouping via ascension of the index tree. The diagonal blocks (white and

gray) are not compressed, but are instead extracted at each level of the tree; they are

shown here only to illustrate the regrouping process.

The multilevel algorithm is now just a simple extension based on the observation

that by ascending one level in the index tree and regrouping blocks accordingly, we

can compress the skeleton matrix S in (2.2) in exactly the same form, leading to

a procedure that we naturally call recursive skeletonization (Figure 2.4). This is

32

because S is composed of submatrices of A and hence inherits many of its properties.

The full algorithm may be specified as follows:

1. Starting at the leaves of the tree, extract the diagonal blocks and perform one

level of compression of the off-diagonal blocks.

2. Move up one level in the tree and regroup the matrix blocks according to the

tree structure. Terminate if the new level is the root; otherwise, extract the

diagonal blocks, recompress the off-diagonal blocks, and repeat.

It is easy to see that any disturbance of the original matrix structure at a given level

occurs only on the diagonal, which is immediately extracted at the next level. Thus,

the off-diagonal blocks at each level are just submatrices of the original matrix. The

result is a telescoping representation

A ≈ D(1) + L(1)
[
D(2) + L(2)

(
· · ·D(λ) + L(λ)SR(λ) · · ·

)
R(2)

]
R(1), (2.11)

where the superscript indexes the compression level l = 1, . . . , λ.

Example 2.3. As a demonstration of the multilevel compression technique, consider

the matrix defined by N = 8192 points uniformly distributed in the unit square, inter-

acting via the 2D Laplace Green’s function (2.5) and sorted according to a quadtree

ordering. The sequence of skeletons remaining after each level of compression to

ε = 10−3 is shown in Figure 2.5, from which we see that compression creates a

sparsification of the sources which, in a geometric setting, leaves skeletons along the

boundaries of each block.

The computational cost of the algorithm described so far is dominated by the fact

that each step is global: that is, compressing the row or column space for each block

33

Figure 2.5: Sparsification by recursive skeletonization. Logarithmic interactions be-

tween N = 8192 points in the unit square are compressed to relative precision

ε = 10−3 using a five-level quadtree-based scheme. At each level, the surviving

skeletons are shown, colored by block index, with the total number of skeletons re-

maining given by Nl for compression level l = 0, . . . , 5, where l = 0 denotes the

original uncompressed system.

requires accessing all other blocks in that row or column. If no further knowledge of

the matrix is available, this is indeed necessary. However, as noted in [47, 88, 139],

this global work can often be replaced by a local one, resulting in considerable savings.

A sufficient condition for this acceleration is that the matrix correspond to eval-

uating a potential field for which some form of Green’s identity holds. It is easiest

to present the main ideas in the context of the Laplace equation. For this, consider

Figure 2.6, which depicts a set of sources in the plane. We assume that block in-

dex i corresponds to the sources in the central square B. The ith off-diagonal block

34

Figure 2.6: Accelerated compression using proxy surfaces. The field within a region

B due to a distribution of exterior sources (left) can be decomposed into neighboring

and well-separated contributions. By representing the latter via a proxy surface Γ

(center), the matrix dimension to compress against for the block corresponding to

B (right) can be reduced to the number of neighboring points plus a constant set of

points on Γ, regardless of how many points lie beyond Γ.

row then corresponds to the interaction of all points outside B with all points inside

B. We can separate this into contributions from the near neighbors of B, which are

local, and the distant sources, which lie outside the near-neighbor domain, whose

boundary is denoted by Γ. But any field induced by the distant sources induces a

harmonic function inside Γ and can therefore be replicated by a charge density on Γ

itself. Thus, rather than using the detailed structure of the distant points, the row

(incoming) skeletons for B can be extracted by considering just the combination of

the near-neighbor sources and an artifical set of charges placed on Γ, which we refer

to as a proxy surface. Likewise, the column (outgoing) skeletons for B can be deter-

mined by considering only the near neighbors and the proxy surface. If the potential

field is correct on the proxy surface, it will be correct at all more distant points (again

via some variant of Green’s identity).

35

The interaction rank between Γ and B is constant (depending on the desired pre-

cision) from standard multipole estimates [86, 93]. In summary, the number of points

required to discretize Γ is constant, and the dimension of the matrix to compress

against for the block corresponding to B is essentially just the number of points in

the physically neighboring blocks.

Similar arguments hold for other kernels of potential theory including the heat,

Helmholtz, Yukawa, Stokes, and elasticity kernels, though care must be taken for

oscillatory problems which could require a combination of single and double layer

potentials to avoid spurious resonances in the representation for the exterior.

2.3 Compressed matrix-vector multiplication

The compressed representation (2.11) admits an obvious fast algorithm for computing

the matrix-vector product y = Ax: one simply applies the matrices in (2.11) from

right to left. Like the FMM, this procedure can be thought of as occurring in two

passes:

1. An upward pass, corresponding to the sequential application of the column

projection matrices R(l), which hierarchically compress the input data x to the

column (outgoing) skeleton subspace.

2. A downward pass, corresponding to the sequential application of the row projec-

tion matrices L(l), which hierarchically project onto the row (incoming) skeleton

subspace and, from there, back onto the output elements y.

The same framework can be used to apply AT as well, which is not easy to do via

standard FMMs.

36

Remark 2.1. Essentially the same reasoning allows fast matrix-matrix multiplication,

provided that the index trees of the two matrices are the same; for non-identical trees,

the computation is substantially more involved.

2.4 Compressed matrix inversion

The representation (2.11) also permits a fast algorithm for the direct inversion of

nonsingular matrices. The one level scheme was discussed in §2.1; in the multilevel

scheme, the system Sz = y in (2.3) is itself expanded in the same form, leading to

the recursive embedding

D(1) L(1)

R(1) −I

−I D(2) L(2)

R(2) . . .
. . .

. . . D(λ) L(λ)

R(λ) −I

−I S





x

y(1)

z(1)

...

...

y(λ)

z(λ)



=



b

0

0

...

...

0

0



. (2.12)

To understand the consequences of this sparse representation, it is instructive to

study first the one-level embedding (2.3) in the special case that the row and column

skeleton dimensions are identical for each block, so that the total skeleton dimension

is K ≡ Kr = Kc. Then assuming that D is invertible, block elimination of x and y

gives

(Λ + S) z = ΛRD−1b,

37

where Λ = (RD−1L)−1 ∈ CK×K is block diagonal. Back substitution then yields

x =
[
D−1 −D−1LΛRD−1 +D−1LΛ (Λ + S)−1 ΛRD−1

]
b.

In other words, the matrix inverse is

A−1 ≈ D + LS−1R, (2.13)

where

D = D−1 −D−1LΛRD−1 ∈ CN×N

and

L = D−1LΛ ∈ CN×K , R = ΛRD−1 ∈ CK×N

are all block diagonal, and

S = Λ + S ∈ CK×K

is dense, equal to the skeleton matrix S with its diagonal blocks filled in. Therefore,

(2.13) is a compressed representation of A−1 with minimal fill-in over the original

compressed representation (2.2) of A. In the multilevel setting, one carries out the

above factorization recursively, since S can now be inverted in the same manner:

A−1 ≈ D(1) + L(1)
[
D(2) + L(2)

(
· · · D(λ) + L(λ)S−1R(λ) · · ·

)
R(2)

]
R(1). (2.14)

In the general case, this procedure will fail if D happens to be singular. Rather

than construct our own stabilized block elimination scheme, where some sort of piv-

oting would be required, we simply use the sparse direct solver software UMFPACK

[59, 60, 62, 63], supplying it with the sparse representation (2.12). Numerical results

show that the performance is similar to that expected from (2.14).

38

2.5 Complexity analysis

We now analyze the complexity of the presented algorithm for a typical example:

discretization of the integral operator (2.4), where the integral kernel has smoothness

properties similar to that of the Green’s function for the Laplace equation. We

ignore quadrature issues and assume that we are given a matrix A acting on N

points distributed randomly in a d-dimensional domain, sorted by an orthtree that

uniformly subdivides until all block sizes are O(1). (In 1D, an orthtree is a binary

tree; in 2D, it is a quadtree; and in 3D, it is an octree [see 168].)

For each compression level l = 1, . . . , λ, with l = 1 being the finest, let pl be

the number of matrix blocks, and nl and kl the uncompressed and compressed block

dimensions, respectively, assumed equal for all blocks and identical across rows and

columns, for simplicity. We first make the following observations:

1. The total matrix dimension is p1n1 = N , where n1 = O(1), so p1 ∼ N .

2. Each subdivision increases the number of blocks by a factor of roughly 2d,

so pl ∼ pl−1/2
d ∼ p1/2

d(l−1). In particular, pλ = O(1), so λ ∼ log2d N =

(1/d) logN .

3. The total number of points at level l > 1 is equal to the total number of skeletons

at level l − 1, i.e., plnl = pl−1kl−1, so nl ∼ 2dkl−1.

Furthermore, we note that kl is on the order of the interaction rank between two

adjacent blocks at level l, which can be analyzed by recursive subdivision of the

source block to expose well-separated structures with respect to the target (Figure

2.7). Assuming only that the interaction between a source subregion separated by its

39

Figure 2.7: The interaction rank between two adjacent blocks can be calculated by

recursively subdividing the source block (white) into well-separated subblocks with

respect to the target (gray), each of which have constant rank.

own size from a target is of constant rank (to a fixed precision ε), we have

kl ∼
log

2d nl∑
l=1

2(d−1)l ∼


log nl if d = 1,

n
1−1/d
l if d > 1,

where, clearly, nl ∼ (p1/pl)n1 ∼ 2d(l−1)n1, so

kl ∼


(l − 1) log 2 + log n1 if d = 1,

2(d−1)(l−1)n
1−1/d
1 if d > 1.

Matrix compression

From §2.1, the cost of computing a rank-k ID of an m×n matrix is O(mn log k+k2n).

We will only consider the case of proxy compression, for which m = O(nl) for a block

at level l, so the total cost is

Tcm ∼
λ∑
l=1

pl
(
n2
l log kl + k2

l nl
)
∼


N if d = 1,

N3(1−1/d) if d > 1.

(2.15)

40

Matrix-vector multiplication

The cost of applying D(l) is O(pln
2
l), while that of applying L(l) or R(l) is O(plklnl).

Combined with the O((pλkλ)
2) cost of applying S, the total cost is hence

Tmv ∼
λ∑
l=1

plnl (kl + nl) + (pλkλ)
2 ∼


N if d = 1,

N logN if d = 2,

N2(1−1/d) if d > 2.

(2.16)

Matrix factorization and inverse application

We turn now to the analysis of factorization using (2.14). At each level l, the cost of

constructing D−1 and Λ is O(pln
3
l), after which forming D(l), L(l), and R(l) all require

O(pln
2
l) operations. At the final level, the cost of constructing and inverting S is

O((pλkλ)
3). Thus, the total cost is

Tlu ∼
λ∑
l=1

pln
3
l + (pλkλ)

3 ,

which has complexity (2.15).

Finally, we note that the dimensions of D(l), L(l), R(l), and S−1 are the same as

those of D(l), L(l), R(l), and S, respectively. Thus, the total cost of applying the

inverse, denoted by Tsv, has the same complexity as Tmv, namely (2.16).

Storage

An important issue for direct solvers, of course, is that of storage requirements. In

the present setting, the relevant matrices are the compressed representations (2.11)

and (2.14). Since the costs of storing and applying are the same here, the formulas

are identical to those given above, with total complexity (2.16) for both.

41

2.6 Error analysis

Some simple error estimates can be derived for applying and inverting a compressed

matrix. For this, let A be the original matrix and Aε its compressed representation,

constructed using the described algorithm such that

‖A− Aε‖
‖A‖

≤ ε

for some ε > 0. Moreover, let x and b be vectors such that Ax = b.

Matrix-vector multiplication

Let bε ≡ Aεx. Then

b− bε = (A− Aε)x = (A− Aε)A−1b,

so

‖b− bε‖
‖b‖

≤ ε ‖A‖
∥∥A−1

∥∥ = εκ (A) ,

where κ(A) is the condition number of A.

Matrix inverse application

Let xε ≡ A−1
ε b. Then

x− xε =
(
A−1 − A−1

ε

)
b = A−1

ε (Aε − A)A−1b = A−1
ε (Aε − A)x,

so

‖x− xε‖
‖x‖

≤ ε ‖A‖
∥∥A−1

ε

∥∥ .

42

From the identity

A−1
ε = A−1

[
I + (A− Aε)A−1

ε

]
,

we have

[1− εκ (A)]
∥∥A−1

ε

∥∥ ≤ ∥∥A−1
∥∥ ,

so if κ(A) < 1/ε, then

∥∥A−1
ε

∥∥ ≤ ‖A−1‖
1− εκ (A)

. (2.17)

Hence,

‖x− xε‖
‖x‖

≤ εκ (A)

1− εκ (A)
.

In particular, if A is well-conditioned, e.g., A is the discretization of a second-kind

integral equation, then κ(A) = O(1), so

‖x− xε‖
‖x‖

= O (ε) .

2.7 Implementation

We implemented our algorithm in Fortran, using mostly Fortran 77 for compatibility

and performance, but also with select Fortran 90 constructs for expressiveness. Our

code contains the following primary functionalities:

1. matrix compression;

2. compressed matrix extraction (i.e., “uncompression”);

3. compressed matrix-vector multiplication; and

43

4. compressed matrix sparse inverse embedding.

The implementation also incorporates various features beyond those mentioned pre-

viously, including support for rectangular matrices, zero block sizes, and the capa-

bility to apply or factor matrix transposes or adjoints (i.e., conjugate transposes).

Two versions of the code were produced, one for arithmetic over R and another

over C. Randomized ID software was generously provided by Prof. Mark Tygert

(http://cims.nyu.edu/~tygert/software.html). The high-performance linear al-

gebra library LAPACK (http://www.netlib.org/lapack/) was exploited whenever

possible.

A key feature of our implementation is its generality. This is achieved through

code modularity, by letting the user specify the matrix to be compressed along with its

index tree. Thus, the same code can handle, for example, problems in both 2D and 3D

involving various matrix kernels. It is worth noting therefore that our core algorithm

has no knowledge of any geometry: all geometric considerations are synthesized by

the user and translated to an equivalent algebraic structure (geometric tree-building

codes are provided as auxiliary subroutines).

The code is currently being prepared for release under an open-source license.

2.8 Numerical results

In this section, we investigate the efficiency and flexibility of our algorithm by con-

sidering some representative examples. We begin with timing benchmarks for the

Laplace and Helmholtz kernels in 2D and 3D, using the algorithm both as an FMM

and as a direct solver, followed by applications in molecular electrostatics and multiple

scattering.

44

http://cims.nyu.edu/~tygert/software.html
http://www.netlib.org/lapack/

All matrices were blocked using quadtrees in 2D and octrees in 3D, uniformly sub-

divided until all block sizes were O(1), but adaptively truncating empty boxes during

the refinement process. We used proxy compression in all cases, with proxy surfaces

constructed on the boundary of the supercell enclosing the neighbors of each block.

We discretized all proxy surfaces using a constant number of points, independent of

the matrix size N : for the Laplace equation, this constant depended only on the

compression precision ε, while for the Helmholtz equation, it depended also on the

wave frequency, chosen to be consistent with the Nyquist-Shannon sampling theorem.

Computations were performed over R instead of C, where possible. The algorithm

was compiled using gfortran with optimization level -O3, and all experiments were

performed on a 2.66 GHz processor with 8 GB of RAM in double precision.

In many instances, we compare our results against those obtained using LA-

PACK/ATLAS [6, 201] and the FMM [46, 48, 86, 163]. All FMM calculations are

performed using the open-source FMMLIB package (see http://www.cims.nyu.edu/

cmcl/fmm3dlib/fmm3dlib.html), which is a fairly efficient implementation but does

not include the plane-wave optimizations of [46, 92] or the diagonal translation oper-

ators of [163, 164].

Generalized fast multipole method

We first studied the use of recursive skeletonization as a generalized FMM for the

rapid computation of matrix-vector products.

45

http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html
http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html

The Laplace equation

We considered two point distributions in the plane: points on the unit circle and

within the unit square, hereafter referred to as the 2D surface and volume cases,

respectively. The surface case is typical of layer-potential evaluation when using

boundary integral equations. Such a domain boundary can be described by a single

parameter (such as arclength), so it is a 1D domain, hence the expected complexities

from §2.5 correspond to d = 1, i.e., O(N) work for both matrix compression and

application [cf. 78]. In the volume case, the dimension is d = 2, so the expected com-

plexities are O(N3/2) and O(N logN) for compression and application, respectively.

For the 3D Laplace kernel (2.9), we considered surface and volume point geome-

tries on the unit sphere and within the unit cube, respectively. The corresponding

dimensions are d = 2 and d = 3; thus, the expected complexities for the 3D surface

case are O(N3/2) and O(N logN) for compression and application, respectively, while

those for the 3D volume case are O(N2) and O(N4/3), respectively.

We present timing results for each case and compare with LAPACK/ATLAS and

the FMM for a range of N at ε = 10−9. Detailed data are provided in Tables 2.1–

2.4 and plotted in Figure 2.8. It is evident that our algorithm scales as predicted.

Its performance in 2D is particularly strong: not only does our algorithm beat the

O(N2) uncompressed matrix-vector product for modest N , it is faster even than the

O(N) FMM, at least after compression. In 3D, the same is true over the range of

N tested, although the increase in asymptotic complexity would eventually make the

scheme less competitive. In all cases studied, the compression time Tcm was larger

than the time to apply the FMM by one (2D surface) to two (all other cases) orders

of magnitude, while the compressed matrix-vector product time Tmv was consistently

46

Figure 2.8: CPU times for applying the Laplace kernel in various cases using LA-

PACK/ATLAS (LP), the FMM, and recursive skeletonization (RS) as a function of

the matrix size N . For LP and RS, the computation is split into two parts: precompu-

tation (pc), for LP consisting of matrix formation and for RS of matrix compression,

and matrix-vector multiplication (mv). The precision of the FMM and RS was set at

ε = 10−9. Dotted lines indicate extrapolated data.

47

Table 2.1: Numerical results for applying the Laplace kernel in the 2D surface case at

precision ε = 10−9: N , uncompressed matrix dimension; Kr, row skeleton dimension;

Kc, column skeleton dimension; Tcm, matrix compression time (s); Tmv, matrix-vector

multiplication time (s); E, relative error; M , required storage for compressed matrix

(MB).

N Kr Kc Tcm Tmv E M

1024 94 94 6.7E−2 1.0E−3 3.1E−8 8.5E−1

2048 105 104 1.4E−1 1.0E−3 4.5E−8 1.7E+0

4096 113 114 3.1E−1 1.0E−3 1.1E−7 3.4E+0

8192 123 123 6.7E−1 3.0E−3 4.4E−7 6.4E+0

16384 133 134 1.4E+0 7.0E−3 4.0E−7 1.3E+1

32768 142 142 2.7E+0 1.4E−2 4.7E−7 2.5E+1

65536 150 149 5.4E+0 2.8E−2 9.4E−7 5.0E+1

131072 159 158 1.1E+1 5.7E−2 9.8E−7 1.0E+2

smaller by the same amount. Thus, our algorithm also shows promise as a fast

iterative solver for problems requiring more than ∼ 10–100 iterations. Furthermore,

we note the effectiveness of compression: for N = 131072, the storage requirement for

the uncompressed matrix is 137 GB, whereas that for the compressed representations

are only 100 MB and 1.2 GB in the 2D surface and volume cases, respectively; at a

lower precision of ε = 10−3, these become just 40 and 180 MB. Finally, to provide

some intuition about the behavior of the algorithm as a function of precision, we

report the following timings for the 2D volume case with N = 131072: for ε = 10−3,

48

Table 2.2: Numerical results for applying the Laplace kernel in the 2D volume case

at precision ε = 10−9; notation as in Table 2.1.

N Kr Kc Tcm Tmv E M

1024 299 298 3.3E−1 1.0E−3 3.6E−10 2.9E+0

2048 403 405 8.9E−1 1.0E−3 3.7E−10 7.1E+0

4096 570 570 2.7E+0 5.0E−3 1.0E−09 1.8E+1

8192 795 793 6.8E+0 1.0E−2 8.8E−10 4.3E+1

16384 1092 1091 1.8E+1 2.3E−2 7.7E−10 1.0E+2

32768 1506 1505 4.4E+1 4.5E−2 1.0E−09 2.3E+2

65536 2099 2101 1.3E+2 1.1E−1 1.1E−09 5.3E+2

131072 2904 2903 3.4E+2 2.7E−1 1.1E−09 1.2E+3

Table 2.3: Numerical results for applying the Laplace kernel in the 3D surface case

at precision ε = 10−9; notation as in Table 2.1.

N Kr Kc Tcm Tmv E M

1024 967 967 5.2E−1 1.0E−3 1.0E−11 7.7E+0

2048 1531 1532 1.4E+0 4.0E−3 1.8E−10 2.2E+1

4096 2298 2295 6.1E+0 1.1E−2 1.4E−10 6.2E+1

8192 3438 3426 2.7E+1 2.9E−2 1.2E−10 1.7E+2

16384 4962 4950 8.7E+1 7.2E−2 3.0E−10 4.2E+2

32768 6974 6987 3.1E+2 1.7E−1 4.3E−10 9.9E+2

65536 9899 9925 9.2E+2 4.5E−1 7.7E−10 2.3E+3

49

Table 2.4: Numerical results for applying the Laplace kernel in the 3D volume case

at precision ε = 10−9; notation as in Table 2.1.

N Kr Kc Tcm Tmv E M

1024 1024 1024 5.1E−1 2.0E−3 9.3E−16 8.4E+0

2048 1969 1969 3.0E+0 6.0E−3 5.6E−12 3.2E+1

4096 3285 3287 9.7E+0 1.6E−2 6.8E−11 9.8E+1

8192 5360 5362 4.4E+1 4.8E−2 6.3E−11 3.0E+2

16384 8703 8707 2.9E+2 1.5E−1 5.7E−11 9.3E+2

32768 14015 14013 1.9E+3 5.5E−1 7.5E−11 2.9E+3

Tcm = 41 s and Tmv = 0.09 s; for ε = 10−6, Tcm = 161 s and Tmv = 0.18 s; and for

ε = 10−9, Tcm = 339 s and Tmv = 0.27 s.

The Helmholtz equation

We next considered the 2D and 3D Helmholtz kernels

G (r, s) =
ı

4
H

(1)
0 (k |r − s|) (2.18)

and

G (r, s) =
eık|r−s|

4π |r − s|
, (2.19)

respectively, where H
(1)
0 is the zeroth order Hankel function of the first kind and k

is the wavenumber. We used the same representative geometries as for the Laplace

equation. The size of each domain Ω in wavelengths was given by

ω ≡ k

2π
diam (Ω) .

