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Researchers working with mathematical models are often confronted by the

related problems of parameter estimation, model validation and model

selection. These are all optimization problems, well known to be challenging

due to nonlinearity, non-convexity and multiple local optima. Furthermore,

the challenges are compounded when only partial data are available. Here,

we consider polynomial models (e.g. mass-action chemical reaction net-

works at steady state) and describe a framework for their analysis based

on optimization using numerical algebraic geometry. Specifically, we use

probability-one polynomial homotopy continuation methods to compute

all critical points of the objective function, then filter to recover the global

optima. Our approach exploits the geometrical structures relating models

and data, and we demonstrate its utility on examples from cell signalling,

synthetic biology and epidemiology.
1. Introduction
Across the physical, biological and social sciences, mathematical models are for-

mulated and studied to better understand real-world phenomena. Often,

multiple models are developed to explore alternative hypotheses. It then

becomes necessary to choose between different models, for example, based

on their fit with noisy experimental data. This is the problem of model selection,

a fundamental scientific problem with practical implications [1–3].

When dealing with deterministic models in the life sciences, the standard

approach to model selection is to first estimate all model parameters and

hidden variables from the data, then select the model with the smallest best-

fit error, up to some penalty on model complexity [4,5]. Thus, at its core,

model selection is intimately tied to parameter estimation. For example, if we

have a model described by a system of equations f(a, x) ¼ 0 in the parameters

a and variables x with measurable ‘outputs’ z ¼ g(x), then parameter estimation

can be written as the following least-squares optimization problem:

min
a,x,z
kz� yk2 s:t:

f ða, xÞ ¼ 0
z ¼ gðxÞ,

�
ð1:1Þ

where y denotes the observed data, i.e. measured outputs. Unless f and g are

convex, solving (1.1) is a non-convex problem, which can be challenging as

standard local solvers run the risk of getting trapped in local minima (especially

in high dimensions). This can be mitigated somewhat with techniques such as

simulated annealing [6,7] or convex relaxation that has been successful for

model invalidation [8–10], but there is generally no guarantee that a global

minimum will be found.
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When f and g are polynomial, however, problem (1.1) can

be solved globally by finding all roots of an associated poly-

nomial system. In this case, ideas from computational algebra

and algebraic geometry can be effective; see, e.g. [11–14] for

applications of Gröbner bases in systems biology and [15] for

applications of algebraic geometry to statistical inference.

Such symbolic methods tend to be computationally expens-

ive, which limits their use in practice and are bypassed

here. Thus, although they provide a solution in principle,

new algorithms and techniques are yet desired.

In this paper, we aim to fill this gap by proposing a

framework for global parameter estimation for polynomial deter-

ministic models using numerical algebraic geometry (NAG), a

suite of tools for numerically approximating the solution sets of

multivariate polynomial systems via adaptive multi-precision,

probability-one polynomial homotopy continuation [16,17].

This is a deterministic method, so it will produce the same results

(up to numerical error) every time. Unlike other approaches,

there is no sense of ‘simulations’ or sampling required for this

method. Our approach scales well in dimension relative to classi-

cal symbolic methods [18], and, while it comes with a higher

computational cost than standard local optimization, it has a

probability-one guarantee to recover the global optima, solving

problem (1.1) in the strong sense. This allows us to reason rigor-

ously about model fit and to address the related problems of

model selection and parameter estimation from a maximum-like-

lihood perspective. We demonstrate our techniques on examples

from biology, where polynomial models often arise as the steady-

state descriptions of mass-action chemical reaction networks.

Although some limitations remain, we believe that this work

achieves its primary purpose of introducing NAG as a valuable

complement to existing tools for model evaluation and analysis.

Additionally, this paper highlights specific challenges that arise

when using polynomial methods for model inference, such as

dealing with positivity constraints and non-isolated solutions,

and provides guidance for tackling these challenges.

