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2Department of Mathematics, Colorado State University,

3Department of Mathematics, Stanford University,
4Mathematical Institute, University of Oxford.

Contents

1 Geometry 1
1.1 Numerical algebraic geometry for isolated solutions . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 NAG for positive-dimensional solution sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Software for NAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Geometry specific to presented algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Choice of test statistics and parameter estimates 3
2.1 Maximum likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Algorithm modifications 5
3.1 Solving the constrained optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Removing extinction components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Results 6
4.1 Cell death activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Synthetic biology and experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Epidemiology HIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Multisite phosphorylation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4.1 Biology of MAP Kinase system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4.2 Mathematical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4.3 Model selection and parameter estimation computations . . . . . . . . . . . . . . . . . 18

1 Geometry

In this section we briefly review the some of the fundamental geometric concepts needed for the methods
in the main text.

1.1 Numerical algebraic geometry for isolated solutions

Numerical algebraic geometry (NAG) refers to the use of numerical methods, particularly homotopy continuation-
based methods, to compute approximations to solutions of polynomial systems. In other words, given a
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polynomial system F : CN → Cn with n equations in N variables, NAG seeks to find numerical approxi-
mations of all z ∈ CN such that F (z) = 0. It may be the case that the solution set of F has infinitely many
such points (curves, surfaces, etc.), in which case the data structure that encodes the solutions is called a
witness set. See the description of the numerical irreducible decomposition in Section 1.2 for more on this.
For simplicity, we assume in this section that N = n. The books [1, 2] and the references therein provide
additional explanations from a mathematical and computational perspective.

The core technique for most algorithms is homotopy continuation. The idea of homotopy continuation
is to cast the polynomial system to be solved, say F : CN → CN , as a member of a parameterized
family of polynomial systems, H : CN × C → CN , called a homotopy H(z, t) with parameter t ∈ C, that
includes one polynomial system G : CN → CN that is easily solved and has the special property of having
“enough” isolated solutions. In this document, we use the Bertini [3] convention that H(z, 1) = G(z) and
H(z, 0) = F (z), i.e., t marches from 1 to 0. There are several canonical options for the construction of such
a homotopy, and the reader is encouraged to consult [1, 2] and the references therein for further details.

As t varies from 1 to 0, some results from algebraic geometry tell us that the solutions of the polynomial
system H(z, t) = 0 vary continuously and generally stay distinct until t = 0, where they may converge
to solutions of F (z) = 0 or diverge. More specifically, there is a measure zero subset of t ∈ C, meaning
a finite set of points in this particular parameter space, over which two or more solutions coalesce. Such
occurrences are thus probability zero events and, furthermore, can be detected on the fly and avoided. Said
more technically, there is a Zariski open, dense set of the parameter space above which the solution set is
finite and consists of a fixed number of solutions. Here, “Zariski” refers to the Zariski topology, for which
basic open sets are the complements of solution sets of polynomial systems.

In practice, t is moved in discrete increments, not continuously. For each solution at t = 1, a path
of solutions is tracked using numerical predictor/corrector methods as t advances to 0. Implementations
typically utilize adaptive step lengths and adapative precision. There are far too many details about this
procedure to give a thorough explanation here. Instead, refer to the books for further details.

Ultimately, the output of this procedure is a superset of numerical approximations of the isolated solu-
tions of F (z) = 0, possibly including approximations to points lying on positive-dimensional components,
if any. It is important to note that this procedure necessarily works over C and finds all complex solutions.
Real solutions could be buried somewhere within the complex solutions, and it is particularly difficult to
extract these outside of the zero-dimensional case. However, methods do exist to extract such a real point
[4–6]; here we use the method of [6], which is guaranteed (with probability one) to minimize the distance of
a prescribed real point to each real connected component of the solution set defined by F (z) = 0.

1.2 NAG for positive-dimensional solution sets

For solution sets of positive dimension (curves, surfaces, etc.), there is an extension of homotopy continuation
referred to as the numerical irreducible decomposition (NID). As opposed to the case of systems of linear
equations (at most one solution component of one dimension), there may be many components of many
different dimensions. For example, one solution set might consist of seven components of dimension four,
five surfaces, three curves and 15 isolated points. Furthermore, components may be singular, meaning that
the Jacobian matrix is rank-deficient throughout the component.

Technical definitions used in NAG such as degree, dimension, and irreducible component go a bit beyond
the scope of this paper. It is enough to know that each “piece” of a solution set has a fixed complex
dimension (e.g., a curve has dimension one, a surface two, etc.) and by the dimension of a solution set of a
polynomial system of equations, we mean the maximum of the dimensions of the irreducible components.

The NID of a solution set of a polynomial system consists of a catalog of the dimensions and degrees
of each irreducible component, along with a set of witness points on each component. By degree, we
mean the number of points in the intersection of a component with a randomly-chosen affine linear space
of complementary dimension. The witness points on a component are then exactly these points (and thus
depend on the choice of linear space). One fundamental result from algebraic geometry is that an irreducible
component will almost always intersect a complementary-dimensional linear space exactly in a set of points
and that the number of points is the same for almost any choice of linear space. Again, this can be stated
as a probability one guarantee or with Zariski open, dense sets, but we choose not to be that technical here.
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1.3 Software for NAG

Various NAG software packages have been produced over the years. Currently, there are three main options:
PHCpack [7], HOM4PS-3 [8], and Bertini [3], each with their own benefits and drawbacks. In this article, we
used Bertini exclusively.

1.4 Geometry specific to presented algorithms

Proposition 1 of the main text should be familiar to those trained in multivariate calculus; this is essentially
the method of Lagrange multipliers. Geometrically, this system of equations forces the gradient of the
objective function to be perpendicular to the tangent space of the model variety.

When working with an irreducible component of the solution set of a system of polynomial equations,
it is often useful to deal with a complete intersection. Said simply, the idea is that computations can be
more difficult if there are more equations than necessary. To see why this might be true, let us consider an
example from linear algebra. Suppose we have a single linear equation in three variables, defining a plane.
Now suppose we consider a system of two equations consisting of that equation and twice that equation
(having the same solution set). Then the matrix of coefficients of this linear system is not full rank (not
a desirable situation) and we have two equations defining a geometric object that could be described by a
single equation.

In the nonlinear setting, the situation is quite similar. Having “too many” equations leads to an un-
desirable rank-deficient Jacobian matrix. Suppose polynomial system F : CN → Cn has an irreducible
component X of dimension N − m (codimension m). Then, again with probability one, the polynomial
system A · F has X as an irreducible component but has the “correct” number of equations, where A is
a random constant matrix with n columns and m rows. Here, “correct” means the number of equations
matches to codimension m. We will refer to this method as squaring up.