50

Figure 2.9: CPU times for applying the Helmholtz kernel in various cases at low

frequency (ω = 10 in 2D and ω = 5 in 3D) using LAPACK/ATLAS, the FMM, and

recursive skeletonization at precision ε = 10−9; notation as in Figure 2.8.

Timing results against LAPACK/ATLAS and the FMM at low frequency (ω = 10

in 2D and ω = 5 in 3D) with ε = 10−9 are shown in Figure 2.9, with detailed data

presented in Tables 2.5–2.8. In this regime, the performance is very similar to that

for the Laplace equation, as both kernels are essentially non-oscillatory. However, as

discussed in [139], the compression efficiency deteriorates as ω increases, due to the

growing ranks of the matrix blocks. In the high-frequency regime, there is no gain

in asymptotic efficiency. Still, numerical results suggest that the algorithm remains

viable up to ω ∼ 200 in 2D and ω ∼ 10 in 3D. In all cases, the CPU times and storage

requirements are larger than those for the Laplace equation by a factor of about two

51

Table 2.5: Numerical results for applying the Helmholtz kernel in the 2D surface case

with frequency ω = 10 at precision ε = 10−9; notation as in Table 2.1.

N Kr Kc Tcm Tmv E M

1024 155 154 3.6E−1 1.0E−3 2.9E−9 2.1E+0

2048 166 166 7.3E−1 1.0E−3 2.7E−9 4.1E+0

4096 173 173 1.6E+0 2.0E−3 3.0E−9 7.6E+0

8192 184 182 4.0E+0 5.0E−3 3.5E−9 1.4E+1

16384 192 190 7.0E+0 9.0E−3 5.3E−9 2.7E+1

32768 201 201 1.4E+1 1.8E−2 4.9E−9 5.3E+1

65536 208 208 2.6E+1 3.4E−2 5.4E−9 1.0E+2

131072 219 215 5.2E+1 9.1E−2 8.4E−9 2.0E+2

since all computations are performed over C instead of R; in 2D, there is also the

additional expense of computing H
(1)
0 .

Fast direct solver

We then studied the behavior of our algorithm as a fast direct solver. More specif-

ically, we considered the interior Dirichlet problem for the Laplace and Helmholtz

equations in 2D and 3D, recast as a second-kind boundary integral equation using

the double-layer representation (2.8). Contour integrals in 2D were discretized us-

ing the trapezoidal rule, while surface integrals in 3D were discretized using piecewise

constant unknowns on flat triangles (see §1.2). In 2D, the Laplace double-layer kernel

52

Table 2.6: Numerical results for applying the Helmholtz kernel in the 2D volume case

with frequency ω = 10 at precision ε = 10−9; notation as in Table 2.1.

N Kr Kc Tcm Tmv E M

1024 320 321 1.3E+0 2.0E−3 1.6E−9 6.5E+0

2048 426 425 3.3E+0 3.0E−3 3.4E−9 1.6E+1

4096 603 603 1.1E+1 8.0E−3 3.4E−9 4.0E+1

8192 829 833 2.7E+1 2.0E−2 6.5E−9 9.4E+1

16384 1134 1136 7.6E+1 4.3E−2 8.1E−9 2.2E+2

32768 1566 1573 1.8E+2 8.6E−2 1.1E−8 5.0E+2

65536 2200 2197 4.6E+2 2.3E−1 9.3E−9 1.1E+3

131072 3017 3016 1.2E+3 5.0E−1 1.5E−8 2.5E+3

Table 2.7: Numerical results for applying the Helmholtz kernel in the 3D surface case

with frequency ω = 5 at precision ε = 10−9; notation as in Table 2.1.

N Kr Kc Tcm Tmv E M

1024 1024 1024 1.6E+0 3.0E−3 1.3E−15 1.7E+1

2048 1958 1958 1.0E+1 1.1E−2 2.8E−10 6.3E+1

4096 2864 2874 2.2E+1 2.8E−2 7.4E−10 1.6E+2

8192 4071 4092 1.0E+2 7.8E−2 4.4E−09 4.3E+2

16384 5658 5660 3.9E+2 2.0E−1 6.9E−09 1.0E+3

32768 7742 7742 1.1E+3 4.5E−1 1.5E−08 2.3E+3

65536 10664 10693 2.8E+3 1.9E+0 3.7E−08 5.0E+3

53

Table 2.8: Numerical results for applying the Helmholtz kernel in the 3D volume case

with frequency ω = 5 at precision ε = 10−9; notation as in Table 2.1.

N Kr Kc Tcm Tmv E M

1024 1024 1024 1.6E+0 3.0E−3 1.6E−15 1.7E+1

2048 2044 2044 1.0E+1 1.1E−2 4.7E−11 6.7E+1

4096 3603 3603 7.0E+1 3.4E−2 1.8E−10 2.2E+2

8192 5685 5691 1.4E+2 1.2E−1 2.3E−09 6.4E+2

16384 9079 9072 8.5E+2 3.8E−1 9.9E−10 2.0E+3

has a removable singularity:

lim
r→s

∂G

∂νs

(r, s) =
1

2
κ (s) on ∂Ω,

where κ is the signed curvature. Sparse inverses were computed and applied us-

ing UMFPACK (http://www.cise.ufl.edu/research/sparse/umfpack/). In each

case, we took as boundary data the field generated by an exterior point source; the

error was assessed by comparing the field evaluated using the numerical solution

via (2.8) against the exact field due to that source at an interior location. As a

benchmark, we also solved each system directly using LAPACK/ATLAS, as well as

iteratively using GMRES with matrix-vector products accelerated by the FMM.

The Laplace equation

For the Laplace equation (2.7), the Green’s function G in (2.10) is given by (2.5) in

2D and (2.9) in 3D. As model geometries, we considered an ellipse with aspect ratio

r = 2 (semi-major and -minor axes a = 2 and b = 1, respectively) in 2D and the

54

http://www.cise.ufl.edu/research/sparse/umfpack/

Figure 2.10: CPU times for solving the Laplace equation in various cases using LA-

PACK/ATLAS (LP), FMM/GMRES (FMM), and recursive skeletonization (RS) as

a function of the system size N . For LP and RS, the computation is split into two

parts: precomputation (pc), for LP consisting of matrix formation and factorization,

and for RS of matrix compression and factorization; and system solution (sv), con-

sisting of matrix inverse application. The precision of the FMM and RS was set at

ε = 10−9 in 2D and ε = 10−6 in 3D. Dotted lines indicate extrapolated data.

unit sphere in 3D; these boundaries have dimensions d = 1 and d = 2, respectively.

Timing results are shown in Figure 2.10, with detailed data given in Tables 2.9 and

2.10; the precision was set to ε = 10−9 in 2D and ε = 10−6 in 3D.

In 2D, the solver has linear complexity and is exceptionally fast, handily beat-

ing the O(N3) uncompressed direct solver, but also coming very close to the O(N)

FMM/GMRES iterative solver: at N = 131072, for example, the total solution

time for the recursive skeletonization algorithm was TRS = 8.5 s, while that for

FMM/GMRES was TFMM = 6.9 s over nFMM = 7 iterations. It is worth em-

phasizing, however, that our solver is direct and possesses obvious advantages over

55

Table 2.9: Numerical results for solving the Laplace equation in 2D at precision

ε = 10−9: N , uncompressed matrix dimension; Kr, row skeleton dimension; Kc,

column skeleton dimension; Tcm, matrix compression time (s); Tlu, sparse matrix

factorization time (s); Tsv, inverse application time (s); E, relative error; M , required

storage for compressed matrix inverse (MB).

N Kr Kc Tcm Tlu Tsv E M

1024 30 30 3.4E−2 2.5E−2 1.0E−3 9.0E−11 1.6E+0

2048 29 30 7.0E−2 5.1E−2 2.0E−3 9.0E−12 3.3E+0

4096 30 30 1.4E−1 9.8E−2 2.0E−3 8.3E−11 6.8E+0

8192 30 31 3.0E−1 2.1E−1 4.0E−3 1.6E−10 1.4E+1

16384 31 31 5.5E−1 4.5E−1 9.0E−3 5.5E−10 2.8E+1

32768 30 30 1.1E+0 8.5E−1 1.9E−2 4.9E−12 5.6E+1

65536 30 30 2.3E+0 1.8E+0 3.8E−2 1.1E−11 1.1E+2

131072 29 29 4.6E+0 3.7E+0 7.5E−2 8.5E−11 2.2E+2

FMM/GMRES, as described in §1.4; in particular, the algorithm is relatively insensi-

tive to geometric ill-conditioning. Indeed, the direct solver edged out FMM/GMRES

even at modest aspect ratios (for N = 8192 at ε = 10−12 with r = 8: TRS = 0.76

s, TFMM = 0.98 s, nFMM = 15); for larger r, the effect was even more pronounced

(r = 512: TRS = 2.5 s, TFMM = 3.9 s, nFMM = 44). Furthermore, the compressed in-

verse representation allows subsequent solves to be performed extremely rapidly; for

instance, at N = 131072, the solve time was just Tsv = 0.07 s, i.e., TFMM/Tsv ∼ 100.

Thus, our algorithm is especially efficient in regimes where Tsv dominates [see, e.g.,

56

Table 2.10: Numerical results for solving the Laplace equation in 3D at precision

ε = 10−6; notation as in Table 2.9.

N Kr Kc Tcm Tlu Tsv E M

720 628 669 1.3E+0 1.1E−1 1.0E−3 9.8E−5 4.6E+0

1280 890 913 4.5E+0 4.0E−1 3.0E−3 5.5E−5 1.1E+1

2880 1393 1400 2.1E+1 2.0E+0 1.2E−2 2.4E−5 5.5E+1

5120 1886 1850 5.5E+1 5.4E+0 2.7E−2 1.3E−5 1.3E+2

11520 2750 2754 1.6E+2 1.7E+1 7.2E−2 6.2E−6 3.5E+2

20480 3592 3551 3.7E+2 4.1E+1 1.5E−1 3.3E−6 6.9E+2

138]. Finally, we remark that although direct methods are traditionally very memory-

intensive, our algorithm appears quite manageable in this regard: at N = 131072,

the storage required for the compressed inverse was only 106 MB for ε = 10−3, 172

MB for ε = 10−6, and 222 MB for ε = 10−9.

In 3D, our solver has complexity O(N3/2). Hence, asymptotics dictate that it

must eventually lose. However, our results demonstrate that even up to N = 20480,

the solver remains surprisingly competitive. For example, at N = 20480, TRS = 409 s,

while TFMM = 131 s with nFMM = 3; at ε = 10−9, the difference is almost negligible:

TRS = 850 s, TFMM = 839 s, nFMM = 5. Thus, our algorithm remains a viable

alternative for medium-scale problems. It is important to note that the solve time

advantage is not lost even for large N , since the cost of each solve is only O(N logN).

In fact, the advantage is, remarkably, even more striking than in 2D: at N = 20480,

TFMM/Tsv ∼ 1000; for ε = 10−9, TFMM/Tsv ∼ 2500.

57

The Helmholtz equation

We then considered the Helmholtz equation

(
∆ + k2

)
u = 0 in Ω, u = f on ∂Ω,

recast as a boundary integral equation (2.10) with Green’s function (2.18) in 2D

and (2.19) in 3D. This representation does not work for all frequencies, encountering

spurious discrete resonances for k beyond a critical value. We ignore that (well-

understood) issue here and assume that the integral equation we obtain is invertible,

though the method itself does not falter in such cases, as discussed in [139]. We used

the same geometries and precisions as for the Laplace equation. In 2D, the double-

layer kernel is weakly singular, so we modified the trapezoidal rule with tenth-order

endpoint corrections [119]. The frequency was set to ω = 10 in 2D and ω = 3.18 in

3D.

Timing results are shown in Figure 2.11, with details given in Tables 2.11 and

2.12. The data are very similar to that for the Laplace equation, but with the

direct solver actually beating FMM/GMRES in 2D. This is because the number of

iterations required for FMM/GMRES scales as nFMM = O(ω). Interestingly, even

at moderately high frequencies, where we would expect the direct solver to break

down as previously discussed, the performance drop is more than compensated for

by the increase in the number nFMM of iterations. In short, we find that recursive

skeletonization is faster than FMM/GMRES at low to moderate frequencies, provided

that the memory requirement is not excessive. The story is much the same in 3D and

the compressed solve time is again very fast: at N = 20480, TFMM/Tsv ∼ 2000.

58

Figure 2.11: CPU times for solving the Helmholtz equation in various cases at low fre-

quency (ω = 10 in 2D and ω = 3.18 in 3D) using LAPACK/ATLAS, FMM/GMRES,

and recursive skeletonization; notation as in Figure 2.10. The precision was set to

ε = 10−9 in 2D and ε = 10−6 in 3D.

Table 2.11: Numerical results for solving the Helmholtz equation in 2D with frequency

ω = 10 at precision ε = 10−9; notation as in Table 2.9.

N Kr Kc Tcm Tlu Tsv E M

1024 90 91 6.6E−1 1.4E−1 2.0E−3 6.7E−9 7.6E+0

2048 96 94 1.4E+0 2.3E−1 5.0E−3 5.3E−9 1.4E+1

4096 95 96 2.9E+0 4.5E−1 1.0E−2 9.4E−9 2.9E+1

8192 98 98 5.8E+0 8.6E−1 1.8E−2 9.7E−9 5.5E+1

16384 99 98 1.1E+1 1.8E+0 3.9E−2 4.8E−9 1.1E+2

32768 100 100 2.1E+1 3.5E+0 7.4E−2 6.4E−9 2.2E+2

65536 100 101 4.3E+1 7.2E+0 1.6E−1 1.3E−8 4.3E+2

131072 99 99 8.3E+1 1.5E+1 3.2E−1 4.6E−8 8.5E+2

59

Table 2.12: Numerical results for solving the Helmholtz equation in 3D with frequency

ω = 3.18 at precision ε = 10−6; notation as in Table 2.9.

N Kr Kc Tcm Tlu Tsv E M

720 720 720 3.7E+0 3.3E−1 3.0E−3 3.0E−3 1.0E+1

1280 1088 1236 1.8E+1 1.2E+0 9.0E−3 2.0E−3 3.2E+1

2880 1653 1786 7.0E+1 5.2E+0 2.5E−2 1.1E−3 1.0E+2

5120 2188 2329 2.2E+2 1.0E+1 5.2E−2 6.7E−4 2.2E+2

11520 3042 3225 5.9E+2 5.2E+1 1.9E−1 3.3E−4 8.5E+2

20480 3867 4034 1.4E+3 1.3E+2 4.0E−1 1.9E−4 1.6E+3

Molecular electrostatics

An important application area for our solver is molecular electrostatics (viz. Chapter

1). A simplified model for this involves consideration of a molecular surface Σ, divid-

ing R3 into Ω0 and Ω1, denoting the solvent and the molecule, respectively. We also

suppose that the molecule has interior charges of strengths qi at locations xi ∈ Ω1 for

i = 1, . . . , n. The electrostatic potential ϕ (ignoring salt effects in the solvent) then

satisfies the Poisson equation:

−∇ · (ε∇ϕ) =
n∑
i=1

qiδ (r − ri) ,

where ε(r) = εi in Ωi is a piecewise constant dielectric (cf. (1.5)).

We decompose the solution as ϕ ≡ ϕs + ϕp, where

ϕs (r) ≡ 1

ε1

n∑
i=1

qiG (r, ri) , (2.20)

60

is the potential due to the sources, with G given by (2.9), and ϕp is a piecewise

harmonic potential satisfying the jump conditions

[ϕp] = 0,

[
ε
∂ϕp
∂ν

]
= −

[
ε
∂ϕs
∂ν

]
on Σ.

We can write ϕp, called the polarization response, as a single-layer potential

ϕp (r) ≡
∫

Σ

G (r, s)σ (s) dSs, (2.21)

which yields the boundary integral equation

1

2
σ (r) + λ

∫
Σ

∂G

∂νr

(r, s)σ (s) dSs = −λ∂ϕs
∂ν

(r) ,

where λ = (ε1 − ε2)/(ε1 + ε2), in terms of the polarization charge σ.

We generated molecular surfaces for a short segment of DNA [67, PDB ID: 1BNA]

using MSMS [169] with a probe radius of 1.4 Å and vertex densities of 1.0 and 3.0 Å−2,

resulting in meshes consisting of N = 7612 and 19752 triangles, respectively. For each

surface, strengths were assigned to each of n = 486 heavy atoms using Amber partial

charges [37] through PDB2PQR [66], and the resulting system solved with ε0 = 80

and ε1 = 20 at precision ε = 10−3. The resulting potential ϕ on Σ for the N = 19752

case is shown in Figure 2.12, with numerical data for both cases given in Table 2.13.

For both systems, the net solution time was larger than that using FMM/GMRES

by a factor of about ∼ 10–25. However, the inverse application time was very small:

Tsv = 0.03 and 0.08 s for N = 7612 and 19752, respectively. Thus, when sampling

the electrostatic potential for many different charge configurations {qi}, as is common

in computational chemistry [26], our solver can provide a speedup provided that the

number of such configurations is greater than∼ 10–25. We remark that the evaluation

of ϕ at fixed points, e.g., on Σ, via (2.20) and (2.21) can also be accelerated using

61

Figure 2.12: Surface potential of DNA in units of the elementary charge, computed

using recursive skeletonization to precision ε = 10−3. The molecular surface was

discretized using N = 19752 triangles.

Table 2.13: Numerical results for the molecular electrostatics example at precision

ε = 10−3: N , number of triangles; TFMM, time for FMM/GMRES solve (s); Tcm,

matrix compression time (s); Tlu, sparse matrix factorization time (s); Tsv, inverse

application time (s); E, relative error.

N TFMM Tcm Tlu Tsv E

7612 1.3E+1 1.5E+2 3.5E+0 2.7E−2 9.3E−2

19752 2.7E+1 5.8E+2 1.3E+1 8.3E−2 8.3E−2

62

our algorithm in its capacity as a generalized FMM; the computation time for this

would be similar to Tsv.

Remark 2.2. The Poisson equation is clearly too simplistic a model for this system;

following the discussion of §1.1, a more appropriate model is the Poisson-Boltzmann

equation, but even this may be not be sufficient due to strong salt effects, which are

well-known to be important for DNA stability [171].

Multiple scattering

As a final example, we show how direct solvers can be combined with FMM-based

iterative methods to great effect in the context of a multiple scattering problem.

For this, let Ωi, for i = 1, . . . , p, be a collection of acoustic scatterers in 2D with

boundaries Σi. Then the acoustic pressure field satisfies

(
∆ + k2

)
u = 0 in R2 \

p⋃
i=1

Ωi. (2.22)

Assuming that the obstacles are sound-hard, we must compute the exterior solution

that satisfies the Neumann boundary condition

∂u

∂ν
= 0 on

p⋃
i=1

Σi.

If u ≡ ui + us, where ui is an incoming field satisfying (2.22), then the scattered field

us also satisfies (2.22) with boundary condition

∂us
∂ν

= −∂ui
∂ν

on

p⋃
i=1

Σi

and the Sommerfeld radiation condition [180]

lim
|r|→∞

√
|r|
(

∂

∂ |r|
− ık

)
us (r) = 0.

63

We write the scattered field as us ≡
∑p

i=1 us,i, where

us,i (r) ≡
∫

Σi

G (r, s)σi (s) dSs

with G the single-layer kernel (2.18). Imposing the boundary condition then yields

the second-kind integral equation

−1

2
σi +

p∑
j=1

Kijσj = − ∂ui
∂ν

∣∣∣∣
Σi

on Σi, for i = 1, . . . , p,

where

Kijσj (r) =

∫
Σj

∂G

∂νr

(r, s)σj (s) dSs on Σi.

In operator notation, the linear system therefore has the form

p∑
i=1

Aijσj = − ∂ui
∂ν

∣∣∣∣
Σi

, Aij =


−1

2
I +Kii if i = j,

Kij if i 6= j.

We solve this system using FMM/GMRES with the block diagonal preconditioner

P−1 ≡


A−1

11

. . .

A−1
pp

 ,
where each A−1

ii is computed using recursive skeletonization; observe that A−1
ii is

precisely the solution operator for scatterer Ωi in isolation. The question is whether

this preconditioner will significantly reduce the iteration count required, which is

typically quite high for problems of appreciable size. As a test, we embedded two

identical scatterers, each described in polar coordinates by the radial function

r (θ) ≡ 2 + cos (3θ)

6
,

64

where θ is the polar angle; each scatterer is smooth, though somewhat complicated,

and was taken to be ten wavelengths in size. We assumed an incoming field given by

the plane wave ui ≡ eıkr2 , where r ≡ (r1, r2), and considered the scattering problem at

various horizontal separation distances δ between the centers of the scatterers. Each

configuration was solved both with and without the preconditioner P−1 to precision

ε = 10−6; each scatterer was discretized using a corrected trapezoidal rule [119] with

N = 1024 points.

The intensities of the resulting pressure fields are shown in Figure 2.13, with nu-

merical data given in Table 2.14. It is clear that the preconditioner is highly effective:

following a precomputation time of 0.76 s to construct P−1, which is amortized over

all solves, the number of iterations required was decreased from nFMM ∼ 700 to just

nRS ∼ 10 for each case. As expected, more iterations were necessary for smaller δ,

though the difference was not too dramatic. The ratio of the total solution time

required for all solves was ∼ 60 for the unpreconditioned versus the preconditioned

method.

2.9 Summary

We have presented a multilevel matrix compression algorithm and demonstrated its

efficiency at accelerating matrix-vector multiplication and matrix inversion in a vari-

ety of contexts. The matrix structure required is fairly general and relies only on the

assumption that the matrix have low-rank off-diagonal blocks. As a fast direct solver

for the boundary integral equations of potential theory, we found our algorithm to

be competitive with fast iterative methods based on FMM/GMRES in both 2D and

3D, provided that the integral equation kernel is not too oscillatory, and that the

65

Table 2.14: Numerical results for the multiple scattering example, consisting of six

configurations with various separation distances δ/λ, relative to the wavelength, be-

tween the centers of two identical scatterers, solved to precision ε = 10−6: TFMM, time

for FMM/GMRES solve (s); TRS, time for preconditioned FMM/GMRES solve (s);

nFMM, number of iterations required for FMM/GMRES; nRS, number of iterations re-

quired for preconditioned FMM/GMRES; E, relative error; Tcm, matrix compression

time for scatterer (s); Tlu, sparse matrix factorization time for scatterer (s).