The remainder of the paper is organized as follows. In §2,

we state precisely the problems with which we are concerned:

model validation, model selection, and parameter and

hidden variable estimation. We then present the NAG algor-

ithms for solving each problem. Finally, we showcase our

approach on a few examples, including cell death activation,

synthetic biocircuits, human immunodeficiency virus (HIV)

progression and protein modification.
2. Problem statement
Consider a model whose dynamics are described by the

system of polynomial differential equations

_x ¼ f ða, xÞ, ð2:1Þ

where a ¼ ða1, . . . ,akÞ are parameters (e.g. rate constants in a

deterministic mechanistic model, such as a chemical reaction

network with mass-action kinetics), x ¼ ðx1, . . . ,xnÞ are vari-

ables, and f ¼ ðf1, . . . ,frÞ are polynomials in x and a with

measurable outputs z ¼ gðxÞ, where z ¼ ðz1, . . . ,zmÞ, m� n
and g ¼ ðg1, . . . ,gmÞ are polynomials in x. While the parameters

a1, . . . ,ak are treated as fixed variables in our exposition, we sep-

arate them from x1, . . . ,xn to respect how such variables are

treated differently in experimental and computational settings.

In algebraic geometry, a variety is a solution set of a

system of polynomial equations; we use this terminology
for our next two definitions. The real model variety is the

solution set of the system

f ða, xÞ ¼ 0, ð2:2Þ
z� gðxÞ ¼ 0, ð2:3Þ

that is,

ðVMÞR :¼ fða, x, zÞ [ Rkþnþm : f ða, xÞ ¼ 0, z� gðxÞ ¼ 0g,

corresponding to the steady states of the model. Now, con-

sider, for simplicity, the case of a single data point

y ¼ ðy1, . . . ,ymÞ. (See the electronic supplementary material

for multiple data points.) The real data variety is then the

affine linear space

ðVDÞR :¼ fða, x, zÞ [ Rkþnþm : zi ¼ yi, 8 i ¼ 1, . . . ,mg,

with dimðVDÞR ¼ k þ n. We consider the case when the data

include some extrinsic (measurement) noise; we assume the

errors fe1, . . . ,emg on the observed data variables are uncorre-

lated random variables and each error ei is normally

distributed with known variance si (which can be obtained

by instrument calibration).

Using this geometric framework, the problems of (1)

model validation, (2) model selection and (3) parameter

estimation can be described precisely in terms of the real

algebraic varieties ðVMÞR and ðVDÞR.

2.1. Problem 1: model validation
For model validation, we want to determine whether a deter-

ministic polynomial model M is compatible with the data

according to a given significance level a. Using the noise

assumptions from above, each deterministic model M gives

rise to an associated statistical model. Specifically, given a

deterministic system _x ¼ f ðx, aÞ with an observation y made

at steady state, the statistical model under consideration is

Yi ¼ zi þ ei, ei � N ð0,siÞ, 1 � i � m, ð2:4Þ
f ðx, aÞ ¼ 0 ð2:5Þ

and z� gðxÞ ¼ 0, ð2:6Þ

where x, a, z are all unknown, and si is known for all i.
The compatibility question is akin to significance testing

and asking whether the model is a ‘good fit’ for the data.

A natural goodness-of-fit statistic is

d2 :¼ min
Xm

i¼1

ðzi � YiÞ2

s2
i

subject to ða, x, zÞ [ ðVMÞR: ð2:7Þ

When the variances differ, d2 is the minimum-squared

weighted Euclidean distance between ðVMÞR and ðVDÞR.

When all variances are equal to one, the value of (2.7) is just

the minimum-squared distance. For the remainder of the

text, we assume the latter, knowing that we can simply rescale.

Optimization problem (2.7) can be derived directly from

the log-likelihood function

log Lða, x, zjyÞ ¼
Xm

i¼1

1

2
log 2ps2

i �
ðzi � yiÞ2

2s2
i

 !
ð2:8Þ

as demonstrated in §2.1 of the electronic supplementary

material. Indeed, minimizing the argument of (2.7) over

ðVMÞR is equivalent to maximizing log Lða, x, zjyÞ over

ðVMÞR. This provides a bridge to standard statistical model

selection tools such as AIC [19] and BIC [20]. Note that a
and x do not appear in (2.8), instead, they appear in the

constraints of the problem.
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In model validation, our null hypothesis is that the data y
are generated from the statistical version of the deterministic

model M. If the data are generated from the model M with

normally distributed extrinsic noise, then the distribution

function of d2 is dominated by that of the chi-squared distri-

bution with m degrees of freedom, x2
m, where m is the number

of measurable outputs. Thus, if pa is the upper a-percentile

for x2
m, then Prðd2 � paÞ � PrðU � paÞ ¼ a, where U � x2

m.