Finally for this section specific to the algorithms developed in the main text, we require the user to check
two geometric facts, the meaning of which may not be entirely clear.

1. VM ∩ VD refers to the intersection of the model and data varieties, as defined in the main text. To
find the intersection of two solution sets, it is sufficient to simply solve the system consisting of all
equations appearing in the systems for VM and VD, i.e., the union of those two polynomial systems.
There are more sophisticated methods, but this is sufficient.

2. The user must determine whether the intersection of (VM )R and (VM )R is empty. By this, we simply
mean that one should search for real points in the intersection just described, e.g., using the method
of [6].

2 Choice of test statistics and parameter estimates

In this section, we justify our procedures for model validation and parameter estimation.

2.1 Maximum likelihood

Here we justify the assertion that the test statistic given in Section 2.1 of the main text is related to
likelihood maximization.

Consider first, for simplicity, the case of a single data point y = (y1, . . . , ym), which we assume is a
perturbation y = ξ + ε of some unknown true value ξ = (ξ1, . . . , ξm), where each component εi of the error
ε = (ε1, . . . , εm) is an independent zero-mean Gaussian random variable with variance σ2

i . We are interested
in computing the probability that y comes from a given model as defined by a model variety VM. A point
on VM has the form (a, x, z), where a = (a1, . . . , ak) are the model parameter values, x = (x1, . . . , xn) are
the variable values, and z = (z1, . . . , zn) are the outputs. The probability that y comes from a given point
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(a, x, z) ∈ VM, i.e., that y is a perturbation of z where (a, x, z) ∈ VM for some a and x, is then:

Pr(y | a, x, z) = Pr(y | ξ = z) =

m∏
i=1

Pr(yi | ξi = zi).

This is also called the likelihood L(a, x, z |y) of (a, x, z) and we wish to find its maximizer over all (a, x, z) ∈
VM. This can equivalently be done by considering the log-likelihood, which gives:

logL(a, x, z | y) =

m∑
i=1

log Pr(yi | ξi = zi) =

m∑
i=1

(
1

2
log 2πσ2

i −
(zi − yi)2

2σ2
i

)
by normality. The maximizer (â, x̂, ẑ) can therefore be found by solving the optimization problem:

d2 = min
(a,x,y)∈VM

m∑
i=1

(zi − yi)2

σ2
i

,

where the optimum is precisely the test statistic. The values â, x̂, and ẑ are the maximum likelihood esti-
mates for, respectively, the parameters (estimation), the unobservable variable values (inference/recovery),
and the true output values (filtering/denoising),

The test statistic d2 itself also has a useful interpretation as follows. Suppose that y comes from a point
(a, x, z) ∈ VM. Then:

d2 =

m∑
i=1

(ẑi − yi)2

σ2
i

≤
m∑
i=1

(zi − yi)2

σ2
i

by definition. But regarding each yi as a random variable, each term (zi− yi)/σi in the summation above is
standard normal. Hence the right-hand side has a chi-squared distribution with m degrees of freedom (χ2

m).
The inequality should be interpreted by regarding d2 as a random variable subject to the same source of
randomness. This can be written somewhat clearer as:

d2(ω) ≤
m∑
i=1

(zi − yi(ω))2

σ2
i

,

where we have made explicit the underlying dependence of both sides on the same random realization ω.
The inequality then holds for each value of ω. Consequently, we conclude that:

Pr(d2 ≤ u) ≥ Pr(U ≤ u), U ∼ χ2
m,

so

Pr(d2 ≥ pα) ≤ Pr(U ≥ pα) = α, U ∼ χ2
m,

where pα is the upper α-percentile for χ2
m. This can be used to test the hypothesis that y comes from VM.

The test statistic is also related to the log–maximum-likelihood as:

logL(â, x̂, ẑ) =
1

2

(
m log 2π +

m∑
i=1

log σ2
i − d2

)
,

which is a useful quantity for model selection via, e.g., the Akaike or Bayesian information criteria.
Now consider the case of multiple data points {y(j)}pj=1. As before, we assume that each y(j) =

(y
(j)
1 , . . . , y

(j)
m ) is a perturbation y(j) = ξ(j) + ε(j), where each ε

(j)
i is an independent zero-mean Gaus-

sian random variable with variance σ2
j,i. Instead of searching for one point on VM, we now have to search

for p points (a, x(j), z(j)) for j = 1, . . . , p all with the same parameter values (since they come from the same
fixed model realization). The probability that y(j) comes from (a, x(j), z(j)) for j = 1, . . . , p is then:

Pr(y(1), . . . , y(p) | a, x(1), z(1), . . . , x(p), z(p)) =

p∏
j=1

Pr(y(j) | ξ(j) = z(j)) =

p∏
j=1

m∏
i=1

Pr(x̂j,i | ξ(j)i = z
(j)
i )

≡ L(a, x(1), z(1), . . . , x(p), z(p))
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by independence. This is essentially the same as before except that we now loop over each coordinate of
each data point. Therefore, the maximum likelihood estimates (â, x̂(1), ẑ(1), . . . , x̂(p), ẑ(p)) can be obtained
by solving:

d2 = min
(a,x(1),z(1),...,x(p),z(p))∈VM

p∑
j=1

m∑
i=1

(z
(j)
i − y

(j)
i )2

σ2
j,i

.

The same arguments go through and we find that Pr(d2 ≥ pα) ≤ α for pα the upper α-percentile for χ2
mp.

The log–maximum-likelihood is related to d2 as:

logL(â, x̂(1), ẑ(1), . . . , x̂(p), ẑ(p)) =
1

2

pm log 2π +

p∑
j=1

m∑
i=1

log σ2
j,i − d2

 .

3 Algorithm modifications

The algorithms presented in the main text are in their simplest form. Some applications require modifica-
tions, particularly if there are constraints on the variables or parameters.

3.1 Solving the constrained optimization problem

In many settings, there exist constraints on the variable and parameter spaces. For example, in chemical
reaction networks, the rate parameters are all assumed to be nonnegative. Thus, when nonnegativity or
other constraints are present, instead of finding the weighted squared distance between two varieties, we
are finding the weighted squared distance between two semi-algebraic sets, i.e. sets defined by polynomial
equalities and inequalities as opposed to just polynomial equalities. Indeed, if we let SM ⊂ (VM)R denote
the semi-algebraic set associated to the model, e.g. SM = VM ∩Rk+n+m≥0 , then the appropriate statistic is:

d2 = min

m∑
i=1

(zi − yi)2

σ2
i

subject to (a, x, z) ∈ SM.

In the case when a bound on the statistic d2 is sufficient, then no additional work is needed. One can
solve the system from Proposition 1, keeping in mind that the weighted squared distance between the closest
pairs of points returned would be an upper bound on d2. If the closest point to (VD)R in (VM)R is also an
element of SM, then the squared distance would be exactly the statistic d2.