δ/λ TFMM TRS nFMM nRS E

30.0 7.9E+1 8.9E−1 697 8 1.3E−8

20.0 7.7E+1 1.1E+0 694 10 5.8E−9

15.0 8.0E+1 1.2E+0 695 11 6.9E−9

12.5 7.9E+1 1.3E+0 695 12 7.8E−9

11.0 7.9E+1 1.4E+0 704 14 8.7E−9

10.5 8.0E+1 1.5E+0 706 14 1.3E−8

Tcm 6.6E−1

Tlu 9.3E−2

total 4.7E+2 8.1E+0

66

Figure 2.13: Instantaneous intensity [<(u)]2 of the pressure field in response to an

incoming vertical plane wave for various scattering geometries characterized by the

separation distance δ/λ in wavelengths between the centers of two identical scatterers.

system size is not too large in 3D. In such cases, the total solution times for both

methods were very comparable. Our solver has clear advantages, however, for prob-

lems with ill-conditioned matrices (in which case the number of iterations required

by FMM/GMRES can increase dramatically), or those involving multiple right-hand

sides (in which case the cost of matrix compression and factorization can be amor-

tized). The latter category includes the use of our solver as a preconditioner for

iterative methods, which we expect to be quite promising, particularly for large-scale

3D problems with complex geometries (see §3.2).

67

A principal limitation of our current approach is the growth in skeleton sizes in 3D

or higher, which prohibits the scheme from achieving optimal O(N) or near-optimal

O(N logN) complexity. The memory requirement is especially prohibitive. New

methods to curtail this growth are an active area of research in several groups. We

offer some brief insights in this direction in §5.4.

Although we have presently analyzed our algorithm only for non-oscillatory or

low-frequency integral kernels, regardless of whether they represent boundary or vol-

ume integral operators, we note that our complexity estimates also apply for high-

frequency volume integral equations, due to the compression afforded by Green’s

theorem in moving data from the volume to the boundary. Thus, for instance, the

costs of our solver for high-frequency volume wave scattering in 2D are O(N3/2)

and O(N logN) for precomputation and solution, respectively. For related work, see

[44, 202].

Finally, although all numerical results have presently been reported for a single

processor, the algorithm is naturally parallelizable: many computations are organized

in a block-sweep structure, where each block can be processed independently.

68

3 Extensions of the direct solver

In the previous chapter, we introduced a fast direct solver for non-oscillatory inte-

gral equations and showed its use in a number of important and practical settings.

Here, we discuss various extensions to the solver that further expand its range of

applicability. These include rather simple observations that enable it to

1. handle integral operators with a more complex structure;

2. effectively precondition problems that continue to be difficult for both direct

and iterative schemes, particularly in quasi-2D domains; and

3. efficiently accomodate optimization and design problems characterized by local

geometric perturbations.

We also present analysis that allows the solver to be used in unmodified form for

overdetermined least squares problems. This is achieved via a semi-direct approach

based on sparse QR factorization, and has complexities similar to those reported

in §2.5 but slightly worse due to fill-in of the unitary matrix. The complexity is

optimal, however, in the special case of partial charge fitting, which can be relevant

in computational chemistry, particularly for force field development. Furthermore, we

describe the construction of a compression-based fast multipole method (FMM) based

on essentially the same tools and algebraic structure developed so far. Early steps

in this direction were taken by Martinsson and Rokhlin, who considered the 1D case

[141]; we extend this here to higher dimensions and moreover embed the algorithm in

69

a purely linear algebraic framework. As with our direct solver, this scheme is therefore

kernel-independent and should prove especially useful for interaction kernels that are

difficult to treat analytically.

The flexibility of the direct solver to support such extensions can be attributed

to its general algebraic structure: some operations that are unwieldy in the FMM

context become quite natural when viewed in terms of matrix compression and fast

matrix algebra. This is one advantage of a purely numerical linear algebraic approach.

However, it should be noted that this does not come without a price as we must now

forfeit certain optimizations based on analysis and geometry, e.g., the diagonal forms

of [48, 92].

3.1 Block and composite operators

The fast direct solver of Chapter 2 was designed for second-kind integral operators of

the form L = I +K, where I is the identity and K is compact, e.g., a layer potential

operator. But what if L has a more complex structure? In this section, we consider

two extensions: block operators, where each block has the form I+K, and composite

operators, where L is the composition of multiple operators.

The case of block operators is quite straightforward. For this, let L have blocks

Lij for i, j = 1, . . . , n, where each Lij is compressible in the sense of §2.1. Since each

Lij can have full rank, L as a whole can contain full-rank off-diagonal blocks and so

cannot in general be compressed using our algorithm. However, this can be remedied

simply by stacking, e.g., the first row of each block together, then the second row, and

so forth, and similarly with the columns. That is, we create a new block structure

with blocks L̃kl, where (L̃kl)ij = (Lij)kl, i.e., the (i, j) element of L̃kl is the (k, l)

70

element of Lij. It is easy to see that this interleaved form can have full-rank blocks

only on the diagonal and can therefore can be handled by our scheme.

For composite operators, let L ≡ L1 · · ·Ln. Then the system

Lx = L1 · · ·Lnx = b

can be rewritten as 

L1

L2 −I

. .
.
. .
.

Ln −I





x

y1

...

yn−1


=



b

0

...

0


,

where yi+1 = Ln−iyi with y0 ≡ x. This is precisely of the block form just considered,

but with additional sparsity, and so, too, can be treated by our solver.

Remark 3.1. An attractive application of the above methodology is the solution of the

exterior Neumann problem for the Helmholtz equation via the solution representation

u ≡ (Sk +DkS0)σ,

where Sk and Dk are the single- and double-layer potentials, respectively, for the

Helmholtz kernel with wavenumber k. This is a modification of the standard single-

layer potential representation (cf. Example 1.2) that has the advantage of being free of

spurious resonances while leading to a well-conditioned second-kind boundary integral

equation [51]:

−1

2
σ + (S ′k +D′kS0)σ =

∂u

∂ν
,

which, in operator notation, is just the block system−1
2
I + S ′k D′k

S0 −I


σ
µ

 =

∂u/∂ν
0

 ,

71

where µ is an auxiliary variable.

3.2 Approximate inverse preconditioning

The complexity estimates of §2.5 show that our direct solver has optimal O(N) cost

only on quasi-1D domains, e.g., boundary integral equations in 2D or axisymmetric

boundary integral equations in 3D. In theory, this places a severe restriction on the

class of problems to which it can be effectively applied. Surprisingly, however, the

empirical data suggest that in many situations, the actual cost can be much smaller

than predicted, especially if we request only low to moderate precision.

As an example, consider points distributed uniformly on the 2D volume and 3D

surface geometries of §2.8, i.e., in the unit square and on the unit sphere, respectively,

interacting via the 2D and 3D Laplace Green’s functions. These are both quasi-2D

domains; therefore, the theoretical cost of compression is O(N3/2) for both, where

N is the number of points. However, as the data clearly show (Figure 3.1), the

empirical cost is only O(Nα) with α = 1.1–1.3 in 2D and 1.3–1.6 in 3D, depending on

the precision ε; full scalings are given in Table 3.1. Obviously, these cannot hold as

N →∞, though surprisingly they are retained quite robustly even up to fairly large

problem sizes: for instance, in 2D, the O(N1.1) scaling for ε = 10−3 holds even up to

N ∼ 106. Furthermore, while the theoretical complexities do depend logarithmically

on ε (see §1.3), this appears only as part of the prefactor and so cannot change

the ultimate scaling on N . Thus, our observations constitute a rather remarkable

discovery, wherein the various constants involved conspire to produce an improved

empirical scaling for the algorithm that is stable over a wide range of practical problem

sizes.

72

Figure 3.1: Compression time Tcm of Laplace interactions in quasi-2D geometries as

a function of the matrix size N at various relative precisions ε.

Table 3.1: Empirical compression complexities O(Nα) of the direct solver in quasi-2D

at various relative precisions ε, where N is the matrix size.

2D volume 3D surface

ε 10−3 10−6 10−9 10−3 10−6 10−9

α 1.1 1.2 1.3 1.3 1.4 1.6

Remark 3.2. The same O(N1.3) complexity in 3D was recently observed by Wei, Peng,

and Lee in [200], where they used very similar methods to study electromagnetic wave

scattering at low precision.

Note 3.3. The O(N1.6) scaling in 3D for ε = 10−9 is worse than the predicted O(N1.5)

and simply indicates that we are not yet in the asymptotic regime.

This result immediately brings to mind the notion of using the direct solver as

a low-precision preconditioner for ill-conditioned systems in quasi-2D, which repre-

73

sent one class of problems for which neither iterative nor direct solvers are currently

satisfactory—the former due to the high number of iterations required, and the lat-

ter due to their 2D nature. In contrast, preconditioning offers a viable solution by

dramatically reducing the number of iterations at a cost of only, e.g., O(N1.1).

To examine the process in more detail, we assume that we use the iterative method

GMRES [167], which, recall, can be thought of as a polynomial minimization problem

[see, e.g., 193]. Specifically, the residual rk at the kth iteration satisfies

‖rk‖ = min
p∈Pk

‖p (A) r0‖ , (3.1)

where A is the system matrix, and Pk is the space of all polynomials p of degree at

most k such that p(0) = 1. As a preconditioner, we use the approximate inverse A−1
ε ,

where Aε ≡ A+ E with ‖E‖/‖A‖ ≤ ε. Hence, taking A−1
ε A as the system matrix in

(3.1), we have

‖rk‖ = min
p∈Pk

∥∥p (A−1
ε A

)
r0

∥∥ ≤ ∥∥∥(A−1
ε E

)k
r0

∥∥∥ ≤ ∥∥A−1
ε E

∥∥k ‖r0‖

on letting p(z) ≡ (1− z)k. But from (2.17), if κ(A) < 1/ε then∥∥A−1
ε

∥∥ ≤ ‖A−1‖
1− εκ (A)

,

so ∥∥A−1
ε E

∥∥ ≤ ∥∥A−1
ε

∥∥ ‖E‖ ≤ εκ (A)

1− εκ (A)
,

i.e.,

‖rk‖
‖r0‖

≤
[

εκ (A)

1− εκ (A)

]k
. (3.2)

In other words, if κ(A) is not too large, then we can expect a factor improvement

of roughly O(ε) on each iteration, and therefore a total iteration count of O(logε0 ε),

where ε0 is the overall target precision.

74

Figure 3.2: A space-filling p× p grid of disks in 2D. The largest problem considered

was p = 16, corresponding to N = 131072 points.

As a first test, we considered the exterior Neumann problem for the Helmholtz

equation about a regular p × p grid of sound-hard disks in the plane (Figure 3.2).

This is a space-filling quasi-2D geometry. Each disk has radius 0.4 and is enclosed

in a 1 × 1 cell, which we used to tile the grid. The solution was written as a single-

layer potential on a collection of densities defined on the boundary of each disk,

following the multiple scattering example of §2.8. We discretized each disk with

512 points; the single-layer integrals were correspondingly discretized using a low-

order ‘punctured’ (i.e., without the singular self-contribution) trapezoidal rule for

simplicity. The sampling rate was fixed at about 64 points per wavelength. Larger

problems were accessed by increasing the grid dimension p; since the size of each disk

is fixed, increasing p results in a larger domain characterized by a higher frequency

content ω. Note that this is different from the methodology in §2.8, where we fixed

the frequency and let N vary. In each case, accuracy of the solution was assessed by

imposing that the exact solution be the field due to point sources in the interior of

the disks, against which we compared the computed numerical solution.

Timing results are shown in Figure 3.3 for various grid sizes at compression pre-

cision ε = 10−3. Detailed data, including for other precisions, are presented in Table

75

Figure 3.3: CPU times for solving the space-filling 2D example using FMM/GMRES

as a function of the system size N , both with (precon) and without (unprecon)

approximate inverse preconditioning. The number of iterations required in each case

is also shown. The inverse was computed to precision ε = 10−3; the overall target

precision was ε0 = 10−12. Dotted lines indicate extrapolated data.

3.2. All cases were solved to an overall target precision of ε0 = 10−12. It is im-

mediate that preconditioning is extremely effective, achieving an empirical scaling

of just O(N1.2) at ε = 10−3 versus O(N2.2) for the unpreconditioned method. For

comparison, the expected asymptotic complexity is O(N3/2 logN) since the number

of iterations required is proportional to the size of the domain in wavelengths, i.e.,

niter = O(ω) = O(N1/2). Note the weak dependence of niter on N for the precondi-

tioned solver, which is even more pronounced at higher compression precisions. This

leads to very impressive speedups with respect to the unpreconditioned scheme.

For another example of this technique, we next solved the interior Dirichlet prob-

lem for the Helmholtz equation on the unit sphere (Figure 3.4), formulated as a

second-kind boundary integral equation using a double-layer potential representation

and discretized using collocation on flat triangles (as described in §1.2). The sampling

76

Table 3.2: Numerical results for solving the space-filling 2D example using

FMM/GMRES with approximate inverse preconditioning: p, grid dimension; N , sys-

tem size; ω, grid diameter in wavelengths; ε, compression precision; T , total solution

time (s); niter, number of iterations; Tdir, direct solver computation time (s); Titer,

iterative solver computation time (s); E, relative error.

p N ω ε T niter Tdir Titer E

2 2048 9.0

10−3 2.0E+0 4 1.5E+0 5.1E−1

7.6E−410−6 2.6E+0 2 2.3E+0 3.2E−1

10−9 3.5E+1 1 3.3E+0 2.1E−1

4 8192 18.0

10−3 1.1E+1 5 8.6E+0 2.7E+0

4.3E−410−6 1.5E+1 2 1.4E+1 1.3E+0

10−9 2.1E+1 1 2.0E+1 9.1E−1

8 32768 36.0

10−3 6.1E+1 7 4.4E+1 1.6E+1

8.8E−510−6 8.0E+1 2 7.4E+1 5.7E+0

10−9 1.2E+2 1 1.1E+2 3.9E+0

16 131072 72.0

10−3 3.3E+2 10 2.3E+2 1.0E+2

7.5E−510−6 4.1E+2 3 3.8E+2 3.2E+1

10−9 6.7E+2 1 6.5E+2 1.9E+1

77

Figure 3.4: Real part of a Helmholtz potential on the unit sphere for a discretization

of N = 20480 triangles. The sphere is approximately 10 wavelengths in size.

rate was set at 8 triangles per wavelength; the compression and target precisions were

ε = 10−3 and ε0 = 10−12, respectively. As with the previous case, we assessed the

accuracy by comparison against an exact solution.

Timing results are shown in Figure 3.5, from which we again see a very clear

advantage for the preconditioned solver. Here, it is evident that the complexities of

the two methods are quite similar, but preconditioning gains a substantial constant

speedup of about 10 or so throughout. Detailed numerical data are given in Table

3.3.

Remark 3.4. In addition to providing acceleration for certain ill-conditioned problems,

the same methods can also be used in general to trade memory for speed, assuming

that an appreciable number of iterations are necessary.

Remark 3.5. The present term “approximate inverse preconditioner” is reminiscent of

work on sparse preconditioners, e.g., incomplete LU and other factorizations, which

78

Figure 3.5: CPU times for solving the 3D surface Helmholtz example using

FMM/GMRES at compression and target precisions ε = 10−3 and ε0 = 10−12, re-

spectively; notation as in Figure 3.3.

Table 3.3: Numerical results for solving the 3D Helmholtz example using

FMM/GMRES with approximate inverse preconditioning at compression and tar-

get precisions ε = 10−3 and ε0 = 10−12, respectively; notation as in Table 3.2.

N ω T niter Tdir Titer E

320 1.3 1.5E+0 2 6.9E−1 8.3E−1 3.8E−3

720 1.9 8.5E+0 3 2.8E+0 5.7E+0 3.7E−3

1280 2.5 5.7E+1 3 1.7E+1 4.0E+1 3.8E−3

2880 3.8 1.2E+2 4 5.9E+1 6.4E+1 5.1E−3

5120 5.0 3.7E+2 4 2.4E+2 1.3E+2 2.3E−3

11520 7.6 1.3E+3 6 7.8E+2 5.5E+2 4.5E−3

20480 10.0 3.0E+3 5 2.2E+3 7.7E+2 4.4E−3

79

typically impose some sparsity constraint on the inverse approximation [166]. Our

approach is quite different: we use fully dense inverses that are only data-sparse

and hence cheap to construct and apply. Furthermore, we do not approximate the

inverse directly but rather produce the inverse of an approximation of the original

matrix. Since our methods heavily exploit a specific matrix structure, we can achieve

economical approximations that are generally far more accurate for matrices having

that structure [see 96].

Remark 3.6. Direct solvers have also recently been used for preconditioning in domain

decomposition settings [104], in which the same observations made here apply.

Other candidates for inverse preconditioning include the 2D volume integral for-

mulations of the Lippmann-Schwinger equation for inhomogeneous wave scattering

and the variable-coefficient Poisson equation (1.1) for, e.g., variable-dielectric electro-

statics and compressible fluid flow. The iteration count for the former has recently

been demonstrated to scale quadratically with the frequency [176], i.e., niter = O(ω2);

in contrast, the condition number is just κ(A) = O(ω). Therefore, according to our

earlier analysis, cf. (3.2), we can take only a relatively low compression precision

and still achieve a significant reduction in niter and hence in the solution time. For

the Poisson equation, niter increases with the magnitude of the coefficient gradient,

which determines the extent to which the corresponding integral equation is first-kind

(though this may be ameliorated by density scaling [32]). This is especially impor-

tant in the context of molecular electrostatics, where steep dielectric gradients are

common near the molecular boundary. Some additional tools, however, are needed to

properly treat volume integral operators [e.g., 82]; numerical results will be reported

at a later date.

80

3.3 Local geometric perturbations

As we have seen throughout, many integral equations of practical interest possess a

geometric interpretation, in the sense that the action of the integral operator describes

interactions between physical elements in space. A natural question then to ask

is what can be said if we start moving some of those elements around. This is

particularly relevant in computational engineering and design, where one often wishes

to optimize a geometric structure for some quantity of interest, e.g., binding affinity

in drug discovery or flow patterns in microfluidics. This is typically achieved via local

geometric perturbations, wherein a small part of the structure is modified at a time,

which, in the linear algebraic context, correspond to low-rank matrix updates. As

mentioned briefly in the introduction to Chapter 2, such problems can be solved very

efficiently with direct methods. The purpose of this section is therefore to outline

how this can be done, and mostly follows the presentation of [88] but with additional

comments as appropriate for clarity.

To be precise, let Ω be some reference geometry, discretized, for example, as a

collection of triangles Ti, and let K be an integral operator acting on Ω, e.g.,

K (Ti, Tj) = −1

2
δij +

∫
Tj

∂G

∂νs

(ci, s) dSs

for the interior Dirichlet problem, where

δij =


1 if i = j,

0 if i 6= j

is the Kronecker delta and ci is the centroid of triangle Ti. Furthermore, let the

discretized integral equation be denoted by Ax = b, where A ∈ CN×N with Aij =

81

K(Ti, Tj). We assume that A is nonsingular and that we have precomputed A−1, for

instance, using our fast direct solver.

Suppose now that we wish to add p triangles TN+1, . . . , TN+p to Ω, where typically

p� N . The augmented system then takes the form A B+

C+ D+


 x
x+

 =

 b
b+

 ,
where B+ ∈ CN×p, C+ ∈ Cp×N , and D+ ∈ Cp×p, with

(B+)ij = K (Ti, TN+j) , (C+)ij = K (TN+i, Tj) , (D+)ij = K (TN+i, TN+j) .

Note that the original system is embedded as part of this block structure. The solution

can be obtained by forming the Schur complement system for x+:

(
I −D−1

+ C+A
−1B+

)
x+ = D−1

+

(
b+ − C+A

−1b
)
,

which has dimension only p and hence is inexpensive to solve, after which we can

recover x as

x = A−1 (b−B+b+) .

The total cost is hence O(Csvp+Np2 + p3), where Csv is the cost of applying A−1.

The case of deleting triangles is similar and can be reduced to that of adding

‘anti-triangles’ by requiring that the added densities exactly cancel out their original

counterparts. For this, let Tj1 , . . . , Tjq be the triangles to be removed. We add new

triangles TN+1, . . . , TN+q at the same spatial locations as the Tji , then form the system A B−

C− I


 x
x−

 =

b
0

 ,

82

where B− ∈ CN×q and C− ∈ Cq×N , with

(B−)ik =


0 if i = jk,

Aijk if i 6= jk,

(C−)ki =


1 if i = jk,

0 if i 6= jk.

The solution for the remaining densities consists precisely of those components of x

not corresponding to the ji.

Putting these together, we thus have the following system for simultaneously

adding and subtracting triangles:
A B+ B−

C+ D+ D∗

C− I



x

x+

x−

 =


b

b+

0

 , (3.3)

where D∗ ∈ Cp×q with (D∗)ik = K(TN+i, Tjk), and all other block are as defined

previously. This can be solved efficiently by forming the Schur complement in the

auxiliary variables x±, which gives a system of dimension m ≡ p+ q.

The cost of the above algorithm is essentially that of applying A−1 m times. For

m small, say, . 50, this is quite feasible and should lead to very rapid solution times.

However, for more sizable m on the order of 100 or more, as might be common for

large structures with complicated geometries, iterative solvers present an attractive

alternative. In this approach, we iterate on (3.3) with, for example, the block diagonal

preconditioner

P−1 ≡


A−1

I

I

 .
Each iteration requires one inverse application, so if the total number of iterations is

substantially less than m, then this is a superior method. Further acceleration is also

83

possible: since p and q are now modest, it may be profitable to apply the matrices B+,

B−, and C+, which are all either ‘tall and skinny’ or ‘short and fat’, using some fast

algorithm. Naturally, the FMM comes to mind, but for matrices with such extreme

aspect ratios, even the cost of simply building the index tree can be significant. We

propose instead to perform only operations that are local with respect to the modified

data, i.e., the auxiliary triangles TN+1, . . . , TN+m, by compressing their far field just

with respect to the smaller matrix dimension using a proxy-accelerated scheme (or

the equivalent analytic FMM formulation). Considering, say, B+ ∈ CN×p to be

concrete, we do this by finding the skeletons and interpolation coefficients for the

far-field interactions outgoing from the TN+i to their proxy surface, which, recall,

has only a constant number of degrees of freedom. Thus, this step is independent of

the larger dimension N . The near field cannot be as efficiently compressed, so we

simply account for it directly; the triangles T1, . . . , TN lying in the neighborhood of

the TN+i can be found quickly by traversal of the existing tree on A. This procedure

reduces the cost of applying B+ from O(Np) to O(N + p), with a constant that is

considerably smaller than that for using the full FMM.

Numerical experiments are now underway. Early estimates suggest that it may not

be unreasonable to expect sub-second solves for systems as large as 50, 000 triangles

or more; see Chapter 5 for some compelling applications in biology and chemistry.

3.4 Overdetermined least squares

The core procedure in our fast direct solver is a recursive skeletonization scheme for

matrix compression. In this regard, the remainder of the solver, i.e., sparse embed-

ding and inversion, may be viewed simply as manipulations of the compressed rep-

84

resentation in order to obtain an LU decomposition of the original matrix. Perhaps

unsurprisingly, it is also possible (to some extent) to construct other matrix factoriza-

tions from the compressed representation. Here, we consider the QR decomposition

for the purpose of solving overdetermined least squares problems.