We reject the model M as incompatible, i.e. we reject the

null hypothesis, if the observed value of d2 is greater than

pa; otherwise, we say that the model M is compatible.

If the real model and data varieties intersect, that is,

ðVMÞR > ðVDÞR = ;, then d2 ¼ 0, and we also say that the

model is compatible with the data. If there are restrictions

on (a,x,y), for example, if all parameters and variables are

required to be non-negative, then finding d2 becomes a con-
strained optimization problem (see electronic supplementary

material).
0160256
2.2. Problem 2: model selection
For model selection, we are given a set of models

fM1, . . . ,Msg and want to determine the model of best fit.

In this setting, we use the statistic d2 to make a selection,

either by choosing the model with the smallest value of d2

or by using d2 in conjunction with a complexity penalty, simi-

lar to the Bayesian or Akaike information criteria [1].

If the statistic d2 evaluates to zero for all (or even multiple)

models, then we are unable to make a selection between the

models. This can be remedied by designing experiments that

yield more informative data. For example, measuring more

variables can reduce the dimension of ðVMÞR > ðVDÞR; the

most informative situation is when ðVMiÞR > ðVDÞR ¼ ; for

all models. This indeterminacy can also be resolved by

taking multiple measurements and minimizing the joint

squared distance (see the electronic supplementary material).
2.3. Problem 3: parameter estimation
Parameter estimation can be achieved by finding the point

ðâ, x̂, ẑÞ [ ðVMÞR that minimizes the value of (2.7). The

point ðâ, x̂, ẑÞ is the maximum-likelihood estimate under the

given noise assumptions. The parameter estimate is then â;

the estimate of the hidden variables, x̂ and the estimate of

the ‘de-noised’ outputs, ẑ. Of course, if the data and model

varieties intersect, then there will be one or more (possibly

infinite) choices for ðâ, x̂, ẑÞ. Otherwise, it is a matter of sol-

ving a polynomial system that yields the point(s) on ðVMÞR
nearest ðVDÞR. This is described in more detail in §3.
3. Geometry
In each of the problems stated above, we seek to minimize the

distance between ðVMÞR and ðVDÞR or to find the intersection

of these two sets. Standard methods for solving nonlinear

optimization problems are local in nature, i.e. only guaran-

teed to converge to a local minimum which may or may

not be the global minimum.

However, using NAG, we find all local extrema over C,

necessarily including the global minimum. Owing to this

global benefit, NAG has been used before in statistical infer-

ence in the field of algebraic statistics [21,22].
Let VM # Ckþnþm be the (complex) Zariski closure of

ðVMÞR and VD # C
kþnþm be the (complex) Zariski closure of

ðVDÞR. We refer to VM and VD as the model variety and data
variety, respectively.

The problem of determining the intersection of VM > VD
is simply a matter of solving the polynomial system obtained

by taking the union of the polynomials defining VM and the

polynomials defining VD. This is handled directly by NAG. If

the intersection is nonempty and positive-dimensional (com-

plex curves, surfaces, etc.), then real points can be found

using the polynomial homotopy method described in [23],

a method based on symbolic algorithms in [24] and, more

classically, on the decision method in [25].

In the case that VM > VD is empty, the problem of finding

the points on the varieties nearest one another can also be

stated in terms of a polynomial system, on which we then

call NAG solvers to find solutions. A well-known necessary

condition for local extrema is given by the Fritz John con-

ditions, related to Lagrange multipliers. In the main text,

we assume that rþm ¼ codim VM; however, when this is

not the case, the number of equations can be reduced (see

electronic supplementary material).

Proposition 3.1. (Equations given by Fritz John conditions).

Let r þ m ¼ codim VM. Let f ða, xÞ ¼ 0, z� gðxÞ ¼ 0 be defined
on a Zariski open set of VM, and define
hða, x, zÞ ¼ { f ða, xÞ, z� gðxÞ} for simplicity of notation below. If
ða, x, zÞ [ ðVMÞR is a local minimum of

Xm

i¼1

ðzi � yiÞ2, ð3:1Þ

then there exists l :¼ ðl0, l1, . . . ,lrþmÞ [ Prþm, such that
ða, x, z, lÞ is a solution to the system

f ða, xÞ ¼ 0, ð3:2Þ

z� gðxÞ ¼ 0 ð3:3Þ

and l0
0

z� y

� �
þ
Xrþm

i¼1

lira, x,z hiða, x, zÞ ¼ 0, ð3:4Þ

where Prþm refers to projective space, a slight generalization of
complex affine space, and ra,x,z refers to the vector consisting of
all first-order derivatives with respect to all a, x, and z.