When the exact value of d2 is needed, then one should solve the Fritz John (FJ) system of equations.
Let F1, . . . , Fr, h1, . . . , hs be polynomials in the ring R[a1, . . . , ak, x1, . . . , xn, z1, . . . , zm]. Let SM be the
semi-algebraic set of all (a, x, z) ∈ Rk+n+m that satisfies:

Fi(a, x, z) = 0 for i = 1, . . . , r

hi(a, x, z) ≤ 0 for i = 1, . . . , s.

Let λ0, λ1, . . . , λr, µ1, . . . , µs be indeterminates (these are the FJ multipliers). The FJ system may be written
as:

F = 0 (1)

λ0

[
0

z − y

]
+

r∑
i=1

λi∇a,x,zFi +

s∑
i=1

µi∇a,x,zhi = 0 (2)

µ1h1 = 0 (3)

... (4)

µshs = 0. (5)
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If (a∗, x∗, z∗) is a critical point the FJ constraint qualification states that there exists a nonzero vector
[λ0, . . . , λr, µ1, . . . , µs] with µi ≥ 0 for i = 1, . . . , s so that ((a∗, x∗, z∗), [λ0, . . . , λr, µ1, . . . , µs]) satisfies
equations (1)–(5). Thus, we can find the global minimum by using NAG to solve the system defined
by equations (1)–(5), then filtering solutions appropriately. This combination of NAG and optimization
equations (KKT in that case) was first employed in [9].

In some situations, it may be more efficient (or necessary) to minimize the objective function over (VM)R
and then check the boundaries of SM. This removes the explicit inequality constraints hi(a, x, z) ≤ 0. This
approach is needed in the case when F is not a complex intersection. Our approach is to use a complex
matrix A to construct a polynomial system A ·F whose solutions contain solutions of F . In this case, it no
longer makes sense to construct the system (1)–(5).

We describe this method for when there are only nonnegative constraints on each indeterminate. Fol-
lowing the notation of Proposition 1 in the main text, assume that h(a, x, y) are equations that define a
complete intersection whose solutions contain VM. First, solve the equality constrained optimization prob-
lem on (VM)R using the FJ system in Proposition 1. This will provide an upper bound for d2 defined on
SM. The space Rk+n+m≥0 is naturally a convex polytope made up of faces of various dimensions. Each of

the j faces in dimension i, Fi,j , is contained in its affine hull Fi,j , or smallest affine space that contains that
face. In our special case, Fi,j is defined simply by imposing natural equality constraints. We then minimize
d2 over VM ∩Fi,j for each combination of i, j and then filter out solutions not contained in VM ∩Rk+n+m≥0 .

This is equivilent to minimizing d2 over SM.
In total, if there are N indeterminates, there are 2N−1 faces. This amount to solving 2N−1 FJ systems.

One observation is that the number of systems that need to be solved explodes when N is large. However,
the dimension of VM ∩ Fi,j is less than or equal to the dimension of VM, with the inequality being strict
when VM ( Fi,j . If VM ∩ Fi,j is empty, then VM ∩ S is also empty for any subset S ⊂ Fi,j . Using this
fact, we significantly reduce the number of lower-dimensional affine spaces that need to be checked since
they are composed of intersections of higher-dimensional affine spaces.

For example, in Section 4.4.3, the MAP Kinase model variety VM is one-dimensional VM and in each
case where we intersect VM with affine space defined by ai, xi, or zi set to zero, the intersection consists of
a finite set of isolated points. Further analysis shows that 16 faces are sufficient to minimize d2 over SM
even though there are 216 − 1 = 65, 535 faces to check.

3.2 Removing extinction components

Given a model, it is quite common that the model variety is not irreducible but instead is the union of several
irreducible components. In applications, it may be preferred to remove from consideration components that
lie entirely in a coordinate hyperplane, since, in such components, one or several of the parameters and/or
variables are equal to zero. For example, in a chemical reaction network, such a component is called an
extinction component [10] since it captures the situation where one or more of the reactants have “run out.”
It is common to want to avoid extinction components when estimating parameters.

Removing components where a parameter or variable is equal to zero throughout the set from consider-
ation can be done algebraically with saturation. In particular, if IM is the defining ideal of the model VM
one should compute

IMain = IM : (a1 · · · ak · x1 · · ·xn · z1 · · · zm)∞ :=

{f ∈ R[a1, . . . , ak, x1, . . . , xn, z1, . . . , zm] : ∃k ∈ N s.t. (a1 · · · ak · x1 · · ·xn · z1 · · · zm)kf ∈ IM}.

This procedure can be performed using the saturate command in Macaulay2.
To estimate parameters such that the best estimate corresponds to a point not on an extinction compo-

nent of VM, one should modify Algorithm 3, replacing VM with V(IMain).

4 Results

We provide details for the calculations of examples in the main text. All code is available at:
http://www.math.sjsu.edu/∼egross/NAGModelSelection/AuxillaryFiles.
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4.1 Cell death activation

We provide the details of the calculations for model compatibility of the cell death cluster model. This
subsection includes detailed information regarding the solving schemes available in NAG software that were
utilized. A summary for the practioner can be found at the end of the subsection.

The model describes activation of apoptosis by death receptor Fas mechanisms [11]. The model includes
constitutive receptor opening and closing, pairwise open Fas stabilization, higher-order open Fas stabilization
enabled by FasL, and ligand-induced receptor opening. According to its conformational states, Fas is
assumed to be one of three species: closed (X1); open, unstable (X2); and open, stable (X3), i.e., active
and signaling. Furthermore, let the ligand FasL be denoted by L. Then the model has the reactions:

X2
kc−−⇀↽−−
ko

X1,

X3
ku−→ X2,

jX2 + (i− j)X3
k(i)s−−→ (j − k)X2 + (i− j + k)X3,

L+ jX2 + (i− j)X3
k
(i)
l−−→ (j − k)X2 + (i− j + k)X3

for i ∈ {2, 3}, j = 1, . . . , i, and k = 1, . . . , j. The first reaction describes spontaneous receptor opening and
closing. The second reaction describes constitutive destabilization of open Fas. The third reaction describes
cluster-stabilization by open Fas, independent of the presence of FasL. The fourth reaction describes cluster-
stabilization events enabled by FasL.

Assuming mass-action kinetics, the reactions can be translated as follows:


ẋ1 = −v1,
ẋ2 = v1 + v2 − v3 − v4,
ẋ3 = v3 + v4 − v2,

where


v1 = kox1 + (−kc)x2,
v2 = kux3,

v3 = 6k
(3)
s x32 + 3k

(3)
s x22x3 + 3k

(2)
s x22 + k

(3)
s x2x

2
3 + k

(2)
s x2x3,

v4 = 6k
(3)
l x32l + 3k

(3)
l x22x3l + 3k

(2)
l x22l + k

(3)
l x2x

2
3l + k

(2)
l x2x3l,

where vi are the reaction velocities for the variables xi, and lowercase letters denote the concentrations of
their uppercase counterparts.