Let A ∈ CM×N be a compressible matrix in the sense of §2.1, but now with M ≥ N

and rank(A) = N . Then the system Ax = b cannot in general be solved exactly and

must instead be considered in the least squares sense: find x such that

‖Ax− b‖ ≤ ‖Ay − b‖ for all y ∈ CN .

The solution is given by x = A+b, where

A+ = (A∗A)−1A∗

is the Moore-Penrose pseudoinverse of A. This is often solved via the QR decompo-

sition A = QR, where Q is unitary and R is upper triangular, which gives

A+ = (R∗R)−1R∗Q∗ = R+Q∗. (3.4)

For further details, see [84].

Note 3.7. The formula (3.4) is only for theoretical convenience; in practice, R+ is

applied by performing back substitution on R1 ∈ CN×N , where R = col(R1, 0).

We now assume that A has been compressed, hereafter working only with its

85

Figure 3.6: Example sparsity pattern of the QR decomposition A = QR, where A

is the multilevel sparse embedding (2.12). Nonzeros are marked in black.

sparse embedding

A ≡



D(1) L(1)

R(1) −I

−I D(2) L(2)

R(2) . . .
. . .

. . . D(λ) L(λ)

R(λ) −I

−I S



,

viz. §2.4. Can we follow an analogous procedure for the corresponding sparse problem

Ax = b, where b ≡ col(b, 0, . . . , 0), and then extract the solution from the first block

of x? (For notational convenience, all quantities relating to the sparse system will be

set in bold.) Due to its block tridiagonal structure, the QR decomposition A = QR

can be constructed rather efficiently (Figure 3.6). However, the solution is not quite

as easy as simply applying A+ since the solution of the sparse system will not in

general recover that of the original. The reason is that the zero constraints in b,

which, recall, are meant to enforce exact identities among the variables in x (see

86

§2.4), will typically be violated (in some least squares sense). Therefore, x = A+b

may not correspond to a valid solution with respect to the original variables.

Nevertheless, this can be fixed in a very straightforward manner with iterative

refinement. Starting with x0 ≡ A+b, we successively compute

xk+1 ≡ xk + ∆xk, ∆xk ≡ −A+AIxk, (3.5)

where

AI ≡



R(1) −I

−I D(2) L(2)

R(2) . . .
. . .

. . . D(λ) L(λ)

R(λ) −I

−I S


is A with the first block row zeroed out, i.e., the part corresponding only to the

identities in x. Intuitively, (3.5) hence corrects for the violation of those identities.

We postpone the required analysis until a later work, noting here only that we have

achieved success with the generalization

∆xk ≡ −ωA+AIxk (3.6)

for an appropriate choice of the relaxation parameter ω, so named after a similar pa-

rameter in successive over-relaxation [166]. Each step of the iteration can be thought

of as projecting out the component of xk that is incompatible with the identities, i.e.,

not lying in ker(AI); the parameter ω thus controls the magnitude of this projection.

We find empirically that choosing 0 < ω . 2 generally works, with sometimes sub-

stantial improvements in the iteration count. The significance of this modification

87

can be seen by writing xk ≡ x∗ + ek, where x∗ ∈ ker(AI) is the true solution. Then

(3.5) and (3.6) give the error iteration

ek+1 =
(
ek −A+AIek

)
≡H (ω) ek,

where H(ω) = I −ωA+AI , so convergence is immediate if ‖H(ω)‖ < 1, with ω now

playing the role of a tuning parameter.

Remark 3.8. Alternative approaches are also possible, such as least squares with

weighted constraints: (A + λAI)x = b, i.e.,

x = A+ (b− λAIx) , (3.7)

where λ is a penalty with |λ| → ∞. Clearly, this does not affect the sparsity pattern

of the system matrix. We have not yet tried this, but it is closely related to our

current method, for which

xk+1 = A+

(
b− ωAI

k∑
i=1

xi

)
. (3.8)

Therefore, (3.8) acts like (3.7) with graded penalty λk ∼ kω as a crude estimate.

This also suggests that a larger ω should lead to faster convergence, an observation

that we confirm numerically below.

We now provide some complexity estimates for our least squares algorithm. For

this, we follow the basic outline of §2.5 and consider M + N points distributed uni-

formly in a d-dimensional domain, with the row points sampled at a higher density

since M ≥ N , and all M + N points sorted together in the same orthtree. Then

continuing the notation of §2.5:

1. The number of levels is λ ∼ (1/d) log(M +N).

88

2. The number of blocks at level l is pl ∼ p1/2
d(l−1) ∼ (M +N)/2d(l−1).

3. The number of points in each block at level l is

nl ∼ kl ∼


(l − 1) log 2 + log n1 if d = 1,

2(d−1)(l−1)n
1−1/d
1 if d > 1.

Therefore, using Figure 3.6 as a guide, the cost of computing the QR decomposition

A = QR is

Tqr ∼
λ∑
l=1

pln
2
l

l∑
l′=1

nl′ + (pλkλ)
2

λ∑
l=1

plnl ∼


(M +N) log2 (M +N) if d = 1,

(M +N)3−2/d if d > 1,

(3.9)

where the first term accounts for the cost of orthogonalizing all column blocks except

the last, which is fully dense and described by the second. Similarly, the cost Tsv of

each solve is

Tsvq ∼
λ∑
l=1

plnl

l∑
l′=1

nl′ + pλkλ

λ∑
l=1

plnl ∼


(M +N) log (M +N) if d = 1,

(M +N)2−1/d if d > 1

(3.10)

for applying Q∗, plus

Tsvr ∼
λ∑
l=1

pln
2
l + (pλkλ)

2 ∼


M +N if d = 1,

(M +N) log (M +N) if d = 2,

(M +N)2(1−1/d) if d > 2

for back substitution with R, so Tsv has complexity (3.10). These are very similar to

those in §2.5, but slightly worse due to the fill-in of Q.

As a numerical example, we considered a 2D charge fitting problem mimicking

the commonly used restrained electrostatic potential method [23] in computational

89

chemistry. Specifically, we distributed 8192 sources si of random strengths qi in the

unit circle (of radius one), and observed their potential field

ϕ (ti) =
∑
j

qjG (ti, sj) ,

where G is the 2D Laplace Green’s function (2.5), at M uniformly spaced target

points ti on the ring of radius 1 + δ for δ > 0. We also placed N regression charges ri

uniformly spaced on the unit circle, whose strengths we manipulated to try to match

ϕ at the ti. This constitutes a least squares problem with matrix A ∈ RM×N , where

Aij = G(ti, rj).

Note 3.9. This is also similar to the construction of equivalent densities in the kernel-

independent FMM [208]. If the ri are a subset of the si, then this is like computing

an interpolative decomposition (ID), cf. §2.1 and [47, 141]. Indeed, the ID requires a

least squares solve [47], so this technology may potentially find use there as well.

Remark 3.10. For such problems where the row and column points are separated

(here, by a distance δ), the rank of any matrix block is in fact constant, so putting

nl ∼ kl = O(1) in (3.9) and (3.10) gives linear complexity for both in any dimension.

Remark 3.11. This example can also be adapted for partial charge fitting in sol-

vated biomolecules by combining the present methods with the composite operator

formulation of §3.1.

We fixed δ = 0.01 and solved the least squares system for various M and N ,

making sure each time that the resulting matrix has full column rank [see 74]. This

was done using both LAPACK/ATLAS [6, 201] and our compression-based code. In

each case, we set a compression precision of ε = 10−9 and an iteration precision of

ε0 = 10−6; the iteration was terminated when ‖∆xk‖/‖xk‖ < ε0. All experiments

90

were performed on a 3.10 GHz processor, where the codes for LAPACK/ATLAS

and recursive skeletonization (i.e., the direct portion of our least squares solve) were

run in Fortran, and the remaining iteration in Matlab R2011a (The MathWorks,

Inc.: Natick, MA) for its interface to SuiteSparseQR [61]. All unitary matrices Q

were stored in Householder form for efficiency. The error was assessed by comparing

against the solution returned by LAPACK/ATLAS.

We first studied the behavior of the algorithm with respect to the relaxation

parameter ω. We hence fixed M = 8192 and N = 1024, and performed a parameter

sweep over 0 ≤ ω ≤ 3. The results are shown in Figure 3.7, from which we see that

a larger ω generally corresponds to a lower iteration count, though some care must

be taken since convergence is lost for ω larger than some critical value ω∗; in this

example, ω∗ ≈ 2.5. Clearly, the iteration stalls at ω = 0, but we still appear to

get some nontrivial accuracy. Based on these results, we next set ω ≡ 2 and solved

at many different combinations of M and N . The solution times are consistent

with those predicted and show vastly superior scalings over the classical O(MN2)

method (Figure 3.8). Interestingly, the iteration count seems to scale as niter =

O((1/N) logM), but remains manageable in most cases. The full data are given in

Table 3.4.

Remark 3.12. Clearly, this technique can also be used to solve square systems, in

which case no iteration is required as the solution is unique. This might be desirable

if the system matrix is particularly ill-conditioned since QR methods tend to be more

numerically stable.

Remark 3.13. Our methods should also be compared with modern fast algorithms

based on randomization [165], which require only O(MN+N3) operations for general

91

Table 3.4: Numerical results for least squares charge fitting at compression and it-

eration precisions ε = 10−9 and ε0 = 10−6, respectively: M , matrix row dimension;

N , matrix column dimension; Tls, LAPACK/ATLAS least squares solution time (s);

Tcm, matrix compression time (s); Tqr, sparse QR factorization time (s); Titer, correc-

tive iteration time (s); niter, number of iterations required; E, relative error. Three

sets of data are combined here: M = 1024–16384 with N = 1024; M = 8192 with

N = 128–2048; and M = 1024∆ and N = 128∆ with ∆ = 1–16.

M N Tls Tcm Tqr Titer niter E

1024 128 2.2E−2 1.7E−2 1.5E−2 5.3E−1 74 4.3E−5

1024 1024 4.0E−1 6.7E−2 4.5E−2 3.6E−2 1 3.3E−7

2048 256 1.1E−1 4.4E−2 4.1E−2 2.1E+0 121 3.6E−4

2048 1024 9.2E−1 1.0E−1 6.9E−2 5.9E−1 17 5.8E−5

4096 512 6.1E−1 9.6E−2 6.4E−2 2.6E+0 68 3.2E−4

4096 1024 1.9E+0 1.5E−1 1.1E−1 1.6E+0 31 1.9E−4

8192 128 2.7E−1 8.5E−2 6.2E−2 2.0E+1 439 5.9E−4

8192 256 5.2E−1 1.0E−1 8.1E−2 1.2E+1 234 1.4E−3

8192 512 1.3E+0 1.4E−1 9.4E−2 6.2E+0 102 7.1E−4

8192 1024 4.1E+0 2.1E−1 1.3E−1 3.7E+0 48 5.5E−4

8192 2048 1.4E+1 3.2E−1 2.3E−1 2.3E+0 22 4.5E−4

16384 1024 8.9E+0 3.2E−1 2.1E−1 7.5E+0 60 1.1E−3

16384 2048 3.0E+1 4.1E−1 2.5E−1 5.3E+0 35 1.1E−3

92

Figure 3.7: Performance of the semi-direct least squares solver as a function of the

relaxation parameter ω in terms of the number niter of iterations required and the re-

sulting error achieved. The shaded region indicates values of ω for which the iteration

did not converge (the errors diverged).

matrices.

3.5 A compression-based fast multipole method

Lastly, we outline a compression-based FMM following essentially the approach in

[141] but embedded within our matrix framework. The ideas are exactly the same

as those from Chapter 2; thus, this section may also be considered a guide on how

to modify our direct solver into an FMM. In particular, both algorithms are based

on numerical matrix compression, so the resulting FMM is kernel-independent. This

makes it especially useful for functions that are difficult to handle analytically, in

contrast to traditional FMMs, which require analytic expansions [86, 93]. A good

93

Figure 3.8: CPU times for least squares charge fitting in various cases using LA-

PACK/ATLAS (LP) and a recursive skeletonization-based semi-direct solver (RS).

Three scalings are shown, for M and N the system matrix row and column dimen-

sions, respectively: with varying M and fixed N (left), with fixed M and varying N

(center), and with proportionally varying M,N ∝ ∆ (right). For each case, the CPU

time T required is shown; for RS, the number niter of iterations needed is also given.

The precision of RS was set at ε = 10−9 for compression and ε0 = 10−6 for iteration.

example is the solution of the heat equation using potential theory with high-order

time integration, which involves exponential integrals [129, 183]. The astute reader

may notice that we have already presented such an FMM in Chapter 2. This is indeed

true in the sense that both algorithms are capable of fast matrix-vector multiplication,

but the current formulation is based on a slight reorganization of the matrix that

allows for far greater efficiency, leading to O(N) complexity in all dimensions. The

tradeoff is that inversion is now slower, but this is of no consequence as we are

interested only in matrix applications.

We proceed as before and consider a matrix A ∈ CN×N discretizing some integral

94

kernel in a d-dimensional domain with smoothness properties similar to that for

the Laplace Green’s function. Then A is hierarchically block separable under some

appropriate tree ordering, so we can write, on the first level,

A = D + LSR

following (2.2), where D ∈ CN×N consists of the diagonal blocks of A, S ∈ CKr×Kc is

its skeleton matrix, and L and R are row and column projections, respectively. Since

S contains neighboring interactions,

Kr, Kc ∼


logN if d = 1,

N1−1/d if d > 1

by the argument of §2.5. In other words, the skeleton dimension grows with N .

Here, we consider instead the decomposition

A = N + LSR,

where N characterizes all self- and neighboring interactions so that S now accounts

only for the far field. Consequently, Kr, Kc = O(1) to any specified precision. This is

the basis for the improved complexity; for further acceleration, we can compress the

near field also by writing

N = D + UTV,

obtained via the ID as well (though other compression schemes can be used, e.g., the

singular value decomposition, since the representations need no longer be nested).

The multilevel analogue is therefore

A = D + U (1)T (1)V (1)

+ L(1)
[
U (2)T (2)V (2) + L(2)

(
· · ·L(λ)U (λ)T (λ)V (λ)R(λ) · · ·

)
R(2)

]
R(1), (3.11)

95

where D consists of self-interactions at the finest level; T (l) is the skeletonized near

field at level l, with row and column projection matrices U (l) and V (l), respectively;

and L(l) and R(l) are the far-field row and column projection matrices at level l.

Observe that self-interactions appear only once (at the finest level), and furthermore

that no far-field skeleton exists, with interactions applied as they emerge in the near

field as we move up the tree. Both are consistent with traditional FMM formulations.

We can hence think of (3.11) as a sequence of far-field compressions, where at each

level the near field portion of the matrix is extracted. As with our direct solver,

an algorithm for rapidly computing matrix-vector products is immediate by simply

applying the matrices in (3.11) from right to left.

To determine the complexity of the representation (3.11), we adopt the same

notation as §2.5, but now with kl = O(1) so in fact all nl = O(1). Then the cost of

compression using proxy acceleration is

Tcm ∼
λ∑
l=1

pln
3
l ∼ N.

Similarly, the cost of matrix-vector multiplication is

Tmv ∼
λ∑
l=1

pln
2
l ∼ N.

Therefore, the algorithm has optimal O(N) complexity.

The representation (3.11) can also be used for fast matrix inversion by embedding

it into a sparse matrix exactly as in (2.12). While the complexities for factorization

are the same as those for the direct solver, i.e., (2.15), the matrix factors now fill in

so that the solve time is also (2.15). This is because a neighbor grid structure must

be inverted at each level, which destroys the sparsity of the operators in the analogue

of (2.14). See [155] for a similar FMM-based approach.

96

As mentioned briefly in the introduction to this chapter, the compression-based

FMM, by virtue of its linear algebraic structure, cannot easily accomodate certain

important optimizations employed by analytic FMMs, such as diagonal translations

[48, 92]. In this case, applying the near-field matrices T (l) costs O(plk
2
l) operations

instead of just O(plkl) in diagonal form. This begins to play a role especially at high

precision, where, for example, kl ∼ 100 in 3D. However, it should be noted that the

ranks kl emerging from compression are not the same as those from analysis, and, in

fact, in many cases are much smaller [see 88]. The reason is that whereas the analytic

approach must account for all possible point distributions, compression can specialize

only to the particular distribution at hand, thereby producing representations that

are tailored to the problem and, in that sense, optimal. Interestingly, this effect seems

to be especially pronounced also at high precision, so any tradeoff between the two

methods is not immediately clear.

Finally, as with the direct solver, the compressed representation (3.11) can be

saved for repeated matrix-vector multiplication, which presents yet another scheme

for accelerating the solution of linear systems requiring many iterations. Generally,

we can expect the FMM-based solver to prevail in high dimensions due to the current

limitations of the direct solver, though whether it will be faster in 2D or 3D remains

to be seen. As direct solver technology matures, however, toward optimal or near-

optimal complexities (see §5.4), we suspect that it will become dominant for reasons

of robustness and adaptability (§1.4).

97

4 Application to protein pKa

calculations

In this chapter, we return to the linearized Poisson-Boltzmann equation (LPBE) of

Chapter 1, formulated as the second-kind boundary integral equation (1.12)

(I + λK)

µ
σ

 = λ

 ϕs

−∂ϕs/∂ν


for the densities σ and µ on the molecular surface, where

ϕs (r) =
1

ε1

∑
i

qiG0 (r, ri)

is the electrostatic potential due to charges in the molecule, with compact operator

K =

 Dκ − αD0 Sκ − S0

−α (D′κ −D′0) − (αS ′κ − S ′0)

 ,
where Sk and Dk are the single- and double-layer potentials, respectively, for the

Green’s function

Gk (r, s) =
e−k|r−s|

4π |r − s|
.

Note that the left-hand side depends only on the molecular geometry, and the right-

hand side only on the charge configuration. The potential at any point can be ex-

pressed in terms of the surface densities as

ϕ =


Sκσ +Dκµ in Ω0,

S0σ + αD0µ+ ϕs in Ω1,

98

viz. (1.11), where Ω0 and Ω1 denote the solvent and the molecule, respectively; see

§1.1 for the full notation. In §1.2, we showed how to discretize this system, while in

Chapter 2 we developed a direct numerical algorithm to solve it efficiently. Here, we

now apply our techniques to the calculation of protein pKa values, which provides

an important biological setting where fast direct electrostatics can play a significant

role.

The pKa of an acid A is the decimal cologarithm of the equilibrium constant for

the ionization reaction AH −⇀↽− A + H:

pKa ≡ − log10

[A] [H]

[AH]
= log10

[AH]

[A]
+ pH, (4.1)

and is related to the Gibbs free energy change by

pKa =
β

ln 10
∆G (AH −→ A + H) , (4.2)

where β ≡ 1/(RT) for R the gas constant and T the absolute temperature. (We

use ln for the natural logarithm to maintain consistency with the chemistry litera-

ture.) The pKa hence captures the thermodynamics of acid dissociation and therefore

characterizes the quantitative behavior of acid-base reactions. Such protonation or

deprotonation of so-called titrating sites can drive changes in binding affinities, en-

zymatic activities, and structural properties [54, 65, 206]. Consequently, pKa values

are important for a variety of biomolecular processes, and their accurate theoretical

prediction is of significant practical interest.

In the next section, we review the theory of protein titration following [21, 194],

and show that the main computational bottleneck in pKa calculations is the solution

of the LPBE with multiple right-hand sides. The procedure thus lends itself naturally

to direct solvers, which can factor the system matrix once and then reuse it for each

99

solve. In this regard, our work can be considered a heavily accelerated version of

that by Juffer et al. [115], who employed a similar boundary integral approach but

used only classical O(N3) techniques; our compression methods also dramatically

reduce the memory footprint, hence allowing far larger problems to be addressed.

Furthermore, we incorporate various proven optimizations and introduce two minor

but novel contributions:

1. a generalized multi-flip Metropolis criterion for efficient Markov chain Monte

Carlo (MCMC) sampling of tightly coupled titrating sites; and

2. a simple statistical procedure to derive error estimates for computed pKa values.

4.1 Theory of protein titration

We begin by analyzing the simple case of a solvated protein with a single titrating

site, i.e., a residue that can be either protonated or unprotonated, for which

pKa =
β

ln 10
∆G

(
ApH −→ Ap + H

)
,

which is just (4.2) but with the subscript p to emphasize that the site exists in the

environment of the protein. This free energy change cannot be calculated directly

in a straightforward way, so we consider instead the thermodynamic cycle shown in

Figure 4.1, which gives

pKa =
β

ln 10

[
∆G (AsH −→ As + H) + ∆G

(
As −→ Ap

)
−∆G

(
AsH −→ ApH

)]
,

where the subscript s refers to the titrating site isolated in the solvent. It is useful to

consider a decomposition of this form because the model pKa

pK0
a ≡

β

ln 10
∆G (AsH −→ As + H)

100

AsH
∆G(AsH−→As+H)−−−−−−−−−−→ As + H

∆G(AsH−→ApH)

y y∆G(As−→Ap)

ApH
∆G(ApH−→Ap+H)−−−−−−−−−−−→ Ap + H

Figure 4.1: Thermodynamic cycle for protein titration. The free energy change

∆G(ApH −→ Ap + H) for ionization in the protein can be computed from that

for the corresponding reaction in the solvent (∆G(AsH −→ As + H)), which is

generic and determined by experiment, and the transfer energies ∆G(As −→ Ap) and

∆G(AsH −→ ApH) for the unprotonated and protonated forms, respectively, which

cancel to within electrostatic contributions.

can be determined experimentally for each residue type using a generic model com-

pound, and therefore can be taken as data. Moreover, if we assume that no structural

rearrangements occur upon ionization, then all non-polar contributions to the re-

maining transfer energies cancel, and so

∆G
(
As −→ Ap

)
−∆G

(
AsH −→ ApH

)
= ∆Gele

(
As −→ Ap

)
−∆Gele

(
AsH −→ ApH

)
= ∆Gele (As −→ AsH)−∆Gele

(
Ap −→ ApH

)
,

i.e.,

pKa = pK0
a −

β

ln 10

[
∆Gele

(
Ap −→ ApH

)
−∆Gele (As −→ AsH)

]
. (4.3)

The second term is called the pKa shift and characterizes the electrostatic interactions

of the titrating site with the protein environment. Observe that the free energy of

101

protonation at a given pH is hence

∆G
(
Ap −→ ApH; pH

)
= −RT ln

[AH]

[A]

= −RT ln 10 (pKa − pH)

= −RT ln 10
(
pK0

a − pH
)

+ ∆Gele

(
Ap −→ ApH

)
−∆Gele (As −→ AsH) .