Solving this system with NAG will provide us with all

local extrema of (3.1) over VM, from which we may easily

select the pair of nearest points. In fact, in the examples

below, we use minor variations on this theme for compu-

tational efficiency; see the corresponding sections of the

electronic supplementary material for details.

The geometry of zero sets of systems such as (3.2)–(3.4) is

described in [26]. In particular, Draisma et al. [26] explore the

Euclidean distance degree (ED degree) of a variety, which is the

number of critical points of the squared distance to a general

point outside the variety. The number of complex solutions to

(3.2)–(3.4) when y is generic is the ED degree of a projection

of the model variety, along the data subspace. The ED degree

captures the complexity of any method that solves a squared

distance minimization problem exactly and plays a key role in

the methods discussed here. For example, the ED degree

is the number of paths that need to be tracked when using

the parameter homotopies described in §3.1.



Table 1. Algorithm 1: model validation.

input model M, data D ¼ fyg, tolerance a

output yes or no

1 If VM > VD ¼ ;, go to step 3.

2 If dimðVM > VDÞ � 0 and ðVMÞR > ðVDÞR = ;, return yes,

else, go to step 3.

3 Find a pair ðð̂a,̂x ,̂zÞ,ð̂a,̂x,yÞÞ [ ðVMÞR � ðVDÞR that minimizes (3.1) (using NAG software such as Bertini or PHCpack).

4 If jĵz � yjj2 , pa, return yes; else no.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160256

4

3.1. Numerical algebraic geometry
Given a polynomial system F consisting of r polynomials and

N variables, NAG packages, such as Bertini [16], PHCpack

[27], HOM4PS-2.0 [28], use polynomial homotopy continu-

ation to provide probability-one numerical methods for

finding approximations of all isolated complex solutions of

F ¼ 0 (points) as well as witness points on all positive-dimen-

sional irreducible components of the solution set of F ¼ 0.

These methods are probability-one in that the computations

include some randomization, and this randomization will

yield theoretically correct results so long as the random

numbers are not chosen from some measure zero set in the

parameter spaces of potential choices [17,29].

If x [ RN is a real solution of F ¼ 0, it is either isolated

among the complex solutions or it lies on a positive-

dimensional complex irreducible component. In the former

case, the methods of NAG will find x and recognize it as

real. In the latter case, x can be difficult to uncover.

However, for our purposes, we usually only need to

verify the existence of a real solution. In this case, we can

find witness points on all positive-dimensional components

and then use the procedure in §2.1 of [23] to verify the exist-

ence of real points.

Finally, there is a setting in which a particular method

from NAG is especially powerful. If a parametrized

polynomial system needs to be solved multiple times

for varying parameter values, the parameter homotopy
[17,29–31] can greatly reduce the computation time. Refer

to the electronic supplementary material for more details,

particularly §§4.1 and 4.4.

3.2. Algorithms
We present three related algorithms to address model

validation, model selection and parameter estimation.

The aim of the first algorithm, algorithm 1, is to find the

pair of points that minimize the distance between ðVMÞR
and ðVDÞR. If ðVMÞR > ðVDÞR ¼ ;, then this is obtained by

solving (3.2)–(3.4); otherwise, additional techniques are

required.

We also note simply that these techniques are indeed

probability-one algorithms. The computations will necess-

arily be carried out in finite time and the steps proceed

linearly (no loops), so the methods will necessarily finish.

3.2.1 Algorithm 1: model validation
The computation of the intersection VM > VD in steps 1 and

2 (table 1) can be determined in several ways. The simplest

way is by considering dimensions: if dimðVMÞ þ dimðVDÞ
exceeds the ambient dimension, then they will almost
surely intersect. If the ambient dimension is larger than

the sum of the variety dimensions, then they typically do

not intersect. To compute the intersection (or check to see

if it is nonempty), one could substitute y 2 g(x) for (3.3) in

the system (3.2)–(3.3).