The model parameters for the cell death cluster model are:

a = (ko, kc, ku, k
(2)
s , k(3)s , k

(2)
l , k

(3)
l ),

the variables are:
x = (`, x1, x2, x3),

and the outputs are:
z = (λ, ρ, ζ)

where the outputs represent, respectively, the total ligand concentration, the total receptor concentration,
and the total downstream “death signal”, as given by the equations:

λ− ` = 0 (6)

ρ− (x1 + x2 + x3) = 0 (7)

ζ − x3 = 0. (8)

We set the reaction rates ẋ1, ẋ2, ẋ3 to zero, and, together with equations (6)–(8), we obtain defining equations
for the model variety VM. The ambient space that VM is contained in has dimension 14. This space has
coordinates defined by both the model parameters a, the variables x and the outputs z.

Given an observable data point y = (λ′, ρ′, ζ ′), we define the data variety as:

VD = {(x, a, z) ∈ C14 : λ = λ′, ρ = ρ′, ζ = ζ ′} (9)
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for the clustering model. Note that VD has dimension 11 since there are no degrees of freedom in the
variables λ, ρ, or ζ.

We first compute a numerical irreducible decomposition (NID) of VM using Bertini; this will aid in
understanding VM ∩ VD. One can verify, after computing the NID for VM, that VM is a 9-dimensional
complex algebraic set of degree 10 (file name: Cluster Model NID ).

Now suppose we are given the following data point (taken from the model without noise):

y = (λ′, ρ′, ζ ′) = (1.7784308, 2.31883024, 2.16896112).

One can then verify using the NID that VM ∩ VD 6= ∅ (file name: Cluster Model Data NID). Specifically,
VM ∩ VD is a 6-dimensional complex algebraic set of degree 5. Adding noise to the coordinates of y taken
from N (0, 0.1) did not affect the dimension or degree.

Since we are interested in model compatibility, our goal is to find at least one nonnegative point in
(VM)R ∩ (VD)R. The above computation at least provides evidence that this is the case, but it may be
possible that VM∩VD does not contain any nonnegative real points or any real points at all for that matter.
We will approach this problem using the methods described in [6]. If VM ∩ VD contains a real nonnegative
point then we cannot reject the model and may conclude that the model is compatible with the data. If
(VM)R ∩ (VD)R does not contain a real point then we can try and use a Lagrange multiplier method similar
to the one employed in Section 4.4.3 in dealing with model selection.

We first randomly select a real, positive point:

` = 6.491154749564521

x1 = 7.317223856586703

x2 = 6.477459631363067

x3 = 4.509237064309449

ko = 5.470088922863450

kc = 2.963208056077732

ku = 7.446928070741562

k(2)s = 1.889550150325445

k(3)s = 6.867754333653150

k
(2)
l = 1.835111557372697

k
(3)
l = 3.684845964903365

where each coordinate is chosen uniformly on the interval [0, 10]. This point will determine the observable,
i.e. output, variables λ, ρ, and ζ using equations (6)–(8). Call this point (a?, x?, z?) ∈ R14.

Our aim then is to solve the constrained optimization problem:

minimize
y

‖(a, x, z)− (a?, x?, z?)‖2

subject to (a, x, z) ∈ (VM)R ∩ (VD)R.
(10)

Geometrically, we are minimizing the distance between the chosen point (a?, x?, z?) and (VM)R ∩ (VD)R.
We will refer to the system defining (VM) ∩ (VD) as f∗(a, x, z). Squaring up the polynomial system

will be a necessary step when utilizing the perturbed regenerative solving scheme. Squaring up was briefly
described in Section 1.4 but we will give additional details here. First notice from previous computations
that VM ∩ VD has codimension 14− 6 = 8. Thus, there exists a nonempty Zariski open set A ⊆ C8×9 such
that for every matrix A ∈ A, we have VM ∩ VD ⊆ V(Af∗(a, x, z)). In practice, elements of A are chosen
uniformly along the complex unit circle. If a point (a, x, z) ∈ V(Af∗(a, x, z)), then (a, x, z) ∈ VM ∩VD may
be verified by function evaluation of f∗. If VM ∩VD is to contain a smooth real point, then (VM)R ∩ (VD)R
has real dimension 6.

We will utilize the homotopy developed in [6] find a real point on the component (VM)R ∩ (VD)R.
The polynomial system that will arise are the so-called Fritz John conditions for optimality. That is, if
(a, x, z) ∈ (VM)R ∩ (VD)R is a critical point of (10) it must satify the Fritz John conditions; a polynomial
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system of equations. We would like a homotopy method to find all solutions that satify the Fritz John
conditions. In turn, this will find all critical points of (10) which is sufficient enough to find real points on
(VM)R ∩ (VD)R and produce positive results on model compatibility. We summarize the homotopy method
and Fritz John conditions of optimality for model compatibility of the cell death cluster model.

Given a point (a∗, x∗, z∗) ∈ R14/(VM)R ∩ (VD)R, the Fritz John condition for optimality states that
ξ = (a, x, z) ∈ (VM)R ∩ (VD)R is a local critical point of ‖(a, x, z) − (a∗, x∗, z∗)‖2 if there exists a λ̃ ∈ P8,
complex projective space, so that (ξ, λ̃) ∈ (VM)R ∩ (VD)R × P8 satifies:

Af∗ = 0 (11)

((a, x, y)− (a∗, x∗, z∗))Tλ0 + J(Af∗)T (λ1, . . . , λ8)T = 0 (12)

where λ = [λ0, . . . , λ8] ∈ P8, and J(Af∗) denotes the Jacobian matrix of the functions Af∗ w.r.t. (a, x, z).
A generic affine patch of P8 may be chosen that the system may be solved using affine coordinates. That
is, there is a nonempty Zariski open subset B ∈ C9 so that for every α ∈ B the Fritz John conditions may
be solved in affine coordinates:

Af∗ = 0 (13)

((a, x, z)− (a∗, x∗, z∗))Tλ0 + J(Af∗)T (λ1, . . . , λ8)T = 0 (14)

α0λ0 + α1λ1 + · · ·α8λ8 − 1 = 0 (15)

In practice, the components of α are chosen uniformly on the complex unit circle. Using the numerical
irreducible decomposition, we verified that VM ∩ VD is a complex 6 dimensional algebraic set using witness
sets. These conditions satisfy Theorem 5 of [6]. Let w ∈ R8, γ ∈ C, and homotopy H : C14 ×C9 ×C→ C23

be defined by:

H(a, x, y, λ, t) =

 Af∗ − tγw
((a, x, z)− (a∗, x∗, z∗))Tλ0 + J(Af∗)T (λ1, . . . , λ8)T

α0λ0 + α1λ1 + · · ·α8λ8 − 1

 . (16)

H has the properties that the roots of H(a, x, z, λ, 1) are finite and nonsingular, the number of solutions
of H(a, x, z, λ, 1) = 0 is maximal for generically chosen w, γ, (a∗, x∗, z∗), α, and the one real dimensional
solution paths defined by H stating at t = 1 allow one to compute the solutions ξ that satisfy the Fritz
John condition after projecting solutions (ξ, λ̃) → ξ as t → 0 along the positive real numbers. The system
consists of 23 variables and 23 equations.