We now take a brief aside to discuss the calculation of electrostatic energies in

our integral equation framework. For this, we adopt the premise of Chapter 1 and

consider a collection of charges qi at locations ri ∈ Ω1 for i = 1, . . . , Nsrc. Then the

electrostatic energy of the system is

E =
1

2

∑
i=1

qiϕ (ri) ,

where ϕ is the electrostatic potential. In our formulation, ϕ = ϕp + ϕs, where ϕp is

the polarization potential (or reaction potential) due to the solvent, composed of the

terms involving the surface densities σ and µ in (1.11), and ϕs is the direct potential

due to the charges. Following §1.2, these can be written in matrix form as

ϕp = CA−1Bq, ϕs = Dq,

where

A = I + λ

 Dκ − αD0 Sκ − S0

−α (D′κ −D′0) − (αS ′κ − S ′0)

 ∈ R2Ntri×2Ntri

is the system matrix of the discretized integral equation (1.13), for Ntri the number

of triangles composing the molecular surface Σ;

B = λ

 ϕs

−∂ϕs/∂ν

 ∈ R2Ntri×Nsrc , C =

[
D0 αS0

]
∈ RNsrc×2Ntri

102

are the matrices generating the right-hand side of (1.13) from the charges and eval-

uating the polarization potential from the surface densities via (1.11), respectively;

and

D ∈ RNsrc×Nsrc , Dij =


0 if i = j,

(1/ε1)G0 (ri, rj) if i 6= j

is the matrix computing the direct potential between the charges. Therefore,

ϕ =
(
CA−1B +D

)
q ≡ Wq, (4.4)

so

E =
1

2
qTWq. (4.5)

Note that each of A−1, B, C, and D is compressible using the algorithm of Chapter

2—the first in its capacity as a direct solver, and the others as a generalized fast

multipole method (FMM)—hence W is compressible as well.

Returning now to (4.3), we consider first the energy difference ∆Gele(Ap −→ ApH)

in the protein, which has vector charges b and t corresponding to the background

and titrating charges, respectively. Specifically, b gives the charges due to the fixed

background and t gives the additional charges introduced by the protonation of the

titrating site; in other words, the charge vector in the unprotonated form is q = b,

whereas that in the protonated form is q = b+ t. Then by (4.5),

∆Gele

(
Ap −→ ApH

)
=

1

2

[
(b+ t)TW (b+ t)− bTWb

]
,

where the first term gives the energy of the state ApH, and the second that of Ap.

The same argument adapted to the model compound instead of the full protein gives

∆Gele(As −→ AsH).

103

Remark 4.1. Clearly, our formulation can support the use of a so-called detailed

charge model, where protonation can spread charge over a number of different atoms

[compare, e.g., 7, 21, 22, 115, 205].

Suppose now that we have Ntitr titrating sites. For each site i, we compute its

intrinsic pKa, which we call pK0
i , according to (4.3), where the protein environment

is defined as that corresponding to the fixed background charges only, i.e., with all

titrating sites unprotonated. Then to calculate the free energy of an arbitrary protein

protonation state, we must first add the energies corresponding to each relevant pK0
i ,

and then the energy of interaction between the protonated sites. That is,

∆G (A −→ A (θ); pH) = −RT ln 10
∑
i

θi
(
pK0

i − pH
)

+
1

2

∑
i

θi
∑
j 6=i

θj∆Gij, (4.6)

where θ ∈ {0, 1}Ntitr has entries 0 or 1 indicating whether a site is unprotonated or

protonated, respectively, and

∆Gij = tTi Wtj (4.7)

is the electrostatic interaction energy between sites i and j, for ti the titrating charge

vector corresponding to the protonation of site i. Note that the background charges

do not appear in the formula for the ∆Gij; they are used only to compute the pK0
i .

Note 4.2. In principle, ∆Gij = ∆Gji, but we only have approximate equality here

since we use an unsymmetric triangle-centroid collocation scheme. (This can be made

somewhat clearer by interpreting ∆Gij as the energy associated with the protonation

of site i due to the field induced by the protonation of site j.) In what follows, we

will try to ‘symmetrize’ the energies, either by summing over both ∆Gij and ∆Gji

as in (4.6) or by considering both in the treatment of energetic cutoffs (see §4.3).

104

Armed with the free energy (4.6) of an arbitrary protonation state, the next step

is to compute the Boltzmann average

〈θi; pH〉 ≡
∑

θ θie
−β∆G(A−→A(θ);pH)∑

θ e
−β∆G(A−→A(θ);pH)

, (4.8)

over all possible states θ at each pH, and then to take the pKa of site i as the pH

at which 〈θi; pH〉 = 1/2, following the Henderson-Hasselbalch equation (4.1). The

state space, however, is exponentially large in Ntitr, so while (4.8) can be computed

directly for small proteins, more sophisticated techniques are required in general. In

this work, we use MCMC methods to sample from the probability distribution

Pr (θ; pH) ∝ e−β∆G(A−→A(θ);pH). (4.9)

Before moving to that topic, though, we will find it useful to describe a classical

approach based on mean field approximation, which neglects correlations between

titrating sites but can provide a useful starting point for our Monte Carlo simulation.

Furthermore, as the number of Monte Carlo steps will typically be quite large, it is

most computationally efficient to precompute the ∆Gij and then simply to perform

table lookups at each step. This can be accomplished by applying W Ntitr times,

once each to compute the potential ϕj ≡ Wtj due to the protonation of site j, from

which its interaction energies ∆Gij = tTi ϕj with all sites i can be obtained. This

energy precomputation is often the most demanding part of the entire calculation, so

any acceleration, for example, using our fast direct solver, is very welcome.

Remark 4.3. A very similar situation is encountered in electrical engineering as ca-

pacitance extraction, where one wishes to characterize the induced-charge behavior

of a collection of electronic devices [see, e.g., 118, 146, 157]. This, too, constitutes

a problem requiring multiple electrostatic solves, once for each component involved;

indeed, fast direct solvers have recently been applied here as well [38].

105

4.2 Mean field approximation

Instead of considering each titrating site as either strictly protonated or unprotonated,

we now let each site have protonation probability pi and consider their interaction

through this mean field average [22, 190]; this is the same as treating the single-site

case with effective background charge b+
∑

j 6=i pjtj for each site i. Then from (4.6),

the protonation energy of site i is

∆Gi = −RT ln 10
(
pK0

i − pH
)

+
1

2

∑
j 6=i

pj (∆Gij + ∆Gji)

with closure condition

pi
1− pi

= e−β∆Gi ,

which can be solved self-consistently via the iteration

∆Gi

(
pk
)
≡ −RT ln 10

(
pK0

i − pH
)

+
1

2

∑
j 6=i

pkj∆Gij, (4.10a)

pk+1
i ≡ e−β∆Gi(pk)

1 + e−β∆Gi(pk)
(4.10b)

for some initial vector iterate p0 (we use simply p0 = (0, . . . , 0)). The probabilistic

character of each pki is immediate. Thresholding then gives an effective initial Monte

Carlo state:

θi ≡


0 if pi < 1/2,

1 if pi ≥ 1/2.

(4.11)

Note 4.4. The mean field estimate for the pKa of site i is just

pKi ≡
β

ln 10
∆Gi (p) .

106

For proteins with titrating sites that interact only weakly (at a given pH), the

iteration typically converges very rapidly, i.e., within ten iterations or so. Stronger

interactions generally require more iterations, and sometimes the iteration does not

converge at all. In such cases, we use instead the probabilities p1 corresponding to the

intrinsic energy differences between the pK0
i and the pH for each site i without any

titrating site interactions. This gives a poorer initial estimate compared to that above,

but will only affect the burn-in time for the Markov chain to reach the equilibrium

distribution (4.9) by ergodicity.

4.3 Reduced site approximation

Since the interesting protonation behavior of a given titrating site will typically oc-

cur near its pK0
i , it is evident that its state can be fixed as either protonated or

unprotonated for many pH values away from pK0
i , especially near the extremes. This

observation was first made by Bashford and Karplus in [22], who formalized it as

the reduced site approximation and demonstrated its ability to provide exponential

reductions in the protonation state space.

The method is very intuitive and is based on calculating the maximum and mini-

mum protonation probabilities for each titrating site. We consider first the minimum

protonation, which is clearly achieved when all other titrating sites are protonated as

this maximizes the free energy. Thus, for each site i, we compute

∆Gmax,i ≡ −RT ln 10
(
pK0

i − pH
)

+
1

2

∑
j 6=i

(∆Gij + ∆Gji) .

Then the minimum protonation probability is

pmin,i =
e−β∆Gmax,i

1 + e−β∆Gmax,i
, (4.12)

107

so if pmin,i ≥ p∗min for some threshold, say, p∗min = 0.99, then we consider site i as

completely protonated and remove it from Monte Carlo sampling. Similarly, the

minimum free energy is achieved when no other site is protonated, i.e.,

∆Gmin,i ≡ −RT ln 10
(
pK0

i − pH
)

and the maximum protonation probability is

pmax,i =
e−β∆Gmin,i

1 + e−β∆Gmin,i
. (4.13)

Hence if pmax,i ≤ p∗max (e.g., p∗max = 0.01), then we consider site i as completely

unprotonated. If Nfix is the number of sites fixed in this way, then clearly the state

space is reduced by a factor of 2Nfix . Hereafter, for a given pH, we letNfree ≡ Ntitr−Nfix

be the number of free titrating sites remaining.

Note 4.5. Other approaches of reducing the Monte Carlo workload have also been

reported, most notably within the context of hybrid methods employing statistical

mechanical treatments within titrating site clusters and mean field approximations

between them [79, 206].

4.4 Monte Carlo sampling

Restricting to the Nfree unfixed sites, we now sample (4.9) over the remaining state

space using a standard Metropolis-Hastings MCMC algorithm [26, 142]. To be pre-

cise, we start the Markov chain at the initial protein state as determined by thresh-

olding of the mean field protonation probabilities, and accept each transition from

the current state θ to a new proposed state θ′ with probability

Pr (θ → θ′) = min
{

1, e−β[∆G(θ′)−∆G(θ)]
}
, (4.14)

108

where ∆G(θ) is shorthand for ∆G(A −→ A (θ); pH) as given by (4.6). Although the

conventional single-flip proposal function can be used, wherein θ′ is derived from

θ by flipping the protonation state of a single randomly chosen site, this can be

inefficient when strong correlations exist, leading to low acceptance ratios and thus

slow distributional convergence. As a remedy, researchers have supplemented the

typical formulation with two- [26, 76, 182] and even three-site moves [159], but the

choice of this limit is somewhat arbitrary. One of our objectives in this section

therefore is to provide a generalized framework that can accomodate extended multi-

site moves in a natural manner. Our method consists of two elements:

1. a partition of the free titrating sites into strongly interacting clusters; and

2. a scheme for proposing multi-site moves within clusters.

Thus, multi-site moves are employed only when needed; this is an attractive feature

as their unwarranted use generally leads to less efficient sampling.

To determine cluster assignments, we use an energetic threshold based on the

pairwise interaction energies ∆Gij; distance considerations can also be used [205,

see], but the interaction energy is more informative. Specifically, we consider two

sites i and j as strongly interacting if

max {|∆Gij| , |∆Gji|} ≥ |∆G∗| (4.15)

for some threshold |∆G∗|. This defines a coupling graph on the titrating sites, whose

connected components we define to be the site clusters. (Single sites uncoupled to

any other site are considered their own cluster.) The connected components of a

graph can be found easily using any standard breath- or depth-first search [191].

109

Figure 4.2: Probability density f(k; γ, n) of the FGD for n = 8 and γ = 1/2, 1, and

2. For γ = 1, the FGD is just the uniform distribution.

Within clusters, we propose multi-site moves with a move distance drawn from

some appropriate discrete distribution; here, we use a finite geometric distribution

(FGD), the natural analogue of the geometric distribution but with finite support.

Briefly, for a given cluster with state θ, we consider a proposal density

Pr (θ′; θ) ≡
(
n

k

)−1

f (k; γ, n) , (4.16)

where n is the dimension of θ (i.e., the number of sites in the cluster), k is the number

of sites at which the proposed state θ′ differs from θ, and

f (k; γ, n) ≡
(

1− γ
1− γn

)
γk−1 for k = 1, . . . , n

is the probability density of the FGD with decay parameter γ (Figure 4.2). In other

words, we choose a proposal distance k from f , then sample the sphere {θ′ : |θ′ − θ| =

k} uniformly. This procedure is clearly symmetric, so the Metropolis criterion (4.14)

can be applied without modification. The parameter γ is typically taken as γ < 1 to

110

bias toward local moves, in which case it can be chosen to enforce a desired average

move distance by noting that the FGD has mean

µFGD (γ) = n+
1

1− γ
− n

1− γn
,

with γ → 1 − 1/µFGD as n → ∞; e.g., the choice γ = 1/2 corresponds to a mean

proposal distance of µFGD ≈ 2.

At each Monte Carlo step, our full proposal algorithm is then as follows:

1. Select a site cluster to modify at random, weighted by the cluster size.

2. Propose a new state for that cluster via (4.16).

Note 4.6. Clearly, other discrete distributions f(k) on {1, . . . , n} can be used in

(4.16). Here, we have chosen the FGD because it is, in some sense, the most natural,

especially given that we generally prefer k to be small.

4.5 Estimating the pKa

We have presented a multi-flip MCMC method for sampling the Boltzmann distri-

bution (4.9), seeded by the mean field approximation of §4.2 and accelerated by the

reduced site approximation of §4.3. In this section, we assume that this sampling has

been performed over a range of pH, leaving only their analysis and the estimation of

individual pKa values. We begin by describing how to obtain the distribution of the

mean protonation (4.8) for each site i at a given pH, using a scheme similar to that

employed by Beroza et al. [26] but based on slightly more sophisticated and robust

considerations as outlined by Alan Sokal in [179]. We then show how to estimate each

pKa from these quantities, and furthermore how to characterize the distributions of

111

our estimates. This latter contribution appears to be novel and is exceedingly simple,

based only on a direct application of the delta method from statistics [152].

Fix the pH and consider only titrating site i for the moment (so that the notation

becomes much cleaner), and let {χj}Nj=1 be a sample of the protonation states θi.

Then the mean protonation 〈θi〉 can be estimated by simple averaging as

χ̄ ≡ 1

N

N∑
j=1

χj.

To estimate the variance of 〈θi〉, we compute the integrated autocorrelation time

τ ≡
N−1∑

k=−(N−1)

ρ (k) = 1 + 2
N−1∑
k=1

ρ (k) , (4.17)

where

ρ (k) ≡ 1

σ2
χ

(
1

N − k

N−k∑
j=1

χjχj+k − χ̄2

)
(4.18)

is the autocorrelation, for σ2
χ the sample variance. The number of independent sam-

ples in the data is then approximately N/τ , so we estimate the variance of 〈θi〉 as

σ2
χ̄ ≈

σ2
χ

N/τ
.

From (4.18), however, it is easy to see that ρ(k) is increasingly subject to statistical

error as k increases due to the diminishing number of samples, so we follow [179] and

use instead the windowed analogue

τ̂ ≡ 1 + 2
M∑
k=1

ρ (k) (4.19)

of (4.17), where ideally M is chosen such that τ̂ �M � N . In practice, we compute

τ̂ for various values of M , and use the first M such that the consistency criterion

M ≥ cτ̂ is satisfied, for, e.g., c = 4 [see 179].

112

Once this has been done for each pH, we then estimate the pKa of site i, de-

noted pKi, as the pH at which χ̄ = 1/2 by linear interpolation, cf. (4.1). This is

generally considered the standard protocol, which we now improve upon by using the

distributions of 〈θi〉 to produce a distribution for pKi. For this, first recall that our

estimate of 〈θi〉 ∼ N (χ̄, σ2
χ̄) is normally distributed by the central limit theorem, so

let us consider two data points (xj, Yj) for j = 1, 2, where each Yj ∼ N (yj, σ
2
j). Using

linear interpolation on the means yj then yields

y =

(
x2 − x
x2 − x1

)
y1 +

(
x− x1

x2 − x1

)
y2,

which can be inverted to give

x =

(
y − y2

y1 − y2

)
x1 +

(
y1 − y
y1 − y2

)
x2.

Applying this to the distribution data, we hence have

X = h (Y) ≡
(
y − Y2

Y1 − Y2

)
x1 +

(
Y1 − y
Y1 − Y2

)
,

where

Y =

Y1

Y2

 ∼ N

y1

y2

 ,
σ2

1 0

0 σ2
2


 ≡ N (µY , σ2

Y

)
.

Therefore, by the delta method [152], X has the asymptotic distribution

X ∼ N
(
h (µY) ,∇h (µY)T σ2

Y∇h (µY)
)
≡ N

(
µX , σ

2
X

)
,

where

µX =

(
y − y2

y1 − y2

)
x1 +

(
y1 − y
y1 − y2

)
x2, (4.20a)

σ2
X =

[
(y − y2)σ2

1 + (y1 − y)σ2
2

] x2 − x1

(y2 − y1)2 . (4.20b)

It is immediate that this can be used to estimate the distribution of pKi by identifying

x with the pH and y with 〈θi〉. Repeating this for all sites completes the computation.

113

4.6 Algorithm

We now have all the ingredients necessary to describe the full pKa calculation algo-

rithm, which, for simplicity, is divided into four phases:

1. preprocessing, including protein preparation, titrating site identification, charge

assignment, and molecular surface triangulation;

2. energy precomputation, comprising the compression of the electrostatic poten-

tial matrix W , the computation of the site interaction energies ∆Gij, and the

calculation of the intrinsic pKa values for each site;

3. Monte Carlo sampling, to draw protein protonation states from the Boltzmann

distribution (4.9) at each pH; and

4. postprocessing, to derive from the Monte Carlo data the pKi.

Preprocessing

We use protein structures from the Protein Data Bank (PDB) [25]. These are typi-

cally not directly suitable for pKa calculations as they contain only the coordinates

of heavy atoms; moreover, they can contain waters or inorganic ions. Thus, we first

prepare them by stripping all non-standard residues, and then adding and optimizing

the locations of all hydrogens using PDB2PQR [66]. If a protein has multiple con-

formations, only the primary one (A-form) is considered. For each atom, we assign

a partial charge and an atomic radius using PARSE parameters [177]. We consider

only the residues Arg, Asp, Cys, Glu, His, Lys, and Tyr as titrable; we hence ignore

the titration of the C- and N-termini. Only non-bridged Cys are titrated, and we

assume that the unprotonated form of His has a hydrogen on the ε-nitrogen (i.e.,

114

Table 4.1: Model pKa values for each titratable residue at temperature T = 25 ◦C.

residue pK0
a

Arg 12.0

Asp 4.0

Cys 9.5

Glu 4.4

His 6.3

Lys 10.4

Tyr 9.6

the HIE form). Model pKa values at T = 25 ◦C are taken from [151] (Table 4.1),

with model compound structures chosen as the extractions of the relevant residues

from the protein. Molecular surfaces are triangulated using MSMS [169] with a probe

radius of 1.4 Å and vertex densities of either 1.0 or 0.5 Å−2 for smaller or larger pro-

teins, respectively (see Table 4.3). In total, Ntitr + 1 surfaces are generated: one for

the protein as a whole, and one for the model compound of each titrating site.

Energy precomputation

For each molecular geometry, we compress the electrostatic potential matrix W by

compression of its constituent matrices A−1, B, C, and D, cf. (4.4) and §1.2; the

compression precision is set at ε = 10−3. Unless otherwise specified, we take ε0 = 80

and ε1 = 20 for the dielectric constants of the solvent and the protein, respectively.

This choice of ε1 is somewhat higher than the commonly accepted value of ε1 = 4

115

[80] and is used to model the effects of minor pH-dependent conformational changes

[see, e.g., 8, 115]. The default ionic strength is 0.1 M, corresponding to a Debye

screening length of κ−1 = 10 Å. For each titrating site, we calculate the protonation

energies ∆Gele(Ap −→ ApH) and ∆Gele(As −→ AsH) in the protein and in the model

compound, respectively, which give the pK0
i via (4.3) (using T = 25 ◦C). Furthermore,

we precompute the interaction energies (4.7) in the protein, in anticipation of their

extensive use in each Monte Carlo run.

Monte Carlo sampling

At each pH, we perform the following operations:

1. Use the reduced site approximation to compute pmin,i and pmax,i for each site

i via (4.12) and (4.13), respectively. Fix its protonation state if possible using

p∗min = 0.99 and p∗max = 0.01.

2. Find titrating site clusters among the remaining Nfree sites using an energy

threshold of one pKa unit, i.e., |∆G∗| = 1.37 kcal/mol, in (4.15).

3. Run the mean field iteration (4.10) to determine an appropriate initial MCMC

state by (4.11).

We then perform the actual Monte Carlo simulation, where at each step a new state

is proposed following §4.4 and accepted according to (4.14). All state transitions are

processed at T = 25 ◦C. The free energy is computed via (4.6) using the precomputed

∆Gij. The decay parameter in the FGD is set at γ = 1/2. We take 1000 Monte Carlo

passes for each sample, i.e., 1000Nfree steps. This is repeated for each pH over the

range −6 ≤ pH ≤ 20 in increments of 0.5 pH units.

116

Postprocessing

Finally, the Monte Carlo data are postprocessed using the techniques of §4.5. Specifi-

cally, the distribution of 〈θi〉 at each pH is estimated using the consistency parameter

c = 4 in (4.19), and then the distribution of each pKi is estimated via (4.20).

4.7 Numerical results

We implemented the above algorithm using a mix of Fortran and Python, relying on

the former for the heavy number crunching (energy precomputation and Monte Carlo

sampling) and the latter to drive the overall calculation. Following [128], we applied

our methods to five well-studied proteins: bovine pancreatic trypsin inhibitor (BPTI,

PDB ID: 4PTI [136]), turkey ovomucoid third domain (OMTKY3, PDB ID: 2OVO

[27]), hen egg white lysozyme (HEWL, PDB ID: 2LZT [161]), RNase H (PDB ID:

3NR3 [111]), and RNase A (PDB ID: 2RN2 [120]). These are summarized briefly in

Table 4.2. For the larger proteins (Nres & 100 residues), MSMS sometimes returned

triangles with zero area; these were removed from the mesh before proceeding further.