In step 2, if dimðVM > VDÞ ¼ 0, then the intersection of

the two varieties consists of finitely many points; the con-

dition ðVMÞR > ðVDÞR = ; indicates that at least one of the

points is real, which is straightforward to determine. If

dimðVM > VDÞ . 0, to check if ðVMÞR > ðVDÞR = ;, one

needs more sophisticated methods, such as those in [23]. In

particular, such methods will return a point in the intersec-

tion, if such a real point exists; if the point is smooth on

VM > VD, then we can also conclude that the dimension of

ðVMÞR > ðVDÞR is equal to the dimension of VM > VD.

To find the pair ððâ, x̂, ẑÞ,ðâ, x̂, yÞÞ in step 3, one may solve

the polynomial system (3.2)–(3.4). If there is a positive-

dimensional set of (complex) extremal points, then the pro-

cedures in [23] could be used to determine if the set

contains a real point.

If there are constraints on the variables or parameters, for

example, if we seek to minimize (3.1) over the non-negative

part of ðVMÞR, then the algorithm is updated as follows: if

the dimðVM > VDÞ ¼ 0 or VM > VD ¼ ;, then the Fritz John

equations as described in §3.1 of the electronic supplemen-

tary material should be used, while if dimðVM > VDÞ . 0,

or if there is a positive-dimensional set of extremal points

at step 3, then the algorithm should return possibly. There

are methods [32–34] for finding real points, curves and sur-

faces within complex components of dimension 2 or less,

but little is known about higher dimensions.

3.2.2. Algorithm 2: model selection
In this case, there are several competing models, each with its

own polynomial system. The algorithm proceeds much as in

algorithm 1, but iterated for the several models under con-

sideration. If a threshold a is provided, then one should

first reject models that do not adequately support the data

(d2 � pa), then choose the model yielding the minimum

value of d2 (up to some complexity penalty). Various con-

clusions may be drawn, e.g. no model adequately fits the data
or three models adequately fit the data and model M1 provides
the best fit.

3.2.3. Algorithm 3: parameter estimation
Again, this algorithm is similar to the first. The input consists

of only one model M and data D. It is assumed that there are

unknown parameters and the goal is to find values of these

parameters producing the best fit between M and D. The
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Figure 1. Schematic of numerical algebraic geometry framework correspond-
ing to algorithms 1 – 3. (a) Input to algorithms include model (system of
polynomials) translated into a model variety (red), and steady-state data
translated into a data variety (blue). (b) Flow chart of model compatibility,
parameter estimation and model selection methods. Examples (green) are
described in §4.
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outputs of steps 2 and 3 need to be adjusted appropriately. The

output of step 4 is simply (â, x̂, ẑ), because there is no a to be

used for rejection. The method also simultaneously estimates

hidden/unknown variables and ‘de-noised’ outputs.

3.2.4. Simple example
To illustrate algorithm 1, consider a simple model with three

variables x, y, z and three parameters a, b, c satisfying

x2

a2
þ y2

b2
þ z2

c2
¼ 1:

Let a ¼ 0.1 and assume, for this example, that the variances

on the errors are s2
i ¼ 0:1 for i ¼ 1, 2, 3. The model variety

VM is simply an ellipsoid (figure 2a) where a, b, c describe

the principal axes. Suppose we know that a, b, c ¼ 1. For the

case when the outputs are x and y and their observed

values are x0 ¼ 0, y0 ¼ 0 and a ¼ 0.1, step 2 indicates that
the data do fit the model, i.e. the model is compatible with

the data. In this case, there are two real points in the zero-

dimensional intersection VM > VD (figure 2b). For the same

set-up, but with data x0 ¼ 0, step 3 indicates that these data

possibly fit this model. Because there is a positive-dimensional

intersection (figure 2c), it is possibly compatible (depending

on constraints imposed by the user). For the same model

and a, but different data x0 ¼ 1.7, y0 ¼ 0, step 3 yields

points (1, 0, 0) and (1.7, 0, 0), so the observed value of d2 is

greater than pa ¼ 0.4605, and the model is rejected

(figure 2d ). However, when the data are x0 ¼ 1.01, y0 ¼ 0,

algorithm 1 indicates model compatibility (figure 2e). Pre-

vious algebraic methods that required Gröbner basis

calculations would result in an empty ideal and thus those

approaches are not useful here.
4. Results
We demonstrate our methods on problems in biomedicine:

cell death activation, synthetic biology, epidemiology and

multisite phosphorylation. Each of the forthcoming appli-

cations can be written as a mass-action chemical reaction

network, which has the form _x ¼ f ða, xÞ, studied at steady

state: f(a, x) ¼ 0 as in the problem statement. Throughout

these real-world examples, we emphasize the pivotal compu-

tations in these methods, such as determining the dimension
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of the intersection VM > VD and finding points in the intersec-

tion (figure 1b). Our first two examples, cell death signalling

and genetic toggle biocircuits, demonstrate how to handle

positive-dimensional intersections using two different

approaches, whereas the remaining two examples, HIV and

MAP kinase signalling, highlight analysis of zero-dimensional

and empty intersections. In the following examples, we are

interested in results that can be interpreted biologically; there-

fore, we restrict our analysis to non-negative real solutions. We

also compare our method results to the squeeze-and-breathe

parameter estimation optimization algorithm [35].

4.1. Cell death activation
We demonstrate model compatibility (algorithm 1) on an

example from receptor-mediated programmed cell death,

which is initiated by the activation of death receptors upon

the detection of extracellular death ligands [36–39]. We con-

sider, in particular, the ‘cluster’ model of [12], which was

inspired by crystallographic data [40] and describes the

recruitment of receptors by ligands into local self-activating

clusters capable of bistability.

The cluster model is a system of three degree-four poly-

nomials in the form of (2.2) in three variables (representing

various receptor states) and six rate parameters, sup-

plemented by ligand and receptor conservations (see the

electronic supplementary material). We assume that we can

measure the total ligand and receptor concentrations, which

may be considered experimental inputs, as well as the con-

centration of active receptors. We do not assume access to

the concentrations of other individual receptor states nor to

any of the rate parameters.

A steady-state data point was simulated from the model

with all parameters and initial concentrations drawn indepen-

dently and identically from the lognormal distribution

lnN ð0, 4Þ, then combined and corrupted with i.i.d. noise

from N ð0, 0:1Þ to obtain y. The real model and real data var-

ieties intersect in the positive orthant with a distance zero

and hence the model is indeed compatible with the data. As

detailed in §4.1 of the electronic supplementary material,

these runs required a total of approximately 15 s (averaged

over 20 runs). The ED degree defined in §3 is 5 for this problem.

4.2. Synthetic biology and experimental design
We demonstrate an example from synthetic biology with

excess intersection (dimðVM > VDÞ . 0). A goal in synthetic

biology is to design or modify existing biological systems

with new features according to specific design criteria.

Reverse engineering of biological systems often includes

modules (such as feedback loops), and how these are inter-

connected are described by different circuits (models).

Understanding differences between biocircuit implemen-

tations is crucial; therefore, we compare three bistable

biocircuits models analysed in [41]: monomer–dimer toggle

circuit (M1), dimer–dimer toggle circuit (M2) and single-

operator gene circuit (M3), which were initially presented

in [42–44]. The model variables include genes (Xi) and pro-

teins (Pi), where i ¼ 1 for M3 or i ¼ 1, 2 for M1, M2, and

their species complexes (e.g. PiPi, XjPiPi). These variables

interact following mass-action kinetics and form systems of

polynomial differential equations where M1, M2 and M3

have 7, 8 and 6 model variables, respectively, and 10, 12

and 9 kinetic parameters, respectively. The models can be
reduced (given in the electronic supplementary material) by

assuming that the total amount of gene 1 (X1tot ) and gene 2

(X2tot
) is conserved.

Suppose that the total amounts X1tot
and X2tot

and specific

protein synthesis and degradation parameters kbas1
, kbas2

, kdeg1

and kdeg2
are known. Because protein concentrations are often

measurable, we assume that our data are P1, P2, and their

complexes P1P1 and P2P2. The aim is to select the best

model M1, M2 and M3 given the data. We simulate

steady-state data from the dimer–dimer toggle model (M2)

and add Gaussian noise from N ð0, 0:1Þ. We find that all

three have positive-dimensional intersections, where the

dimension of the intersections are

dimððVM1
ÞR > ðVDÞRÞ ¼ 3,

dimððVM2
ÞR > ðVDÞRÞ ¼ 4

and dimððVM3
ÞR > ðVDÞRÞ ¼ 3:

Clearly, all three models are compatible with the data, thus

one can only select a ‘best fit’ model using data-independent

measures, e.g. number of parameters, dimension, etc.