Regarding implementation, the nonsingular isolated roots of H(a, x, z, λ, 1) are computed numerically
using the regeneration [12] method implemented with Bertini [3]. Regeneration reduces computation,
compared to standard methods such as a total degree homotopy [2], by detecting linear produce structure
within the polynomials and when only nonsingular solutions are desired. Theorem 5 of [6] guarantees only
nonsingular solutions to H(a, x, z, λ, 1) so that regeneration is appropriate. After the roots of H(a, x, z, λ, 1)
are obtained using regeneration, we use a standard straight-line homotopy, often referred generally to as a
parameter homotopy, using (16) implemented in Bertini [3] to numerically approximate roots as t → 0.
For t ≈ 0, we approximate critical points by projection onto the variables; π(a, x, z, λ) = (a, x, z).

Since many of the subexpression used are affine linear we have employed the use of intrinsically defined
variables (see Appendix F.1.2 of [2]) to significantly reduce computation. Regeneration and parameter

homotopy runs are implemented using x1, ko, kc, ku, k
(2)
s , k

(3)
s , k

(2)
l , k

(3)
l . The others, `, x2, x3, λ, ρ, ζ, are

parameterized and easily obtained. Input files may be found in the files Cluster Step1 and Cluster Step2.
Timing summaries are found in Table 1. Timings include computing the numerical irreducible decom-

position of VM, the numerical irreducible decomposition of VM ∩VD, and the two steps to approximate the
critical points. The numerical irreducible decompositions and parameter homotopy were implemented on
a Apple MacBook Pro with 2.4 GHz Intel “Core i5” processor using a serial implementation of Bertini.
Regeneration was implemented on 24 (2.67 GHz Xeon-5650) compute nodes with a CentOS 5.11 OS using
a parallel implementation of Bertini.

After approximating and examining all critical points, there are three solutions that correspond to real
points on (VM)R ∩ (VD)R. Among the three real solutions, two solutions are nonnegative. Solutions are
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Table 1: Timings collected over 20 runs. The table includes the average time and standard deviations
associated to the four computations described in this section.

Timing

Compute VM 0.79 sec ± 0.10 sec
Compute VM ∩ VD 0.35 sec ± 0.10 sec

Regeneration (parallel) 13.69 sec ± 2.40 sec
Parameter Homotopy 0.04 sec

Table 2: Nonnegative real solutions to (VM)R ∩ (VD)R

Solution 1 Solution 2

` 1.7784308 1.7784308
x1 0.0545838 0.0141547
x2 0.0952853 0.1357144
x3 2.1689611 2.1689611
λ 1.7784308 1.7784308
ρ 2.3188302 2.3188302
ζ 2.1689611 2.1689611
ko 5.3966315 0.1924532
kc 3.0914404 3.2734881
ku 3.9540082 0.2856796

k
(2)
s 1.9881072 1.2768451

k
(3)
s 7.6931353 6.9985113

k
(2)
l 1.9131209 1.8363315

k
(3)
l 3.6997123 3.6848663

listed in Table 2. We verify these are solutions to (VM)R ∩ (VD)R by function evaluation of f∗(a, x, z) and
thus are also solutions of (VM)R. We conclude from these computations that the clustering model VM is
compatible with the observable data y.

There are a few natural concerns using this method:

1. We may need to determine model compatibility from sampling a distribution of output variables
z = (λ, ρ, ζ). Furthermore, in each case determining model compatibility depends on selecting a real
point as input to optimization problem (10).

2. A general model and data variety intersection, VM ∩ VD, may be composed of several complex com-
ponents of varying dimension. Futhermore, each pure-dimensional component may consist of several
irreducible components that may either be conjugate paired or self-conjugate. In the later case, real
points of (VM) ∩ (VD) may be contained on the intersection of these components and whose points
are smaller real dimension than expected.

The first case may be addressed by employing a parameter homotopy scheme. In this case, we only need to
apply the regeneration method once and may then solve every instance of each problem using an efficient
straight-line homotopy on the order of 0.03 sec, as in Table 1. Additional details on parameter homotopies
can be found in [1, 2, 13, 14] and large-scale problems may be implemented using Paramotopy [15] on the
order of millions of parameter values.

The later case may be addressed using the theory from [6], guaranteeing that at least one real point
is obtained on each real connected component. Regarding implementation, care must be taken in order
to construct a system Af∗ so that the codimension of V(Af∗) pertains to the dimension of each pure-
dimensional component (VM) ∩ (VD). In the case that their are several pure-dimensional component, one
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Table 3: Each reaction described highlights whether the reaction is a forward or reversible reaction by the
arrows. Here i = 1, 2.

monomer-dimer (M1) dimer-dimer (M2) single operator (M3)

Xi
kbasi−−−→ Xi + Pi Xi

kbasi−−−→ Xi + Pi Xi
kbasi−−−→ Xi + Pi

Pi
kdegi−−−→ ∅ Pi

kdegi−−−→ ∅ Pi
kdegi−−−→ ∅

2P2
kkF−−−⇀↽−−−
kkR

P2P2 2P2
kkF−−−⇀↽−−−
kkR

P2P2 2P2
kkF−−−⇀↽−−−
kkR

P2P2

X1 + P2P2
knF−−−⇀↽−−−
knR

X1P2P2 X1 + P2P2
knF−−−⇀↽−−−
knR

X1P2P2 X2 + P2P2

kqF−−−⇀↽−−−
kqR

X2P2P2

X2 + P1
kcF−−−⇀↽−−−
kcR

X2P1 X2 + P1P1
koF−−−⇀↽−−−
koR

X2P1P1 X2P2P2
kw−−→ X2P2P2 + P2

2P1
kιF−−⇀↽−−
kιR

P1P1

homotopy must be solved for each dimension present. The clustering model only had one pure-dimensional
component of codimension 8, so only one homotopy was required to find all critical points in optimization
problem (10).

In summary the steps for model compatibility for the clustering model are as follows:

1. Determine the dimension of the pure-dimensional components of VM ∩ VD using the numerical irre-
ducible decomposition.