Algorithmic acceleration

Numerical data for each protein titration with respect to the acceleration provided by

the algorithm are shown in Table 4.3. It is evident that the fast direct solver was very

successful at reducing the energy precomputation time; the estimated speedup over

classical methods is ∼ 200 (after matrix compression and factorization). However, the

cost of matrix compression remained high and was, in fact, several orders greater than

that of calculating the energies in all cases. This suggests a fundamental imbalance

117

Table 4.2: Summary statistics for titrated proteins: Nres, number of residues; Ntitr,

number of titrating sites (according to Table 4.1); Nsrc, number of atoms.

name PDB ID Nres Ntitr Nsrc

BPTI 4PTI 58 18 891

OMTKY3 2OVO 56 15 813

HEWL 2LZT 129 30 1965

RNase A 3RN3 124 34 1865

RNase H 2RN2 155 53 2474

Table 4.3: Numerical data for protein titration: density, triangulation vertex den-

sity (Å−2); Ntri, number of triangles in protein surface triangulation; Tcm, matrix

compression time (A) in protein (s); Tsv, inverse application time (A−1) in protein

(s); Tnrg, total energy calculation time after matrix precomputation (s); M , required

storage for compressed matrix (A) in protein (MB); rfree, average fraction of free sites

to titrating sites over all pH sampled.

name density Ntri Tcm Tsv Tnrg M rfree

BPTI 1.0 7402 2.5E+3 9.9E−2 1.7E+0 1.5E+2 0.20

OMYTK3 1.0 7278 2.5E+3 1.2E−1 1.5E+0 1.6E+2 0.21

HEWL 0.5 9652 3.3E+3 1.3E−1 4.3E+0 2.1E+2 0.21

RNase A 0.5 9426 3.4E+3 1.4E−1 4.8E+0 2.1E+2 0.25

RNase H 0.5 13014 5.7E+3 2.4E−1 1.3E+1 3.4E+2 0.28

118

that may be better addressed by other algorithmic tools (see §4.8). Nonetheless, the

compression afforded by our current scheme dramatically cuts the memory require-

ment and therefore allows much larger problems to be pursued, directly translating

to a more faithful representation of the molecular geometry and hence to a more ac-

curate result. For RNase H, for instance, the amount of memory required to simply

store the matrix A in the protein is about 5.5 GB without compression, but only 340

MB with it. Furthermore, we find the reduced site approximation to be extremely

powerful, leading to a uniform four- to five-fold acceleration in the Monte Carlo phase

essentially without sacrificing any accuracy (especially since the interpolation of the

final pKa values are local). More detailed data for each protein are given in Figures

4.3–4.7, from which we see that the approximation efficiently pruned out rare titra-

tion events near the pH extremes. Also shown are the protein titration curves, which

reflect the standard sigmoidal shape.

We moreover emphasize the acceptance ratios for MCMC transitions, which were

generally very satisfactory. Only a few stagnation points were observed, and these at

pH values for which most, if not all, sites were close to being fixed, i.e., the difficulties

of transition were physical. Such cases typically occurred in the 5 < pH < 8 range,

which is exactly intermediate to the two pK0
a clusters with Asp and Glu on the low

end, and Arg, Cys, Lys, and Tyr on the high end (Table 4.1); His falls exactly within

this range, but they were generally rare and so did not have much effect. Our Monte

Carlo sampling procedure therefore appears quite efficient, though there were not

enough multisite clusters to test the FGD-based scheme extensively.

119

Figure 4.3: Numerical results for titrating BPTI, showing the mean protein proto-

nation 〈θ〉 (with standard error), the number Nfree of free sites, the number Nclust of

multisite clusters, and the Monte Carlo acceptance ratio a as a function of pH.

Figure 4.4: Numerical results for titrating OMTKY3; notation as in Figure 4.3.

120

Figure 4.5: Numerical results for titrating HEWL; notation as in Figure 4.3.

Figure 4.6: Numerical results for titrating RNase A; notation as in Figure 4.3.

121

Figure 4.7: Numerical results for titrating RNase H; notation as in Figure 4.3.

Prediction accuracy

We also briefly studied the quality of our pKa calculations by comparing against

experimental data as reproduced in [128]. For this, we ran our code using three

different protein dielectrics: ε1 = 4, 8, and 20, corresponding to increasing implicit

conformational flexibility. The calculated pKa values for each protein are presented

in Tables 4.4–4.8, along with the root mean square deviation (RMSD) for each ε1.

It is immediate that our sampling error is very low, in many cases less than 0.1

protons, as determined by the method of §4.5. Thus, we can be confident that our

estimates have converged, though, of course, they may be biased due to the physical

or computational model. For all proteins but one (OMTKY3), the RMSD is smallest

for ε1 = 20, sometimes by large margins (HEWL, RNase A, RNase H); for OMTKY3,

the smallest RMSD is achieved at ε1 = 8, but the difference with that for ε1 = 20 is

122

Table 4.4: Calculated pKa values for BPTI at various protein dielectrics ε1 = 4, 8,

and 20, compared against experiment (expt). The standard error for each calculated

value is given in parentheses; the best matching pKa prediction for each site is marked

in bold. The RMSD is also shown for each ε1, with the number of sites in each average

given in parentheses.

residue expt ε1 = 4 ε1 = 8 ε1 = 20

Arg 1 17.09 (0.07) 15.47 (0.07) 14.21 (0.05)

Asp 3 3.6 3.19 (0.05) 3.45 (0.05) 3.51 (0.06)

Glu55 3.9 5.14 (0.05) 4.25 (0.05) 3.65 (0.06)

Tyr10 9.4 9.64 (0.06) 9.39 (0.05) 9.13 (0.05)

Lys15 10.4 10.73 (0.05) 10.72 (0.05) 10.59 (0.05)

Arg17 12.30 (0.04) 12.25 (0.05) 12.11 (0.04)

Arg20 11.38 (0.07) 12.33 (0.05) 12.80 (0.06)

Tyr21 10.0 10.60 (0.05) 10.02 (0.05) 9.67 (0.05)

Tyr23 11.0 13.32 (0.09) 11.30 (0.08) 10.28 (0.08)

Lys26 10.1 10.38 (0.04) 10.38 (0.05) 10.41 (0.05)

Tyr35 10.6 6.39 (0.05) 7.45 (0.05) 8.08 (0.05)

Arg39 12.10 (0.05) 12.21 (0.05) 12.23 (0.05)

Lys41 10.6 10.66 (0.07) 10.94 (0.05) 11.02 (0.05)

Arg42 12.96 (0.05) 12.77 (0.05) 12.52 (0.05)

Lys46 9.9 10.11 (0.05) 10.13 (0.06) 10.24 (0.05)

Glu49 4.0 3.80 (0.05) 3.92 (0.05) 3.90 (0.05)

Asp50 3.2 2.61 (0.05) 2.54 (0.05) 2.44 (0.05)

123

Table 4.4: Calculated pKa values for BPTI (continued).

residue expt ε1 = 4 ε1 = 8 ε1 = 20

Arg53 11.44 (0.05) 12.12 (0.05) 12.64 (0.04)

RMSD 1.47 (12) 0.96 (12) 0.82 (12)

negligible (1.07 v. 1.09). This is consistent with previous findings advocating a higher

protein dielectric [8, 115].

Our predictions are highly accurate for BPTI, HEWL, and RNase A (RMSD ≤ 1),

but suffer somewhat for OMTKY3 and RNase H. Of these, RNase H proved partic-

ularly difficult (RMSD = 1.36), with the algorithm performing especially poorly for

Asp10, Asp70, and Glu129. The latter two can evidently be attributed to strong

structural relaxations beyond that captured by our artificially high choice of ε1. In-

deed, much more favorable results were reported by Georgescu, Alexov, and Gunner

[76], who explicitly modeled sidechain flexibility, but significantly not by other calcu-

lations using only rigid structures [149], which gave very similar values to ours. For

all four proteins considered, our overall results are generally comparable with those of

previous methods based on Poisson-Boltzmann electrostatics [7, 8, 76, 115, 149, 182,

205, 206], and also those based on other techniques [128, 153, and references therein].

The combined data over all proteins are summarized in Figure 4.8 and Table 4.9.

124

Table 4.5: Calculated pKa values for OMTKY3 at various protein dielectrics; notation

as in Table 4.4.

residue expt ε1 = 4 ε1 = 8 ε1 = 20

Asp 7 2.4 1.67 (0.06) 2.48 (0.05) 2.89 (0.05)

Glu10 4.1 4.22 (0.05) 4.18 (0.05) 4.18 (0.05)

Tyr11 10.2 14.13 (0.07) 11.23 (0.14) 9.40 (0.05)

Lys13 9.9 10.86 (0.09) 11.26 (0.10) 11.71 (0.05)

Glu19 3.2 4.93 (0.05) 3.88 (0.05) 3.28 (0.05)

Tyr20 11.1 8.59 (0.06) 8.86 (0.07) 8.86 (0.06)

Arg21 11.44 (0.04) 11.60 (0.04) 12.45 (0.05)

Asp21 2.2 5.07 (0.05) 2.78 (0.05) 3.64 (0.05)

Lys29 11.1 11.12 (0.04) 11.06 (0.04) 11.15 (0.06)

Tyr31 > 12.5 16.13 (0.07) 13.43 (0.05) 11.57 (0.07)

Lys34 10.1 11.71 (0.05) 11.43 (0.06) 11.42 (0.06)

Glu43 4.8 4.42 (0.05) 3.56 (0.05) 4.29 (0.05)

His52 7.5 6.89 (0.05) 6.23 (0.04) 6.53 (0.05)

Lys55 11.1 10.82 (0.07) 10.78 (0.07) 10.91 (0.06)

Cys56 17.33 (0.06) 14.01 (0.05) 10.93 (0.06)

RMSD 1.77 (12) 1.07 (12) 1.09 (12)

125

Table 4.6: Calculated pKa values for HEWL at various protein dielectrics; notation

as in Table 4.4.

residue expt ε1 = 4 ε1 = 8 ε1 = 20

Lys 1 10.6 9.04 (0.05) 9.75 (0.04) 10.16 (0.04)

Arg 5 11.42 (0.05) 12.06 (0.05) 12.30 (0.05)

Glu 7 2.9 −1.44 (0.05) 0.72 (0.05) 2.11 (0.04)

Lys 13 10.3 9.68 (0.04) 9.83 (0.04) 10.04 (0.04)

Arg 14 10.77 (0.05) 11.67 (0.05) 12.30 (0.05)

His 15 5.6 1.72 (0.05) 3.93 (0.05) 5.19 (0.05)

Asp 18 2.7 −0.24 (0.06) 1.28 (0.05) 2.27 (0.05)

Tyr 20 10.3 14.78 (0.04) 12.19 (0.06) 9.90 (0.05)

Arg 21 11.03 (0.06) 12.41 (0.06) 12.84 (0.06)

Tyr 23 9.8 11.09 (0.05) 10.07 (0.05) 9.48 (0.06)

Lys 33 10.4 7.61 (0.04) 8.77 (0.04) 9.53 (0.04)

Glu 35 6.2 4.93 (0.05) 4.86 (0.05) 4.49 (0.05)

Arg 45 10.76 (0.05) 11.54 (0.06) 12.45 (0.06)

Asp 48 < 2.5 −2.20 (0.05) 0.21 (0.05) 1.74 (0.05)

Asp 52 3.7 −0.30 (0.05) 1.42 (0.05) 2.35 (0.06)

Tyr 53 12.1 > 20.00 () 15.30 (0.06) 11.12 (0.07)

Arg 61 10.07 (0.05) 11.80 (0.05) 12.85 (0.06)

Asp 66 < 2.0 6.00 (0.07) 4.64 (0.04) 3.59 (0.05)

Arg 68 11.95 (0.10) 12.33 (0.15) 13.27 (0.05)

Arg 73 10.19 (0.05) 11.53 (0.05) 12.29 (0.05)

126

Table 4.6: Calculated pKa values for HEWL (continued).

residue expt ε1 = 4 ε1 = 8 ε1 = 20

Asp 87 2.1 2.28 (0.06) 2.52 (0.05) 2.60 (0.05)

Lys 96 10.7 9.23 (0.06) 9.94 (0.05) 10.86 (0.05)

Lys 97 10.1 12.06 (0.04) 11.68 (0.05) 11.53 (0.05)

Asp101 4.1 5.42 (0.05) 4.31 (0.05) 3.58 (0.05)

Arg112 8.52 (0.06) 10.87 (0.05) 12.07 (0.05)

Arg114 12.45 (0.05) 12.50 (0.04) 12.61 (0.04)

Lys116 10.2 9.25 (0.05) 9.60 (0.04) 9.99 (0.05)

Asp119 3.2 2.85 (0.05) 2.86 (0.04) 2.88 (0.05)

Arg125 10.78 (0.04) 11.79 (0.05) 12.38 (0.05)

Arg128 12.02 (0.04) 12.04 (0.05) 11.93 (0.05)

RMSD 2.52 (16) 1.49 (17) 0.79 (17)

4.8 Summary

In this chapter, we have described a procedure for the theoretical calculation of protein

pKa values and demonstrated its acceleration using the fast direct solver of Chapter

2. We have also provided various enhancements to the conventional algorithm by

implementing generalized multi-site transitions and propagating sampling errors to

our predictions; the former was shown to be effective over the few cases tested, while

the latter allowed us to assess the convergence of our Monte Carlo sampling. Overall,

our direct solver was very efficient at computing the interaction energies (4.7), though

the cost of the requisite matrix precomputations became somewhat prohibitive for

127

Table 4.7: Calculated pKa values for RNase A at various protein dielectrics; notation

as in Table 4.4.

residue expt ε1 = 4 ε1 = 8 ε1 = 20

Lys 1 10.12 (0.04) 10.30 (0.04) 10.51 (0.05)

Glu 2 2.8 −4.50 (0.04) −0.95 (0.04) 1.26 (0.05)

Lys 7 10.15 (0.06) 10.46 (0.05) 10.50 (0.06)

Glu 9 4.0 2.87 (0.04) 3.56 (0.04) 3.94 (0.05)

Arg 10 14.21 (0.04) 14.26 (0.04) 14.35 (0.05)

His 12 6.2 9.84 (0.21) 6.91 (0.09) 5.99 (0.06)

Asp 14 < 2.0 4.29 (0.11) 3.07 (0.22) 1.64 (0.08)

Tyr 25 > 20.00 () 15.87 (0.05) 12.04 (0.05)

Lys 31 9.31 (0.04) 9.73 (0.05) 10.20 (0.05)

Arg 33 9.69 (0.15) 11.71 (0.05) 13.21 (0.05)

Lys 37 11.58 (0.04) 11.16 (0.05) 10.83 (0.05)

Asp 38 3.5 1.26 (0.04) 2.31 (0.04) 2.86 (0.04)

Arg 39 11.38 (0.04) 12.14 (0.05) 12.86 (0.05)

Lys 41 4.37 (0.13) 8.03 (0.08) 9.74 (0.06)

His 48 6.0 < −6.00 () −0.20 (0.10) 6.01 (0.10)

Glu 49 4.7 5.63 (0.04) 5.08 (0.06) 4.30 (0.05)

Asp 53 3.9 3.18 (0.04) 3.39 (0.05) 3.53 (0.05)

Lys 61 10.41 (0.06) 10.76 (0.06) 11.10 (0.04)

Lys 66 10.32 (0.05) 10.60 (0.05) 10.71 (0.05)

Tyr 73 13.47 (0.06) 12.52 (0.10) 11.37 (0.08)

128

Table 4.7: Calculated pKa values for RNase A (continued).

residue expt ε1 = 4 ε1 = 8 ε1 = 20

Tyr 76 9.63 (0.06) 9.67 (0.05) 9.73 (0.06)

Asp 83 3.5 2.71 (0.05) 2.19 (0.05) 1.92 (0.04)

Arg 85 9.46 (0.05) 11.42 (0.05) 12.54 (0.05)

Glu 86 4.1 1.84 (0.04) 2.97 (0.04) 3.47 (0.04)

Lys 91 11.48 (0.05) 11.11 (0.05) 10.88 (0.05)

Tyr 92 9.93 (0.04) 10.07 (0.06) 10.04 (0.06)

Tyr 97 < −6.00 () 15.18 (0.05) 11.44 (0.07)

Lys 98 10.20 (0.04) 10.18 (0.04) 10.22 (0.05)

Lys104 8.14 (0.04) 9.22 (0.05) 9.84 (0.05)

His105 6.7 2.27 (0.04) 4.18 (0.04) 5.26 (0.05)

Glu111 3.5 1.62 (0.05) 2.98 (0.04) 3.66 (0.05)

Tyr115 16.60 (0.07) 13.44 (0.11) 11.67 (0.08)

His119 6.1 2.42 (0.10) 6.01 (0.07) 6.07 (0.10)

Asp121 3.1 5.92 (0.11) 2.08 (0.07) 2.02 (0.05)

RMSD 3.22 (12) 2.25 (13) 0.85 (13)

larger surface meshes. This is especially relevant since preliminary investigations with

molecular representations hinted that our accuracy improves appreciably with surface

refinement. Since the total number of potential solves is relatively small (only Ntitr

as opposed to the Ntri governing all matrix calculations), it may therefore be more

profitable to use instead an iterative scheme driven by a compression-based FMM

129

Table 4.8: Calculated pKa values for RNase H at various protein dielectrics; notation

as in Table 4.4.

residue expt ε1 = 4 ε1 = 8 ε1 = 20

Lys 3 10.45 (0.04) 10.69 (0.05) 10.81 (0.06)

Glu 6 4.5 −1.77 (0.05) 0.98 (0.06) 2.72 (0.06)

Asp 10 6.1 −2.04 (0.04) 0.39 (0.08) 2.44 (0.11)

Cys 13 18.68 (0.04) 14.30 (0.05) 11.13 (0.05)

Tyr 22 15.90 (0.11) 12.87 (0.11) 11.15 (0.10)

Arg 27 14.01 (0.04) 14.53 (0.04) 14.97 (0.05)

Tyr 28 16.91 (0.07) 13.67 (0.07) 10.80 (0.07)

Arg 29 12.36 (0.04) 12.56 (0.05) 12.91 (0.06)

Arg 31 11.96 (0.04) 11.93 (0.05) 12.14 (0.05)

Glu 32 3.6 −0.61 (0.04) 1.43 (0.05) 2.56 (0.06)

Lys 33 6.56 (0.04) 8.17 (0.04) 9.36 (0.05)

Tyr 39 11.95 (0.14) 11.34 (0.11) 10.80 (0.09)

Arg 41 9.39 (0.11) 11.69 (0.06) 12.90 (0.05)

Arg 46 > 20.00 () 19.36 (0.05) 16.68 (0.05)

Glu 48 4.4 0.69 (0.04) 2.08 (0.05) 2.67 (0.07)

Glu 57 3.2 −1.89 (0.05) 0.77 (0.05) 2.36 (0.05)

Lys 60 10.62 (0.04) 10.68 (0.05) 10.99 (0.05)

Glu 61 3.9 3.85 (0.04) 3.75 (0.05) 3.26 (0.05)

His 62 7.0 7.89 (0.06) 7.25 (0.06) 6.91 (0.05)

Cys 63 > 20.00 () 18.50 (0.05) 13.65 (0.05)

130

Table 4.8: Calculated pKa values for RNase H (continued).

residue expt ε1 = 4 ε1 = 8 ε1 = 20

Glu 64 4.4 1.27 (0.04) 2.85 (0.05) 3.62 (0.05)

Asp 70 2.6 5.46 (0.08) 5.62 (0.08) 4.43 (0.11)

Tyr 73 13.11 (0.07) 10.61 (0.10) 8.84 (0.06)

Arg 75 9.64 (0.04) 11.28 (0.04) 12.26 (0.05)

His 83 5.5 4.17 (0.04) 5.00 (0.04) 5.42 (0.04)

Lys 86 11.13 (0.04) 11.40 (0.05) 11.40 (0.05)

Lys 87 10.85 (0.04) 11.78 (0.05) 12.37 (0.05)

Arg 88 10.85 (0.04) 11.78 (0.05) 12.37 (0.05)

Lys 91 10.55 (0.05) 10.61 (0.06) 10.49 (0.06)

Asp 94 3.2 2.98 (0.04) 2.88 (0.04) 2.96 (0.05)

Lys 95 8.62 (0.04) 9.46 (0.04) 10.02 (0.05)

Lys 96 9.96 (0.04) 10.50 (0.04) 10.69 (0.04)

Lys 99 7.69 (0.05) 9.14 (0.09) 10.90 (0.07)

Asp102 < 2.0 −2.20 (0.09) 0.19 (0.05) 1.58 (0.05)

Arg106 14.15 (0.04) 14.62 (0.05) 14.72 (0.05)

Asp108 3.2 2.51 (0.04) 2.79 (0.05) 2.78 (0.04)

His114 5.0 −4.61 (0.05) 0.75 (0.05) 4.61 (0.04)

Lys117 11.09 (0.04) 11.31 (0.04) 11.33 (0.05)

Glu119 4.1 2.33 (0.14) 2.72 (0.07) 3.04 (0.06)

Lys122 9.86 (0.04) 10.09 (0.05) 10.30 (0.05)

His124 7.1 1.92 (0.04) 4.30 (0.05) 5.51 (0.05)

131

Table 4.8: Calculated pKa values for RNase H (continued).

residue expt ε1 = 4 ε1 = 8 ε1 = 20

His127 7.9 −0.81 (0.10) 3.83 (0.07) 6.08 (0.05)

Glu129 3.6 −3.92 (0.07) −0.81 (0.05) 1.09 (0.06)

Glu131 4.3 1.14 (0.04) 2.76 (0.06) 3.75 (0.06)

Arg132 10.71 (0.04) 12.24 (0.04) 13.39 (0.06)

Cys133 > 20.00 () 18.89 (0.05) 13.53 (0.06)

Asp134 4.1 4.82 (0.09) 4.32 (0.10) 3.31 (0.07)

Glu135 4.3 3.66 (0.04) 4.16 (0.04) 4.13 (0.05)

Arg138 14.76 (0.04) 14.97 (0.04) 14.89 (0.05)

Glu147 4.2 4.35 (0.04) 4.22 (0.05) 4.19 (0.04)

Asp148 < 2.0 < −6.00 () −2.78 (0.06) 0.28 (0.05)

Tyr151 12.39 (0.14) 10.40 (0.05) 9.75 (0.06)

Glu154 4.4 2.78 (0.04) 3.35 (0.04) 3.74 (0.05)

RMSD 4.53 (22) 2.53 (22) 1.36 (22)

(§3.5), for which the compression time (and memory requirement) should decrease

substantially. Work in this direction is now forthcoming.

Although the accuracies that we have presently reported are respectable (provided

that ε1 = 20), they are still quite far from the limits imposed by the experimental

data. As noted briefly above, an attractive remedy is to include conformational

flexibility [2, 76, 159, 182, 198]. This can be done in a number of ways, but the

approach of Gunner et al. [2, 76, 182] is particularly suited to our methods, as they

132

Figure 4.8: Accuracy of pKa calculations, grouped by residue type. Each plot shows

the calculated pKa values as a function of their experimental values for the group

of interest (dark outline), along with the identity transformation (black) and a ±1

pKa unit region (gray). The number of experimental values for each group is given

in parentheses.

133

Table 4.9: Summary statistics for calculated pKa values, grouped by residue type:

n, number of experimental values; nclose, number of ‘close’ predictions within 1 pKa

unit.

type n nclose RMSD

Asp 18 12 1.23

Glu 24 17 1.00

His 11 8 0.92

Lys 14 11 0.79

Tyr 9 7 1.24

all 76 55 1.05

rely on local resampling about an otherwise rigid structure. This hence can be treated

using precisely the perturbative techniques of §3.3. The energy state space is now also

significantly larger (the number of solves is equal to the total number of conformers

across both titratable and non-titratable residues [see 182]), which gives a further

advantage to the direct solver as the precomputation time can be more efficiently

amortized. For a review of current progress in protein pKa predictions, see [1].