In fact, the dimensions of the model and data varieties can

help us design more informative experiments for model selec-

tion. This dimension calculation provides guidance towards

the minimal number of additional variable and parameter

values that must be measured to ensure VM1
> VD ¼ ;. For

example, because dimððVM1
ÞR > ðVDÞRÞ ¼ 3, at least four

more variables and parameter values must be known.

Because we get positive-dimensional intersections, the

model is non-identifiable for steady-state data.

Suppose we can experimentally measure four forward bio-

chemical reaction rate constants (e.g. kcF, kkF, knF and kkR), then

VM1
is cut down by four dimensions and does not intersect

VD. We get similar results for the model varieties associated

with M2 and M3 provided we measure rate constants specific

to these models (see electronic supplementary material). Now

that all the intersections are empty, we run algorithm 2 and

find that the sums of squares (equation (3.7)) for each model

are as follows: d2
1 ¼ 0:2262, d2

2 ¼ 7:34� 10�7 and

d2
3 ¼ 0:3040. Therefore, we select the M2 model, which is

indeed the true model. As described in the electronic sup-

plementary material, solving the zero-dimensional system for

the monomer–dimer toggle circuit, M1, took 1 min and 3 s,

solving the system for the dimer–dimer toggle circuit, M2,

took 1 min and 43 s, and solving the system for the single-

operator positive feedback circuit, M3 took 0.092 s. The ED

degrees as described in §3 are, respectively, 3, 4 and 4.

We compare our results using the squeeze-and-breathe evol-

utionary optimization algorithm [35]. This method uses Monte

Carlo simulation based on an initial parameter ‘prior’ to find

local minima of the sum of squared errors (d2) using deriva-

tive-free optimization. At the end of each iteration, it

computes a ‘posterior’ from the best local minima, which is

then used as a ‘prior’ in the next iteration. The sample–opti-

mize–recompute cycle continues until convergence. One

advantage is that the local optimization steps allow it to explore

beyond the ‘prior’ (i.e. the true parameter value could lie out-

side of it) [35], which is ideal, because the NAG method does

not restrict to certain ranges of the parameter space. Moreover,

squeeze-and-breathe has good success finding the true par-

ameter (global minimum) in biological models [45] and

therefore is a suitable choice to compare with our NAG

method. As before, we take data from M2 and estimate
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parameters based on the previous experimental design analysis.

We estimate parameters knR, kkR for M1, kkR, kiR, knR for M2 and

kkR for M3: We then get the sum of squared errors for the best-

fit parameter of each model: d2
1 ¼ 0:9640, d2

2 ¼ 0:001,

d2
3 ¼ 0:3898. The method takes approximately 10 min to run

for each model and also correctly selects M2.

4.3. Human immunodeficiency virus progression
We demonstrate parameter estimation (algorithm 3) on an

example coming from epidemiology. We use a model that

includes long-term HIV dynamics from initial viremia,

latency and virus increase [46], based on [47]. In the model

(see the electronic supplementary material), the HIV virus

inhibits the CD4þ T cell population while promoting macro-

phage proliferation, which, in turn, houses the replicating

virus. As macrophages proliferate, the virus reservoir

increases, so the model offers a description of HIV patient

progression to acquired immunodeficiency syndrome.

Model variables x are uninfected CD4þ T cells (T ), infected

CD4þ T cells (Ti), uninfected macrophages (M), infected

macrophages (Mi) and HIV virus population (V ).

Hernandez-Vargas et al. show that the model can have

two real equilibria, one of which is stable, representing

patients that are ‘long-term non-progressors’ [46]. The par-

ameters a are ðs1, s2, k1, . . . ,k6, d1, . . . ,d5Þ, where si represents

synthesis of T cells and macrophages, ki are rate constants

describing interactions between variables x, and di represents

natural death. For this example, y ¼ x. We estimated the natu-

ral death of the virus, parameter d5, using the long-term non-

progressors steady-state value (table 3 of [46]) and adding

noise to each variable � N ð0, 1Þ. By algorithm 3, the data var-

iety and model variety do not intersect. We find the closest

point and estimate d�5 ¼ 2:99876 (true value of d5 ¼ 3, which

was obtained by conferring with the authors of [46]). This

run took 48 s, as described in the electronic supplementary

material. The relevant ED degree is 16.