2. Using the information gathered in step 1, construct equivilent system(s) Af∗ where VM ∩ VD ⊆ Af∗.

3. Using the system(s) in step 2, solve optimization problem (10) by selecting a random real point
whose coordinates are sampled uniformly among a nonnegative closed interval and find roots of
H(a, x, z, λ, 1).

4. Using the roots of H(a, x, z, λ, t) at t = 1 obtained from step 3, use a straight-line homotopy to
approximate solutions (a, x, z, λ) for t ≈ 0.

5. Obtain critical points from step 4 by projecting π(a, x, z, λ) = (a, x, z) and filtering real positive
solutions.

6. Conclude that the model variety VM is compatible with the data if there are solutions obtained in
step 5.

4.2 Synthetic biology and experimental design

We demonstrate an example from synthetic biology with excess intersection (dim(VM ∩ VD) > 0). We
compare three bistable bio-circuits models analyzed in [16]: monomer-dimer toggle circuit (M1), dimer-
dimer toggle circuit (M2), and single operator gene circuit (M3), which were initially presented in [17–19].
The model variables include concentrations of genes (Xi) and proteins (Pi) where i = 1, 2 as well as species
complexes of the form XjPiPi, PiPi.

We follow the same notation for variables and parameters as presented by [16]. The reactions governing
each of the models are given in Table 3.

These variables interact following mass-action kinetics and form systems of polynomial differential equa-
tions where M1,M2, and M3 have 7, 8 and 6 model variables, respectively, and 10, 12, and 9 kinetic
parameters, respectively. The models can be reduced by assuming that the total amount of gene 1 (X1tot)
and gene 2 (X2tot) is conserved and these polynomial systems for each model are as follows. For simplicity,
we use P11 and P22 for P1P1 and P2P2, respectively.
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The monomer-dimer toggle circuit (M1) system is:

−kdeg1P1 − kcFX2P1 + kbas1X1 + kcR(X2tot −X2) = 0

−2kkFP
2
2 − kdeg2P2 + 2kkRP22 + kbas2X2 = 0

kkFP
2
2 − kkRP22 − knFP22X1 + knR(X1tot −X1) = 0

knR(X1tot −X1)− knFP22X1 = 0

kcR(X2tot −X2)− kcFP1X2 = 0.

The model dimer-dimer toggle circuit (M2) system is:

−2kiFP
2
1 − kdeg1P1 + 2kiRP11 + kbas1X1 = 0

kiFP
2
1 − kiRP11 − koFP11X2 + koR(X2tot −X2) = 0

−2kkFP
2
2 − kdeg2P2 + 2kkRP22 + kbas2X2 = 0

kkFP
2
2 − kkRP22 + knFP22X1 + knR(X1tot −X1) = 0

knR(X1tot −X1)− knFP22X1 = 0

koR(X2tot −X2)− koFP11X2 = 0.

The model single-operator positive feedback circuit (M3) system is:

kbas2X2 − kdeg2P2 − 2kkFP
2
2 + 2kkRP22 + kw(X2tot −X2) = 0

kkFP
2
2 − kkRP22 − kqFP22X2 + kqR(X2tot −X2) = 0

kqR(X2tot −X2)− kqFP22X2 = 0

In this example, we suppose that the total amounts X1tot and X2tot and specific protein synthesis
and degradation parameters kbas1 , kbas2 , kdeg1 , and kdeg2 are known and we assume that our data are
measurements of P1, P2, and their complexes P11, and P22, i.e. y = (P1, P2, P11, P22). The aim is to
select the best modelM1,M2, andM3 given the data. We simulate steady-state data (P1, P2, P11, P22) =
(0.4224, 2.4153, 0.9022, 0.4758) from the dimer-dimer toggle model (M2) using the following parameter and
variable values:

parameter value parameter value
X1tot 1.2099 knF 1.3566
X2tot 2.0660 knR 0.6521
kbas1 0.8718 koF 1.5169
kbas2 1.6930 koR 1.0661
kdeg1 1.2550 kiF 3.3169
kdeg2 0.6341 kiR 0.6559
kkF 0.6580 kqF 0.5057
kkR 8.0681 kqR 0.4844
kcF 0.4675 kw 0.1478
kcR 1.1636

We add Gaussian noise from N (0, 0.1) and then find dim(VMi ∩VD) for i = 1, 2, 3. We can compute the
dimension of each intersection using the dim command in Macaulay2 or by computing a NID in Bertini;
we find:

dim(VM1 ∩ VD) = 3,

dim(VM2 ∩ VD) = 4,

dim(VM3 ∩ VD) = 3.

Some further computations are required to find dim((VMi)R∩(VD)R. Specifically, we need to find real points
in each intersection and determine whether or not those points are smooth. Computing the dimension of

12



the real part of the intersections is more work than necessary for Algorithm 2, however, it provides an
illustrative example on how to work with real varieties and the algorithm in [6].

Let f (i) = 0 be the polynomial system defining VMi
∩ VD for i = 1, 2, 3 and let w(1) ∈ R17, w(2) ∈ R20,

w(3) ∈ R15 be random points. Let x(i) be the vector of indeterminates (unknown parameters and variables)
for ith model, and let ci be the codimension of VMi

∩ VD. We can find a real point on every component of
each interesection, by solving the system:

f (i) = 0, (17)

λ1∇f (i)1 + . . . λci∇f (i)ci + (x(i) − w(i)) = 0. (18)

This is a simplified version of the system in Theorem 5 from [6]. As a remark, notice the similarity of
the (17)-(18) to the system in Theorem 1. Algorithms for finding real points on a variety have been built
on algorithms for minimizing the distance between a point and a variety since [20].

Once we have a real point on every component of VMi
∩VD, we can quickly determine dim(VMi

)R∩(VD)R
if those real points are smooth. Indeed, if V is an irreducible variety, then dimV = dimVR if V contains a
real smooth point (see [2, §14.1]). Checking whether a real point is smooth can be done by evaluating the
Jacobian VMi ∩ VD at the point; if the Jacobian has full rank, then the point is smooth. In our case, for
the three models, every point we find is smooth and thus we are able to reach the conclusion:

dim((VM1)R ∩ (VD)R) = 3,

dim((VM2)R ∩ (VD)R) = 4,

dim((VM3)R ∩ (VD)R) = 3.

The dimension analysis of the varieties VMi
∩ VD informs us about the minimum number of additional

variable and parameter values that must be measured to ensure VM ∩VD = ∅. ForM1 we need to know at
least 4 more variable and/or parameter values, forM2 we need to know at least 5 more, and forM3 we need
to know at least 4 more. Thus for the remainder of the example, we assume that we the parameters kcF ,
kcR, knF , and kkF are known in M1, the parameters kkF , knF , kiF , koF , and koR are known in M2, and
the parameters kkF , kqF , kqR and kw are known in M3. The model M3 is an example where the number
of additional parameters and/or variables that need to be known/measured exceeds the amount predicted
by the dimension analysis.