Finally, we mention some very recent work on nonlocal electrostatic models, which

have been shown to better reproduce experimental solvation free energies while par-

tially reconciling the inconsistency of the protein dielectric [14, 105, 106]. Particular

formulations of such models can be accomodated using very similar integral equation

methods that can be treated numerically with our techniques as well [see 19]. Their

application to pKa calculations are much anticipated.

134

5 Generalizations and concluding

remarks

In this dissertation, we have:

1. presented a well-conditioned second-kind boundary integral formulation of the

linearized Poisson-Boltzmann equation (LPBE) for continuum molecular elec-

trostatics (Chapter 1);

2. developed a fast direct solver based on multilevel matrix compression for its

efficient numerical solution (Chapter 2);

3. outlined several practical and important extensions of the direct solver method-

ology (Chapter 3); and

4. applied our techniques to the calculation of protein pKa values (Chapter 4).

Our main contribution is the fast direct solver, which is general and can treat a

wide variety of non-oscillatory integral operators from mathematical physics. Thus,

it should prove a useful tool in many areas of computational science and engineering.

Its principal feature is its extremely fast solve times following precomputation, often

beating classical techniques or even accelerated schemes like the fast multipole method

by several orders of magnitude. Hence, our algorithm is particularly efficient for

problems involving multiple right-hand sides; such is the case with the calculation

of protein pKa values, and our results reflect its efficiency in this regard. Still, our

135

scheme can become unwieldy for large problems due to the non-optimal complexity of

the precomputation phase in higher dimensions; in the protein electrostatics setting,

this is O(N3/2), where N is the system size. Thus, an outstanding issue is the

development of fast direct solvers with optimal or near-optimal complexities. At the

same time, this precomputation cost may be forgiven if the number of solves required

is exceedingly large (say, ∼ 1000); therefore, it is also of interest to identify important

scientific problems for which this is true.

In this concluding chapter, we offer some insights toward both concerns. We begin

by surveying other biophysical problems to which the direct solver may be effectively

applied, including biomolecular charge optimization, protein structure prediction and

design, and protein-protein docking. These all have, in some sense, a much large

search space than the pKa application of Chapter 4, and so can more efficiently

amortize the precomputation cost. We then give some brief comments on how a

near-optimal fast direct solver may be achieved, as well as how similar ideas might

be used to construct direct solvers for oscillatory integral equations, for which much

remains to be discovered. Such solvers for oscillatory kernels are expected to have

tremendous impact, especially in biological imaging. We end with some final remarks

and perspectives for the future.

5.1 Biomolecular charge optimization

The first application that we consider is biomolecular charge optimization, for which

the canonical problem is the minimization of the binding energy of a solvated protein-

protein complex over all admissible charge configurations. This has implications

for understanding protein charge complementarity as well as in furthering molecular

136

design [125, 126], and constitutes an optimization problem that is constrained by a

partial differential equation (PDE)—in this case, the LPBE. Bardhan et al. [15, 16]

has shown that such problems can be treated efficiently using a block co-optimization

approach, where an LPBE solve is required at each Newton-Raphson iteration as part

of an expanded “reverse-Schur” computation. This can therefore be accelerated by

using our direct solver as a block preconditioner as was done for the multiple scattering

example in §2.8. Our methods are especially attractive for this application since the

search space is discovered on the fly and hence cannot be bounded a priori. Similar

remarks hold for other PDE-constrained optimization problems, provided that the

integral kernels are compatible with our techniques.

5.2 Protein structure prediction and design

We next consider the task of protein structure prediction and design, which encom-

passes some of the foremost problems in computational structural biology [11, 57].

We focus only on the electrostatics, and moreover assume a setting in which we have

a fixed backbone structure (e.g., from homology modeling), about which we perform

sidechain rotamer optimization. Then it turns out that the electrostatic energy of

a given rotamer configuration can be well-approximated by only one- and two-body

terms (that is, energies depending only on one or two rotamer states) [137, 197]; the

required calculation thus presents as a collection of local geometric perturbations, to

which we can directly apply the methods of §3.3. As with the multi-conformation

approach to pKa calculations discussed briefly in §4.8, the search space is now far

larger, giving the direct solver an extended comparative advantage. Such techniques

are expected to greatly accelerate current protein analysis workflows and should find

137

many applications in biotechnology.

5.3 Protein-protein docking

For a final example, we turn to protein-protein docking, which is fundamental to

the study of protein-protein interactions, with particular relevance to cell signaling

and modern drug discovery. As with the above, we consider only the electrostatic

contribution to the binding free energy [see 135]. Then the protocol for rigid-body

docking is fairly straightforward and is essentially equivalent to that of the multiple

scattering example from §2.8. Specifically, the electrostatic operators for both the

ligand and receptor are precomputed individually and then combined to rapidly solve

each candidate configuration by using the precomputed matrix factors as a block

preconditioner for some outer iterative scheme. This can be seen as a refinement

of the electrostatic “steering” Brownian dynamics simulations of McCammon et al.

[see, e.g., 189], which allow the ligand to move only in the field of the receptor

without accounting for their cross-interactions. The underlying search space here is

continuous, so the number of required solves in this setting can in general be quite

large.

Recently, it has become clear that conformational flexibility is critical to docking

processes [85, 174], and this, too, can be handled by our approach. The precompu-

tations are now performed with respect to the backbone structures of each protein,

and the different rotamer configurations treated using perturbative techniques as de-

scribed above.

138

Figure 5.1: Schematic for skeleton recompression in 2D, where skeletons (colored

by block index) are reclustered after each round of compression to exploit further

geometric structure.

5.4 Towards a near-optimal fast direct solver

Recall from §2.5 that our current direct solver has optimal O(N) complexity only on

1D domains, with general O(N3(1−1/d)) cost in Rd. The reason for this is most easily

seen from Figure 2.5, which shows that skeletons tend to line up along cell bound-

aries (as a consequence of Green’s theorem) and so are effectively objects in Rd−1.

To temper their growing sizes in high dimensions, it is clear that the skeletons must

be recompressed, and Figure 2.5 offers some tantalizing clues on how this might be

achieved. In particular, we observe that the skeleton distribution is highly structured

and hence can be further exploited. This requires a reordering of the skeletons such

that all clusters are separated, and leads to a natural scheme for recompression as

outlined in Figure 5.1. A higher dimensional analogue is straightforward and cor-

responds essentially to a recursion down on the effective skeleton dimension. The

consequences of such recompression are not yet entirely clear, but it is expected to

139

significantly reduce, at least, the practical cost of the algorithm.

5.5 Towards a fast direct solver for oscillatory

kernels

Although we have thus far been concerned only with the solution of non-oscillatory

integral equations, similar ideas may prove useful for the oscillatory case, e.g., the

Helmholtz equation, for which some progress has been made for volume integral

equations [44] but not for boundary integral equations in the general case [cf. 140, 144].

Fast algorithms for apply oscillatory integral operators based on the so-called butterfly

algorithm [34, 143, 154, 207] are available, and some preliminary results suggest that

the rank structure utilized there may also facilitate rapid inversion.

Briefly, in 1D, a one-level butterfly algorithm computes a matrix decomposition

of the form

A ≡

L(1)
1 S11R

(1)
1 L

(2)
1 S12R

(1)
2

L
(1)
2 S21R

(2)
1 L

(2)
2 S22R

(2)
2

 ,
where the L

(i)
j and R

(i)
j are interpolation matrices, with the Sij the associated skele-

tons; L(1) and L(2) can be thought of as the row projection matrices for the left and

right halves, respectively, of A, and similarly with R(1) and R(2) for the top and

bottom, where

L(i) ≡

L(i)
1

L
(i)
2

 , R(i) ≡

R(i)
1

R
(i)
2

 .
Then A admits the representation

A = LSR,

140

where

L =

L(1)
1 L

(2)
1

L
(1)
2 L

(2)
2

 , S =



S11

S21

S12

S22


, R =



R
(1)
1

R
(1)
2

R
(2)
1

R
(2)
2


.

This has the same basic structure as that for the present direct solver (but with D = 0,

cf. (2.2)) and so is amenable to essentially the same methods for fast multiplication

and inversion. The multilevel and multi-dimensional generalizations are not difficult

but are somewhat cumbersome; their description and analysis will be the subject of

a later publication.

Such techniques cannot yet treat the Helmholtz kernel but can be used, e.g., for

Fourier integral operators [34, 154, 207], a prime application of which is magnetic

resonance image reconstruction [89, and references therein].

5.6 Conclusion

In this work, we have presented a fast direct solver for non-oscillatory integral equa-

tions and have demonstrated its use in the context of molecular electrostatics. Its

primary novelty is the extremely low cost required to apply the solution operator,

once the initial compressed factorization has been obtained. Thus, it is particularly

suited to problems involving multiple right-hand sides, for which we have shown one

example in the form of protein pKa calculations and have outlined several more. We

believe that our techniques will enable new large-scale biophysical simulations, es-

pecially in areas concerning optimization and design. Furthermore, because of the

generality of the linear algebraic approach, our methods can also be applied to many

141

other problems in computational science and engineering. A number of algorithmic

issues remain open, notably the efficient extension of the fast direct solver to prob-

lems in higher dimensions or in the highly oscillatory regime. We hope that the basic

framework established here will be useful in those contexts as well.

142

Bibliography

[1] Alexov E, Mehler EL, Baker N, Baptista AM, Huang Y, Milletti F, Nielsen

JE, Farrell D, Carstensen T, Olsson MHM, Shen JK, Warwicker J, Williams S,

Word JM (2011) Progress in the prediction of pKa values in proteins. Proteins

79: 3260–3275.

[2] Alexov EG, Gunner MR (1997) Incorporating protein conformational flexibility

into the calculation of pH-dependent protein properties. Biophys J 74: 2075–

2093.

[3] Altman MD, Bardhan JP, Tidor B, White JK (2006) FFTSVD: A fast multi-

scale boundary-element method solver suitable for bio-MEMS and biomolecule

simulation. IEEE Trans Computer Aid Design 25: 274–284.

[4] Altman MD, Bardhan JP, White JK, Tidor B (2009) Accurate solution of

multi-region continuum biomolecule electrostatic problems using the linearized

Poisson-Boltzmann equation with curved boundary elements. J Comput Chem

30: 132–153.

[5] Amestoy PR, Duff IS, L’Excellent JY, Koster J (2001) A fully asynchronous

multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal

Appl 23: 15–41.

[6] Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Croz

143

JD, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK

Users’ Guide, 3rd ed. SIAM: Philadelphia, PA.

[7] Antosiewicz J, Briggs JM, Elcock AH, Gilson MK, McCammon JA (1996) Com-

puting ionization states of proteins with a detailed charge model. J Comput

Chem 17: 1633–1644.

[8] Antosiewicz J, McCammon JA, Gilson MK (1994) Prediction of pH-dependent

properties of proteins. J Mol Biol 238: 415–436.

[9] Appel AW (1985) An efficient program for many-body simulation. SIAM J Sci

Stat Comput 6: 85–103.

[10] Babuška I, Rheinboldt WC (1978) Error estimates for adaptive finite element

computations. SIAM J Numer Anal 15: 736–754.

[11] Baker D, Sali A (2001) Protein structure prediction and structural genomics.

Science 294: 93–96.

[12] Baker N, Holst M, Wang F (2000) Adaptive multilevel finite element solution

of the Poisson-Boltzmann equation II. Refinement at solvent-accessible surfaces

in biomolecular systems. J Comput Chem 21: 1343–1352.

[13] Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics

of nanosystems: application to microtubules and the ribosome. Proc Natl Acad

Sci USA 98: 10037–10041.

[14] Bardhan JP (2011) Nonlocal continuum electrostatic theory predicts surpris-

ingly small energetic penalties for charge burial in proteins. J Chem Phys 135:

104113.

144

[15] Bardhan JP, Altman MD, Tidor B, White JK (2009) “Reverse-Schur” approach

to optimization with linear PDE constraints: application to biomolecule anal-

ysis and design. J Chem Theory Comput 5: 3260–3278.

[16] Bardhan JP, Altman MD, White JK, Tidor B (2007) Efficient optimization

of electrostatic interactions between biomolecules. In Proceedings of the 46th

IEEE Conference on Decision and Control, pp. 4563–4569.

[17] Bardhan JP, Altman MD, Willis DJ, Lippow SM, Tidor B, White JK (2007)

Numerical integration techniques for curved-element discretizations of molecule-

solvent interfaces. J Chem Phys 127: 014701.

[18] Bardhan JP, Eisenberg ES, Gillespie D (2009) Discretization of the induced-

charge boundary integral equation. Phys Rev E 80: 011906.

[19] Bardhan JP, Hildebrandt A (2011) A fast solver for nonlocal electrostatic

theory in biomolecular science and engineering. In Proceedings of the 48th

ACM/EDAC/IEEE Design Automation Conference, pp. 801–805.

[20] Barnes J, Hut P (1986) A hierarchical O(N logN) force-calculation algorithm.

Nature 324: 446–449.

[21] Bashford D, Karplus M (1990) pKa’s of ionizable groups in proteins: atomic

detail from a continuum electrostatic model. Biochemistry 29: 10219–10225.

[22] Bashford D, Karplus M (1991) Multiple-site titration curves of proteins: an

analysis of exact and approximate methods for their calculation. J Phys Chem

95: 9556–9561.

145

[23] Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved elec-

trostatic potential based method using charge restraints for deriving atomic

charges: the RESP model. J Phys Chem 97: 10269–10280.

[24] Berenger JP (1994) A perfectly matched layer for the absorption of electromag-

netic waves. J Comput Phys 114: 185–200.

[25] Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov

IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28: 235–242.

[26] Beroza P, Fredkin DR, Okamura MY, Feher G (1991) Protonation of interacting

residues in a protein by a Monte Carlo method: application to lysozyme and

the photosynthetic reaction center of Rhodobacter sphaeroides. Proc Natl Acad

Sci USA 88: 5804–5808.

[27] Bode W, Epp O, Huber R, Laskowski M Jr, Ardelt W (1985) The crystal

and molecular structure of the third domain of silver pheasant ovomucoid

(OMSVP3). Eur J Biochem 147: 387–395.

[28] Bonnet M, Maier G, Polizzotto C (1998) Symmetric Galerkin boundary element

method. Appl Mech Rev 51: 669–704.

[29] Börm S (2010) Efficient numerical methods for non-local operators. H2-matrix

compression, algorithms and analysis. Eur Math Soc: Zürich.

[30] Boschitsch AH, Fenley MO, Zhou HX (2002) Fast boundary element method

for the linear Poisson-Boltzmann equation. J Phys Chem B 106: 2741–2754.

[31] Brandt A, Lubrecht AA (1990) Multilevel matrix multiplication and fast solu-

tion of integral equations. J Comput Phys 90: 348–370.

146

[32] Bremer J, Rokhlin V, Sammis I (2010) Universal quadratures for boundary

integral equations on two-dimensional domains with corners. J Comput Phys

229: 8259–8280.

[33] Brown LS, Kamikubo H, Zimányi L, Kataoka M, Tokunaga F, Verdegem P,

Lugtenburg J, Lanyi JK (1997) A local electrostatic change is the cause of the

large-scale protein conformation shift in bacteriorhodopsin. Proc Natl Acad Sci

USA 94: 5040–5044.

[34] Candès E, Demanet L, Ying L (2009) A fast butterfly algorithm for the com-

putation of Fourier integral operators. Multiscale Model Simul 7: 1727–1750.

[35] Canning FX, Rogovin K (1998) Fast direct solution of standard moment-

method matrices. IEEE Antenn Propag Mag 40: 15–26.

[36] Carrier J, Greengard L, Rokhlin V (1988) A fast adaptive multipole algorithm

for particle simulations. SIAM J Sci Stat Comput 9: 669–686.

[37] Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A,

Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation

programs. J Comput Chem 26: 1668–1688.

[38] Chai W, Jiao D, Koh CK (2009) A direct integral-equation solver of linear com-

plexity for large-scale 3D capacitance and impedance extraction. In Proceedings

of the 46th ACM/IEEE Design Automation Conference, pp. 752–757.

[39] Chan TF, Wan LW (1997) Analysis of projection methods for solving linear

systems with multiple right-hand sides. SIAM J Sci Comput 18: 1698–1721.

147

[40] Chandrasekaran S, DeWilde P, Gu M, Lyons W, Pals T (2006) A fast solver for

HSS representations via sparse matrices. SIAM J Matrix Anal Appl 29: 67–81.

[41] Chandrasekaran S, Gu M, Pals T (2006) A fast ULV decomposition solver

for hierarchically semiseparable representations. SIAM J Matrix Anal Appl 28:

603–622.

[42] Chen D, Chen Z, Chen C, Geng W, Wei GW (2011) MIBPB: a software package

for electrostatic analysis. J Comput Chem 32: 756–770.

[43] Chen L, Holst MJ, Xu J (2007) The finite element approximation of the non-

linear Poisson-Boltzmann equation. SIAM J Numer Anal 45: 2298–2320.

[44] Chen Y (2002) A fast, direct algorithm for the Lippmann-Schwinger integral

equation in two dimensions. Adv Comput Math 16: 175–190.

[45] Cheng H, Crutchfield W, Gimbutas Z, Greengard L, Huang J, Rokhlin V, Yarvin

N, Zhao J (2006) Remarks on the implementation of the wideband FMM for

the Helmholtz equation in two dimensions. Contemp Math 408: 99–110.

[46] Cheng H, Crutchfield WY, Gimbutas Z, Greengard LF, Ethridge JF, Huang J,

Rokhlin V, Yarvin N, Zhao J (2006) A wideband fast multipole method for the

Helmholtz equation in three dimensions. J Comput Phys 216: 300–325.

[47] Cheng H, Gimbutas Z, Martinsson PG, Rokhlin V (2005) On the compression

of low rank matrices. SIAM J Sci Comput 26: 1389–1404.

[48] Cheng H, Greengard L, Rokhlin V (1999) A fast adaptive multipole algorithm

in three dimensions. J Comput Phys 155: 468–498.

148

[49] Chew WC, Jin JM, Michielssen E, Song J (2001) Fast and efficient algorithms

in computational electromagnetics. Artech House: Boston, MA.

[50] Chorin AJ (1968) Numerical solution of the Navier-Stokes equations. Math

Comput 22: 745–762.

[51] Colton D, Kress R (1998) Inverse acoustic and electromagnetic scattering the-

ory, 2nd ed. Springer-Verlag: New York, NY.

[52] Connolly ML (1983) Solvent-accessible surfaces of proteins and nucleic acids.

Science 221: 709–713.

[53] Connolly ML (1993) The molecular surface package. J Mol Graph 11: 139–141.

[54] Cornish-Bowden A (1995) Fundamentals of enzyme kinetics, rev ed. Portland

Press: London.

[55] Cortis CM, Friesner RA (1997) Numerical solution of the Poisson-Boltzmann

equation using tetrahedral finite-element meshes. J Comput Chem 18: 1591–

1608.

[56] Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S

and 26S proteasomes. Annu Rev Biochem 65: 801–847.

[57] Dahiyat BI, Mayo SL (1997) De novo protein design: fully automated sequence

selection. Science 278: 82–87.

[58] Davis ME, McCammon JA (1990) Electrostatics in biomolecular structure and

dynamics. Chem Rev 90: 509–521.

149

[59] Davis TA (2004) A column pre-ordering strategy for the unsymmetric-pattern

multifrontal method. ACM Trans Math Softw 30: 165–195.

[60] Davis TA (2004) Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern

multifrontal method. ACM Trans Math Softw 30: 196–199.

[61] Davis TA (2011) Algorithm 915, SuiteSparseQR: multifrontal multithreaded

rank-revealing sparse QR factorization. ACM Trans Math Softw 38: 8.

[62] Davis TA, Duff IS (1997) An unsymmetric-pattern multifrontal method for

sparse LU factorization. SIAM J Matrix Anal Appl 18: 140–158.

[63] Davis TA, Duff IS (1999) A combined unifrontal/multifrontal method for un-

symmetric sparse matrices. ACM Trans Math Softw 25: 1–20.

[64] Demmel JW, Eisenstat SC, Gilbert JR, Li XS, Liu JWH (1999) A supernodal

approach to sparse partial pivoting. SIAM J Matrix Anal Appl 20: 720–755.

[65] Dill KA (1990) Dominant forces in protein folding. Biochemistry 29: 7133–7155.

[66] Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an au-

tomated pipeline for the setup of Poisson-Boltzmann electrostatic calculations.

Nucl Acids Res 32: W665–W667.

[67] Drew HR, Wing RM, Takano T, Broka C, Tanaka S, Itakura K, Dickerson RE

(1981) Structure of a B-DNA dodecamer: conformation and dynamics. Proc

Natl Acad Sci USA 78: 2179–2183.

[68] Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: struc-

ture, activation, substrates, and functions during apoptosis. Annu Rev Biochem

68: 383–424.

150

[69] Engquist B, Ying L (2007) Fast directional multilevel algorithms for oscillatory

kernels. SIAM J Sci Comput 29: 1710–1737.

[70] Engquist B, Ying L (2009) A fast directional algorithm for high frequency

acoustic scattering in two dimensions. Commun Math Sci 7: 327–345.

[71] Fischer PF (1998) Projection techniques for iterative solution of Ax = b with

successive right-hand sides. Comput Method Appl Mech Eng 163: 193–204.

[72] Fogolari F, Brigo A, Molinari H (2002) The Poisson-Boltzmann equation for

biomolecular electrostatics: a tool for structural biology. J Mol Recognit 15:

377–392.

[73] Fong W, Darve E (2009) The black-box fast multipole method. J Comput Phys

228: 8712–8725.

[74] Francl MM, Carey C, Chirlian LE, Gange DM (1996) Charges fit to electro-

static potentials II. Can atomic charges be unambiguously fit to electrostatic

potentials? J Comput Chem 17: 367–383.

[75] George A (1973) Nested dissection of a regular finite element mesh. SIAM J

Numer Anal 10: 345–363.

[76] Georgescu RE, Alexov EG, Gunner MR (2002) Combining conformational flex-

ibility and continuum electrostatics for calculating pKas in proteins. Biophys J

83: 1731–1748.

[77] Gillman A (2011) Fast direct solvers for elliptic partial differential equations.

PhD thesis, University of Colorado Boulder.

151

[78] Gillman A, Young PM, Martinsson PG (2012) A direct solver with O(N) com-

plexity for integral equations on one-dimensional domains. To appear, Front

Math China. arXiv:1105.5372.

[79] Gilson MK (1993) Multiple-site titration and molecular modeling: two rapid

methods for computing energies and forces for ionizable groups in proteins.

Proteins 15: 266–282.

[80] Gilson MK, Honig BH (1986) The dielectric of a folded protein. Biopolymers

25: 2097–2119.