4.4. Multisite phosphorylation with experimental data
We examine phosphorylation mechanisms of cellular signal-

ling with experimental data, and demonstrate model
selection (algorithm 2) and parameter estimation (algorithm

3). We focus on phosphorylation, a key cellular regulatory

mechanism that has been the subject of extensive study,

both experimentally and theoretically ([48] and references

therein). An area of interest is the mechanism by which a

kinase phosphorylates a two-site substrate, either distribu-

tively, where the kinase can add at most one phosphate

before dissociating, or processively, where it can add both

phosphates in sequence. The MAPK/ERK pathway is a

well-known system for studying phosphorylation, whereby

MEK (kinase) phosphorylates ERK (its substrate). Aoki et al.
[49] showed experimental evidence, while working with

polynomial models, that the mammalian MAPK/ERK

pathway acts distributively in vitro but processively in vivo.

We compare these distributive and processive models

against the in vivo data reported in the same study. The dis-

tributive model consists of 12 molecular species and 17

mass-action reactions, whereas the processive model has 14

species and 18 reactions (species correspond to variables,

each reaction corresponds to a parameter). The data take

the form of 36 concentration measurements of three aggre-

gate phosphoforms over a range of 12 EGF stimulation

levels. All model parameters are calibrated using in vitro esti-

mates by [49], except the parameter k1 representing EGF

loading, which we estimate for both models (see electronic

supplementary material).

Next, we perform model selection by running algorithm 2

on each data point individually and select independently for

each run the preferred model (more details in the electronic

supplementary material). Under low EGF stimulation, the

best model estimates are nearly identical with a slight prefer-

ence for distributive. At high EGF stimulation, the models are

identical with no preference for one model over the other.

These results can be justified by noting that the main distinc-

tion between distributivity and processivity is nonlinear

switching behaviour (i.e. a sigmoidal response curve), and

this occurs only at intermediate stimulations. However, at

medium EGF stimulation (figure 3), there is a preference for

the processive model, which supports the findings in [49].

As detailed in §4.4.3 of the electronic supplementary

material, all runs for the distributive model took
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approximately 77 s, whereas the larger processive model

required about 131 s (both averaged over 20 runs). It is

worth noting that each of the 36 parameter homotopy runs

in each of the two cases took less than 2% of the time of a

regular, non-parameter homotopy run (less than 1% for the

processive model). The ED degree for this problem is 20 for

both models.
lishing.org
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5. Conclusion
The problem of determining whether given real-world data fit

one or more given mathematical models is challenging. When

a model is defined by algebraic (polynomial) functions, the

methods of NAG may be employed to study the geometry

underlying the model and data. In particular, these methods

are useful for model variables observed at steady state. We

demonstrated this numerical and geometric framework for

comparing models with experimental dose–response data in

MAPK/ERK pathway and highlighted that the intermediate

EGF doses were the most informative for model selection,

complementing another finding that model selection results

can be very sensitive to experimental parameters [50].

Despite the difficulties associated with positive-

dimensional components and limitations in analysis, we

can reproduce compatible models, and furthermore, can

predict additional information, such as measurements of

parameters, that are necessary for selecting models. Our

geometric investigations of positive-dimensional components

may perhaps relate to algebraic analyses for biochemical

models, such as model identifiability or matroids for

experimental design [13,51,52].

There are further directions to be considered in this vein,

aside from making the existing computational methods more

efficient. First, there would be great value in developing

strictly real geometric methods for solving polynomial sys-

tems such as those that appear in this article. Some such

techniques exist, but only in very special circumstances.

Second, there would be much value in developing effective

numerical methods for treating inequalities. It should be
noted that the methods described in [53] and the references

therein will incorporate such constraints, though the cost of

such computations restricts their use to relatively low dimen-

sions. Finally, there is likely much to be gained from

considering the geometry underlying models not defined

by algebraic functions. Algebraic geometry provides very

clean, well-understood structures, paving the way for

numerical methods. Differential geometry or topology

could lead to similarly useful techniques for model selection

and parameter estimation.
6. Material and methods
6.1. Numerical algebraic geometry
General references for NAG include [17,29], with the latter dou-

bling as a user manual for the software package Bertini. For

computations, we used Bertini 1.4 and Macaulay2 v. 1.6.

6.2. Data generation
Data simulated from cell death activation, synthetic biology and

HIV models were performed in Matlab R2014b using ode15s.
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