Now that all the intersections are empty, we run Algorithm 2, using the regeneration methods in Bertini
to solve the systems resulting from Theorem 1. We find that the sum of squares (Eq. (3.1)) for each model
are as follows: d21 = 2.116, d22 = 0.000124, and d23 = 0.6333. Therefore, we select the M2 model, which
matches the model from which the data was generated.

Solving the zero-dimensional system for the monomer-dimer toggle circuit, M1, took 1 minute and 3
seconds on an Apple MacBook Pro with a 2.6 GhHz Intel Core i5 processor. Solving the system for the
dimer-dimer toggle circuit,M2, took 1 minute and 43 seconds, and solving the system for the single-operator
positive feedback circuit, M3 took 0.092 seconds.

4.3 Epidemiology HIV

To demonstrate parameter estimation we use a model that includes long-term HIV dynamics from ini-
tial virus, latency, and virus increase [21], based on [22]. Model variables x are uninfected CD4+T cells
(T ), infected CD4+ T cells (Ti), uninfected macrophages (M), infected macrophages (Mi), and HIV virus
population (V ). The reactions are considered for this model are shown in Table 4.
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Table 4: Reactions for HIV model. The published parameter value is used from [21], see references therein.

Description Reaction Parameter value

Generation of new CD4+T cells ∅ s1−→ T 10

Generation of new macrophages ∅ s2−→M 1.5 × 10−1

Proliferation of T cells by presence of pathogen T + V
k1−→ (T + V ) + T 2 × 10−3

Infection of T cells by HIV T + V
k2−→ Ti 3 × 10−3

Proliferation of M by presence of pathogen M + V
k3−→ (M + V ) +M 7.45 × 10−4

Infection of M by HIV M + V
k4−→Mi 5.22 × 10−4

Proliferation of HIV within CD4+T cell Ti
k5−→ V + Ti 5.37 × 10−1

Proliferation of HIV within macrophage Mi
k6−→ V +Mi 2.85 × 10−1

Natural death of CD4+T cells T
δ1−→ ∅ 0.01

Natural death of infected T cells Ti
δ2−→ ∅ 0.44

Natural death of macrophages M
δ3−→ ∅ 6.6 × 10−3

Natural death of infected macrophages Mi
δ4−→ ∅ 6.6 × 10−3

Natural death of HIV V
δ5−→ ∅ 3

From these reactions, the dynamics are described by the following equations:

Ṫ = s1 + k1TV − k2TV − δ1T
Ṫi = k2TV − δ2Ti
Ṁ = s2 + k3MV − k4MV − δ3M
Ṁi = k4MV − δ4Mi

V̇ = k5Ti + k6Mi − δ5V

Using Macaulay2, we find that the model variety VM has two irreducible components, the main compo-
nent V1 defined by the ideal:

I1 = 〈5742M − 2453Mi − 130500, 259908Ti − 46607Mi + 4840000δ5 − 20200500,

17721T + 46607Mi − 4840000δ5 + 2479500, 484000V δ5 − 184547Mi + 4840000δ5 − 20200500,

2453MiV − 72600Mi + 130500V 〉

and an extinction component V2 defined by the ideal:

I2 = 〈V,Mi, 11M − 250, Ti, T − 1000〉

We estimated the natural death of the virus, parameter δ5, using Algorithm 3 with main component V1
in place of VM (see Section 3.2). For VD, we used the long-term non-progressors steady-state value (Table
3 of [21]) and added noise to each variable ∼ N (0, 1). In particular, the data variety VD is defined by the
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equations:

T − 6383

20
= 0

Ti −
937

20
= 0

M − 8109

100
= 0

Mi −
13667

100
= 0

V − 2121

100
= 0

For s1, s2, k1, . . . , k6, δ1, . . . , δ4, we treated these parameters as known using the values from Table 1 of [21].
The varieties V1 and VD do not intersect, which we can confirm with Macaulay2. Using Bertini, we

solve the following system from Proposition 1 in the main text:

5742M − 2453Mi − 130500 = 0

259908Ti − 46607Mi + 4840000δ5 − 20200500 = 0

17721T + 46607Mi − 4840000δ5 + 2479500, 484000V δ5 − 184547Mi + 4840000δ5 − 20200500 = 0

2453MiV − 72600Mi + 130500V = 0

T + 17721λ3 − 6383/20 = 0

Ti + 259908λ2 − 937/20 = 0

M + 5742λ1 − 8109/100 = 0

2453λ5 +Mi − 2453λ1 − 46607λ2 + 46607λ3 − 184547λ4 − 72600λ5 − 13667/100 = 0

484000δ5λ4 + 2453Miλ5 + V + 130500λ5 − 2121/100 = 0

484000V λ4 + 4840000λ2 − 4840000λ3 + 4840000λ4 = 0

There are 16 complex solutions to this equation, 3 of which are real. The real point resulting in the smallest
sum of squared errors d2 = 0.2884 is:

(T, Ti,M,Mi, V, δ5, λ1, λ2, λ3, λ4, λ5) =

(319.408, 46.404, 81.1544, 136.767, 21.3079, 2.99876,

− 0.0000112074, 0.00000171594,−0.0000145481,−0.00000519486, 0.0000159701)

Thus, Algorithm 3 returns δ̄5 = 2.99876, which we can compare to the true value δ5 = 3. Solving the system
on an Apple MacBook Pro with a 2.6 GhHz Intel Core i5 processor took 48 seconds.

4.4 Multisite phosphorylation

Here we describe the details for the multisite phosphorylation model selection and parameter estimation
computations. First we describe the relevant biology, next we present the mathematical models of the
distributive and processive mechanisms, then we apply our model selection method using data from [23].
We also estimate the relationship between the EGF concentration and activation of the pathway described
by the parameter k1 (see Table 11).