[81] Gilson MK, Sharp KA, Honig BH (1987) Calculating the electrostatic potential

of molecules in solution: method and error assessment. J Comput Chem 9:

327–335.

[82] Gimbutas Z, Greengard L, Minion M (2001) Coulomb interactions on planar

structures: inverting the square root of the Laplacian. SIAM J Sci Comput 22:

2093–2108.

[83] Gimbutas Z, Rokhlin V (2003) A generalized fast multipole method for nonoscil-

latory kernels. SIAM J Sci Comput 24: 796–817.

[84] Golub GH, van Loan CF (1996) Matrix computations, 3rd ed. The Johns Hop-

kins University Press: Baltimore, MD.

[85] Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, Rohl CA,

Baker D (2003) Protein-protein dockingwith simultaneous optimization of rigid-

body displacement and side-chain conformations. J Mol Biol 331: 281–299.

152

http://arxiv.org/1105.5372

[86] Greengard L, Rokhlin V (1987) A fast algorithm for particle simulations. J

Comput Phys 73: 325–348.

[87] Greengard L (1994) Fast algorithms for classical physics. Science 265: 909–914.

[88] Greengard L, Gueyffier D, Martinsson PG, Rokhlin V (2009) Fast direct solvers

for integral equations in complex three-dimensional domains. Acta Numer 18:

243–275.

[89] Greengard L, Lee JY (2004) Accelerating the nonuniform fast Fourier transform.

SIAM Rev 46: 443–454.

[90] Greengard L, Lee JY (2006) Electrostatics and heat conduction in high contrast

composite materials. J Comput Phys 211: 64–76.

[91] Greengard L, Moura M (1994) On the numerical evaluation of electrostatic

fields in composite materials. Acta Numer 3: 379–410.

[92] Greengard L, Rokhlin V (1997) A new version of the Fast Multipole Method

for the Laplace equation in three dimensions. Acta Numer 6: 229–269.

[93] Greengard LF (1988) The rapid evaluation of potential fields in particle systems.

The MIT Press: Cambridge, MA.

[94] Greengard L, Rokhlin V (1991) On the numerical solution of two-point bound-

ary value problems. Commun Pure Appl Math 44: 419–452.

[95] Greengard LF, Huang J (2002) A new version of the fast multipole method

for screened Coulomb interactions in three dimensions. J Comput Phys 180:

642–658.

153

[96] Grote MJ, Huckle T (1997) Parallel preconditioning with sparse approximate

inverses. SIAM J Sci Comput 18: 838–853.

[97] Guenther RB, Lee JW (1988) Partial differential equations of mathematical

physics and integral equations. Prentice-Hall: Englewood Cliffs, NJ.

[98] Hackbusch W (1999) A sparse matrix arithmetic based on H-matrices. Part I:

introduction to H-matrices. Computing 62: 89–108.

[99] Hackbusch W, Börm S (2002) Data-sparse approximation by adaptive H 2-

matrices. Computing 69: 1–35.

[100] Hackbusch W, Khoromskij BN (2000) A sparse H -matrix arithmetic. Part II:

application to multi-dimensional problems. Computing 64: 21–47.

[101] Hackbusch W, Nowak ZP (1989) On the fast matrix multiplication in the bound-

ary element method by panel clustering. Numer Math 54: 463–491.

[102] Hager WW (1989) Updating the inverse of a matrix. SIAM Rev 31: 221–239.

[103] Hamada T, Yokota R, Nitadori K, Narumi T, Yasuoka K, Taiji M (2009) 42

TFlops hierarchical N -body simulations on GPUs with applications in both

astrophysics and turbulence. In Proceedings of the International Conference on

High Performance Computing, Networking, Storage, and Analysis.

[104] Helsing J, Ojala R (2008) Corner singularities for elliptic problems: integral

equations, graded meshes, quadrature, and compressed inverse preconditioning.

J Comput Phys 227: 8820–8840.

[105] Hildebrandt A, Blossey R, Rjasanow S, Kohlbacher O, Lenhof HP (2004) Novel

formulation of nonlocal electrostatics. Phys Rev Lett 93: 108104.

154

[106] Hildebrandt A, Blossey R, Rjasanow S, Kohlbacher O, Lenhof HP (2007) Elec-

trostatic potentials of proteins in water: a structured continuum approach.

Bioinformatics 23: e99–e103.

[107] Ho KL, Greengard L (2012) A fast direct solver for structured linear systems

by recursive skeletonization. In review. arXiv:1110.3105.

[108] Holst M, Baker N, Wang F (2000) Adaptive multilevel finite element solution of

the Poisson-Boltzmann equation I. Algorithms and examples. J Comput Chem

21: 1319–1342.

[109] Holst MJ (1993) Multilevel methods for the Poisson-Boltzmann equation. PhD

thesis, University of Illinois at Urbana-Champaign.

[110] Honig B, Nicholls A (1995) Classical electrostatics in biology and chemistry.

Science 268: 1144–1149.

[111] Howlin B, Moss DS, Harris GW (1989) Segmented anisotropic refinement of

bovine ribonuclease A by the application of the rigid-body TLS model. Acta

Crystallogr A 45: 851–861.

[112] Huang J, Jia J, Zhang B (2009) FMM-Yukawa: an adaptive fast multipole

method for screened Coulomb interactions. Comput Phys Commun 180: 2331–

2338.

[113] Hubbard SR, Till JH (2000) Protein tyrosine kinase structure and function.

Annu Rev Biochem 69: 373–398.

155

http://arxiv.org/1110.3105

[114] Ito Y, Ochiai Y, Park YS, Imanishi Y (1997) pH-sensitive gating by conforma-

tional change of a polypeptide brush grafted onto a porous polymer membrane.

J Am Chem Soc 119: 1619–1623.

[115] Juffer AH, Argos P, Vogel HJ (1997) Calculating acid-dissociation constants of

proteins using the boundary element method. J Phys Chem B 101: 7664–7673.

[116] Juffer AH, Botta EFF, van Keulen BAM, van der Ploeg A, Berendsen HJC

(1991) The electric potential of a macromolecule in a solvent: a fundamental

approach. J Comput Phys 97: 144–171.

[117] Kantorovich LV, Krylov VI (1958) Approximate methods of higher analysis.

Interscience: New York, NY.

[118] Kapur S, Long DE (1997) IES3: a fast integral equation solver for efficient

3-dimensional extraction. In Proceedings of the IEEE/ACM International Con-

ference on Computer-Aided Design.

[119] Kapur S, Rokhlin V (1997) High-order corrected trapezoidal quadrature rules

for singular functions. SIAM J Numer Anal 34: 1331–1356.

[120] Katayanagi K, Miyagawa M, Matsushima M, Ishikawa M, Kanaya S, Nakamura

H, Ikehara M, Matsuzaki T, Morikawa K (1992) Structural details of ribonu-

clease H from Escherichia coli as refined to an atomic resolution. J Mol Biol

223: 1029–1052.

[121] Kornberg A, Baker TA (1992) DNA replication, 2nd ed. WH Freeman & Co.:

New York, NY.

156

[122] Landau LD, Lifshitz EM (1980) Statistical physics, 3rd ed. Pergamon Press:

Oxford.

[123] Lashuk I, Chandramowlishwaran A, Langston H, Nguyen TA, Sampath R,

Shringarpure A, Vuduc R, Ying L, Zorin D, Biros G (2009) A massively parallel

adaptive fast multipole method on heterogeneous architectures. In Proceedings

of the International Conference on High Performance Computing, Networking,

Storage, and Analysis.

[124] Lee JY, Greengard L (1997) A fast adaptive numerical method for stiff two-

point boundary value problems. SIAM J Sci Comput 18: 403–429.

[125] Lee LP, Tidor B (1997) Optimization of electrostatic binding free energy. J

Chem Phys 106: 8681–8690.

[126] Lee LP, Tidor B (2001) Optimization of binding electrostatics: charge comple-

mentary in the barnase-barstar protein complex. Protein Sci 10: 362–337.

[127] Levy RM, Gallicchio E (1998) Computer simulations with explicit solvent: re-

cent progress in the thermodynamic decomposition of free energies and in mod-

eling electrostatic effects. Annu Rev Phys Chem 49: 531–567.

[128] Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and ra-

tionalization of protein pKa values. Proteins 61: 704–721.

[129] Li JR, Greengard L (2009) High order accurate methods for the evaluation of

layer heat potentials. SIAM J Sci Comput 31: 3847–3860.

[130] Li P, Johnston H, Krasny R (2009) A Cartesian treecode for screened Coulomb

interactions. J Comput Phys 228: 3858–3868.

157

[131] Liberty E, Woolfe F, Martinsson PG, Rokhlin V, Tygert M (2007) Randomized

algorithms for the low-rank approximation of matrices. Proc Natl Acad Sci USA

104: 20167–20172.

[132] Lin JH, Baker NA, McCammon JA (2002) Bridging implicit and explicit solvent

approaches for membrane electrostatics. Biophys J 83: 1374–1379.

[133] Liu Y (2009) Fast multipole boundary element method: theory and applications

in engineering. Cambridge University Press: New York, NY.

[134] Lu BZ, Zhou YC, Holst MJ, McCammon JA (2008) Recent progress in numer-

ical methods for the Poisson-Boltzmann equation in biophysical applications.

Commun Comput Phys 3: 973–1009.

[135] Mandell JG, Roberts VA, Pique ME, Kotlovyi V, Mitchell JC, Nelson E,

Tsigelny I, Eyck LFT (2001) Protein docking using continuum electrostatics

and geometric fit. Protein Eng 14: 105–113.

[136] Marquart M, Walter J, Deisenhofer J, Bode W, Huber R (1983) The geometry

of the reactive site and of the peptide groups in trypsin, trypsinogen, and its

complexes with inhibitors. Acta Crystallogr B 39: 480–490.

[137] Marshall SA, Vizcarra CL, Mayo SL (2005) One- and two-body decomposable

Poisson-Boltzmann methods for protein design calculations. Protein Sci 14:

1293–1304.

[138] Martinsson PG (2006) Fast evaluation of electro-static interactions in multi-

phase dielectric media. J Comput Phys 211: 289–299.

158

[139] Martinsson PG, Rokhlin V (2005) A fast direct solver for boundary integral

equations in two dimensions. J Comput Phys 205: 1–23.

[140] Martinsson PG, Rokhlin V (2007) A fast direct solver for scattering problems

involving elongated structures. J Comput Phys 221: 288–302.

[141] Martinsson PG, Rokhlin V (2007) An accelerated kernel-independent fast mul-

tipole method in one dimension. SIAM J Sci Comput 29: 1160–1178.

[142] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953)

Equation of state calculations by fast computing machines. J Chem Phys 21:

1087–1092.

[143] Michielssen E, Boag A (1996) A multilevel matrix decomposition algorithm

for analyzing scattering from large structures. IEEE Trans Antenn Propag 44:

1086–1093.

[144] Michielssen E, Boag A, Chew WC (1996) Scattering from elongated objects:

direct solution in O(N log2N) operations. IEE Proc Microw Antenn Propag

143: 277–283.

[145] Mur G (1981) Absorbing boundary conditions for the finite-difference approx-

imation of the time-domain electromagnetic-field equations. IEEE Trans Elec-

tromag Compat 23: 377–382.

[146] Nabors K, White J (1991) FastCap: a multipole accelerated 3-D capacitance

extraction program. IEEE Trans Computer Aid Design 10: 1447–1459.

[147] Newton AC (1995) Protein kinase C: structure, function, and regulation. J Biol

Chem 270: 28495–28498.

159

[148] Nicholls A, Honig B (1991) A rapid finite difference algorithm, utilizing succes-

sive over-relaxation to solve the Poisson-Boltzmann equation. J Comput Chem

12: 435–445.

[149] Nielsen JE, Vriend G (2001) Optimizing the hydrogen-bond network in Poisson-

Boltzmann equation-based pKa calculations. Proteins 43: 403–412.

[150] Nishimura N (2002) Fast multipole accelerated boundary integral equation

methods. Appl Mech Rev 55: 299–324.

[151] Nozaki Y, Tanford C (1967) Examination of titration behavior. Methods Enzy-

mol 11: 715–734.

[152] Oehlert GW (1992) A note on the delta method. Amer Stat 46: 27–29.

[153] Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3:

consistent treatment of internal and surface residues in empirical pKa predic-

tions. J Chem Theory Comput 7: 525–537.

[154] O’Neil M, Woolfe F, Rokhlin V (2010) An algorithm for the rapid evaluation

of special function transforms. Appl Comput Harmon Anal 28: 203–226.

[155] Pals TP (2004) Multipole for scattering computations: spectral discretization,

stabilization, fast solvers. PhD thesis, University of California, Santa Barbara.

[156] Perrot G, Cheng B, Gibson KD, Vila J, Palmer KA, Nayeem A, Maigret B,

Scheraga HA (1992) MSEED: a program for the rapid analytical determination

of accessible surface areas and their derivatives. J Comput Chem 13: 1–11.

160

[157] Phillips JR, White JK (1997) A precorrected-FFT method for electrostatic

analysis of complicated 3-D structures. IEEE Trans Computer Aid Design 16:

1059–1072.

[158] Purcell EM (1985) Electricity and magnetism, vol 2, 2nd ed. McGraw Hill:

Boston, MA.

[159] Rabenstein B, Ullman GM, Knapp EW (1998) Calculation of protonation pat-

terns in proteins with structural relaxation and molecular ensembles. Eur Bio-

phys J 27: 626–637.

[160] Rahimian A, Lashuk I, Veerapaneni SK, Chandramowlishwaran A, Malhotra

D, Moon L, Sampath R, Shringarpure A, Vetter J, Vuduc R, Zorin D, Biros G

(2010) Petascale direct numerical simulation of blood flow on 200K cores and

heterogeneous architectures. In Proceedings of the International Conference on

High Performance Computing, Networking, Storage, and Analysis.

[161] Ramanadham M, Sieker LC, Jensen LH (1990) Refinement of triclinic lysozyme:

II. The method of stereochemically restrained least squares. Acta Crystallogr B

46: 63–69.

[162] Rocchia W, Alexov E, Honig B (2001) Extending the applicability of the nonlin-

ear Poisson-Boltzmann equation: multiple dielectric constants and multivalent

ions. J Phys Chem B 105: 6507–6514.

[163] Rokhlin V (1990) Rapid solution of integral equations of scattering theory in

two dimensions. J Comput Phys 86: 414–439.

161

[164] Rokhlin V (1993) Diagonal forms of translation operators for the Helmholtz

equation in three dimensions. Appl Comput Harmon Anal 1: 82–93.

[165] Rokhlin V, Tygert M (2008) A fast randomized algorithm for overdetermined

linear least squares regression. Proc Natl Acad Sci USA 105: 13212–13217.

[166] Saad Y (2003) Iterative methods for sparse linear systems, 2nd ed. SIAM:

Philadelphia, PA.

[167] Saad Y, Schultz MH (1986) GMRES: a generalized minimum residual algorithm

for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7: 856–869.

[168] Samet H (1984) The quadtree and related hierarchical data structures. ACM

Comput Surv 16: 187–260.

[169] Sanner MF, Olson AJ, Spehner JC (1996) Reduced surface: an efficient way to

compute molecular surfaces. Biopolymers 38: 305–320.

[170] Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equa-

tions with PARDISO. Future Gener Comput Syst 20: 475–487.

[171] Schildkraut C, Lifson S (1965) Dependence of the melting temperature of DNA

on salt concentration. Biopolymers 3: 195–208.

[172] Sharp KA, Honig B (1990) Electrostatic interactions in macromolecules: theory

and applications. Annu Rev Biophys Biophys Chem 19: 301–332.

[173] Sheinerman FB, Norel R, Honig B (2000) Electrostatic aspects of protein-

protein interactions. Curr Opin Struct Biol 10: 153–159.

162

[174] Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure

for modeling ligand/receptor induced fit effects. J Med Chem 49: 534–553.

[175] Shestakov AI, Milovich JL, Noy A (2002) Solution of the nonlinear Poisson-

Boltzmann equation using pseudo-transient continuation and the finite element

method. J Colloid Interface Sci 247: 62–79.

[176] Sifuentes J (2010) Preconditioned iterative methods for inhomogeneous acoustic

scattering applications. PhD thesis, Rice University.

[177] Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free

energies using macroscopic solvent models. J Phys Chem 98: 1978–1988.

[178] Sloan IH, Wendland WL (1998) Qualocation methods for elliptic boundray

integral equations. Numer Math 79: 451–483.

[179] Sokal AD (1989) Monte Carlo methods in statistical mechanics: foundations

and new algorithms. In Cours de Troisième Cycle de la Physique en Suisse

Romande, Lausanne.

[180] Sommerfeld A (1949) Partial differential equations in physics. Academic Press:

New York, NY.

[181] Song J, Lu CC, Chew WC (1997) Multilevel fast multipole algorithm for elec-

tromagnetic scattering by large complex objects. IEEE Trans Antenn Propag

45: 1488–1493.

[182] Song Y, Mao JJ, Gunner MR (2009) MCCE2: improving protein pKa calcula-

tions with extensive side chain rotamer sampling. J Comput Chem 30: 2231–

2247.

163

[183] Spivak M, Veerapaneni SK, Greengard L (2010) The fast generalized Gauss

transform. SIAM J Sci Comput 32: 3092–3107.

[184] Stakgold I (2000) Boundary value problems of mathematical physics. SIAM:

Philadelphia, PA.

[185] Starr P, Rokhlin V (1994) On the numerical solution of two-point boundary

value problems II. Commun Pure Appl Math 47: 1117–1159.

[186] Strader CD, Fong TM, Tota MR, Underwood D, Dixon RAF (1994) Structure

and function of G protein-coupled receptors. Annu Rev Biochem 63: 101–132.

[187] Strang G, Fix GJ (2008) An analysis of the finite element method, 2nd ed.

Wellesley-Cambridge Press: Wellesley, MA.

[188] Strikwerda JC (2004) Finite difference schemes and partial differential equa-

tions. SIAM: Philadelphia, PA.

[189] Tan RC, Truong TN, McCammon JA, Sussman JL (1993) Acetylcholinesterase:

electrostatic steering increases the rate of ligand binding. Biochemistry 32: 401–

403.

[190] Tanford C, Roxby R (1972) Interpretation of protein titration curves. Applica-

tion to lysozyme. Biochemistry 11: 2192–2198.

[191] Tarjan R (1972) Depth-first search and linear graph algorithms. SIAM J Com-

put 1: 146–160.

[192] Tausch J, Wang J, White J (2001) Improved integral formulations for fast 3-D

method-of-moments solvers. IEEE Trans Computer Aid Design 20: 1398–1405.

164

[193] Trefethen LN, Bau David III (1997) Numerical linear algebra. SIAM: Philadel-

phia, PA.

[194] Ullman GM, Knapp EW (1999) Electrostatic models for computing protonation

and redox equilibria in proteins. Eur Biophys J 28: 533–551.

[195] Van der Vorst HA (1992) Bi-CGSTAB: a fast and smooth converging variant

of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat

Comput 13: 631–644.

[196] Van der Vorst HA, Vuik C (1994) GMRESR: a family of nested GMRES meth-

ods. Numer Linear Alg Appl 1: 369–386.

[197] Vizcarra CL, Zhang N, Marshall SA, Wingreen NS, Zeng, C, Mayo SL (2008) An

improved pairwise decomposable finite-difference Poisson-Boltzmann method

for computational protein design. J Comput Chem 29: 1153–1162.

[198] Vlijmen HWT, Schaefer M, Karplus M (1998) Improving the accuracy of pro-

tein pKa calculations: conformational averaging versus the average structure.

Proteins 33: 145–158.

[199] Watson JD, Crick FHC (1953) Molecular structure of nucleic acids. Nature 171:

737–738.

[200] Wei JG, Peng Z, Lee JF (2011) A fast direct matrix solver for surface integral

equation methods for electromagnetic wave problems in R3. In 27th Annual

Review of Progress in Applied Computational Electromagnetics, pp. 121–126.

[201] Whaley RC, Petitet A, Dongarra JJ (2001) Automated empirical optimizations

of software and the ALTAS project. Parallel Comput 27: 3–35.

165

[202] Winebrand E, Boag A (2009) A multilevel fast direct solver for EM scattering

from quasi-planar objects. In Proceedings of the International Conference on

Electromagnetics in Advanced Applications, pp. 640–643.

[203] Woolfe F, Liberty E, Rokhlin V, Tygert M (2008) A fast randomized algorithm

for the approximation of matrices. Appl Comput Harmon Anal 25: 335–366.

[204] Xia J, Chandrasekaran S, Gu M, Li XS (2009) Superfast multifrontal method

for large structured linear systems of equations. SIAM J Matrix Anal Appl 31:

1382–1411.

[205] Yang AS, Gunner MR, Sampogna R, Sharp K, Honig B (1993) On the calcula-

tion of pKas in proteins. Proteins 15: 252–265.

[206] Yang AS, Honig B (1993) On the pH dependence of protein stability. J Mol

Biol 231: 459–474.

[207] Ying L (2009) Sparse Fourier transform via butterfly algorithm. SIAM J Sci

Comput 31: 1678–1694.

[208] Ying L, Biros G, Zorin D (2004) A kernel-independent adaptive fast multipole

algorithm in two and three dimensions. J Comput Phys 196: 591–626.

[209] Yokota R, Bardhan JP, Knepley MG, Barba LA, Hamada T (2011) Biomolec-

ular electrostatics using a fast multipole BEM on up to 512 GPUs and a billion

unknowns. Comput Phys Commun 182: 1272–1283.

[210] Yukawa H (1935) On the interaction of elementary particles. I. Proc Phys-Math

Soc Jpn 17: 48–57.

166

[211] Zauderer E (1989) Partial differential equations of applied mathematics. John

Wiley & Sons: New York, NY.

[212] Zhou YC, Feig M, Wei GW (2007) Highly accurate biomolecular electrostatics

in continuum dielectric environments. J Comput Chem 29: 87–97.

167

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Electrostatics of biomolecular systems
	Numerical solution of the Poisson-Boltzmann equation
	Fast iterative solvers
	Fast direct solvers
	Outline of the dissertation

	A fast direct solver for non-oscillatory integral equations
	Mathematical preliminaries
	Matrix compression
	Compressed matrix-vector multiplication
	Compressed matrix inversion
	Complexity analysis
	Error analysis
	Implementation
	Numerical results
	Summary

	Extensions of the direct solver
	Block and composite operators
	Approximate inverse preconditioning
	Local geometric perturbations
	Overdetermined least squares
	A compression-based fast multipole method

	Application to protein pKa calculations
	Theory of protein titration
	Mean field approximation
	Reduced site approximation
	Monte Carlo sampling
	Estimating the pKa
	Algorithm
	Numerical results
	Summary

	Generalizations and concluding remarks
	Biomolecular charge optimization
	Protein structure prediction and design
	Protein-protein docking
	Towards a near-optimal fast direct solver
	Towards a fast direct solver for oscillatory kernels
	Conclusion

	Bibliography