4.4.1 Biology of MAP Kinase system

Many cellular decisions are governed by molecular post-translational modifications. One type of modifica-
tion, phosphorylation, is the addition of a phosphate group to a site of a substrate by an enzyme called
a kinase. Some proteins (substrates) require multiple phosphate groups to be added by the kinase before
the protein in activated/de-activated by these modifications. One well-studied signaling system is the MAP
Kinase pathway, with kinase MEK and its substrate ERK; however the mechanism by which the phosphate
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Table 5: Description of variables and parameters for distributive and processive MAP Kinase models

variable species parameter name parameter name

x1 MEK k1 kphos MEK pMEK k15 kdphos pY np cyt
x2 cRAF k2 kdphos pMEK MEK k16 kdphos pT np cyt
x3 pMEK k3 kf MEK ERK binding k17 kdphos pTpY pY nuc
x4 np-ERK cyt k4 kb MEK ERK dissociation k18 kdphos pTpY pT nuc
x5 MEK np-ERK k5 kimport np k19 kdphos pY np nuc
x6 np-ERK nuc k6 kexport np k20 kdphos pT np nuc
x7 pY-ERK cyt k7 kimport pY k21 kphos np pY
x8 pY-ERK nuc k8 kexport pY k22 kphos pY pTpY
x9 pT-ERK cyt k9 kimport pT k23 kphos pT pTpY
x10 pT-ERK nuc k10 kexport pT k24 kf MEK ERK binding
x11 pTpY-ERK cyt k11 kimport pTpY k25 kb MEK ERK dissociation
x12 pTpY-ERK nuc k12 kexport pTpY k26 kphos np pY
x13 pMEK np-ERK k13 kdphos pTpY pY cyt k27 kphos pY pTpY MEKERK
x14 pMEK pY-ERK k14 kdphos pTpY pT cyt c2,c1 cyt vol, nuc vol

group is added has been debated. Either MEK could phosphorylate ERK, disassociate and then phospho-
rylate again, called distributive; or MEK could bind and phosphorylate in sequence, called processive. Aoki
et al [23] showed experimentally (with mathematical models) that this mechanism is different in vitro than
in vivo. This experiment included 12 different levels of EGF stimulus ranging from 0.0244140625 ng/mL to
50 ng/ML. EGF actives cRAF which then phosphorylates MEK and finally doubly phosphorylates ERK.
The data are measurements of three replicates of nonphosphorylated ERK (np-ERK), tyrosine monophos-
phorylated ERK (pY-ERK), and doubly phosphorylated ERK (pTpY-ERK), at each stimulus level. These
data are given as percentage of total ERK (ERK), so we use the concentration measurement for each of
these ERK states.

4.4.2 Mathematical models

The model variables and parameters are given in Table 5. The model parameters for the distributive model
are:

a = (k1, . . . , k27, c1, c2),

the variables are:
x = (x1, . . . , x12, cRAFtot,MEKtot,ERKtot),

and the outputs are:
z = (np-ERK,pY-ERK,pYpT-ERK).

The variables for the processive model are the same as for the distributive model except for two additional
variables x13, x14. The reaction velocities are given in Table 6 and the corresponding equations are given in
Table 7. Note in Table 7 that there are various conserved species concentrations in addition to the ODEs.

We use the in vitro parameters estimates from Table S2 in reference [23] for k2, . . . , k27, c1, c2 and
the conserved quantities MEKtot, cRAFtot, ERKtot, as given in Table 8. The remaining parameter, k1,
describes the rate of MEK phosphorylation and depends on the level of EGF stimulation, which varies
throughout the data. The output variables are np-ERK, pY-ERK, and pYpT-ERK, which are sums of
species concentrations. For the distributive model, the output equations are:

np-ERK− (x4 + x5 + x6) = 0 (19)

pY-ERK− (x7 + x8) = 0 (20)

pYpT-ERK− (x11 + x12) = 0 (21)
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Table 6: Reaction velocities for the MAP Kinase distributive and processive model. The processive model
uses the additional reaction velocities v18, v19, v20.

v1 = k1x1x2 − k2x3 v2 = k3x1x4 − k4x5 v3 = k5x4 − c2k6x6
v4 = k7x7 − c2k8x8 v5 = k9x9 − c2k10x10 v6 = k11x11 − c2k12x12
v7 = k13x11 v8 = k14x11 v9 = k15x7
v10 = k16x9 v11 = c2k17x12 v12 = c2k18x12
v13 = c2k19x8 v14 = c2k20x10 v15 = k21x3x4
v16 = k22x3x7 v17 = k23x3x9
v18 = k24x3x4 − k25x13 v19 = k26x13 v20 = k27x14

Table 7: Equations for distributive and processive MAP Kinase models

Variable Distributive Processive

ẋ1 = −v1 − v2 −v1 − v2
ẋ2 = 0 0
ẋ3 = v1 v1 − v18 + v20
ẋ4 = −v2 − v3 + v9 + v10 − v15 −v2 − v3 + v9 + v10 − v18
ẋ5 = v2 v2
ẋ6 = v3 + v13 + v14 v3 + v13 + v14
ẋ7 = −v4 + v7 − v9 + v15 − v16 −v4 + v7 − v9 − v16
ẋ8 = v4 + v11 − v13 v4 + v11 − v13
ẋ9 = −v5 + v8 − v10 − v17 −v5 + v8 − v10 − v17
ẋ10 = v5 + v12 − v14 v5 + v12 − v14
ẋ11 = −v6 − v7 − v8 + v16 + v17 −v6 − v7 − v8 + v16 + v17 + v20
ẋ12 = v6 − v11 − v12 v6 − v11 − v12
ẋ13 = v18 − v19
ẋ14 = v19 − v20

0 = MEKtot − (x1 + x3 + x5) MEKtot − (x1 + x3 + x5 + x13 + x14)
0 = cRAFtot − x2 cRAFtot − x2
0 = ERKtot −

∑12
i=4 xi ERKtot −

∑14
i=4 xi

Table 8: Parameter values for MAP Kinase models

parameter value parameter value parameter value

k2 0.0096 k13 0.004 k24 0.18
k3 0.18 k14 0.0055 k25 0.27
k4 0.27 k15 0.0067 k26 0.073
k5 0.0017 k16 0.0068 k27 0.05
k6 0.013 k17 0.0032 c1 1.0
k7 0.0025 k18 0.0038 c2 0.2
k8 0.017 k19 0.0077 cRAFtot 0.013
k9 0.0022 k20 0.0058 MEKtot 1.2
k10 0.049 k21 0.039 ERKtot 0.74
k11 0.0082 k22 0.021
k12 0.0076 k23 0.02
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whereas for the processive model, we include two additional species, so the output equations become:

np-ERK− (x4 + x5 + x6 + x13) = 0 (22)

pY-ERK− (x7 + x8 + x14) = 0 (23)

pYpT-ERK− (x11 + x12) = 0. (24)

4.4.3 Model selection and parameter estimation computations

The model variety VMd
of the distributive model is defined by (19) - (21) and the equations obtained by

setting the “Distributive” column of Table 7 equal to zero. We will refer to the system defining VMd
as

F . The model variety VMp of the processive model is defined by (22) - (24) and the equations obtained by
setting the “Processive” column of Table 7 equal to zero. The ambient dimension of VMd

is 16 since the
coordinates that define VMd

include x1, . . . , x12, np-ERK, pY-ERK, pYpT-ERK, and the model parameter
k1; all other parameters and variables we treat as known constants. Similarly the ambient dimension for
the processive model is 18 as we include the additional variables x13 and x14.

Given data y = (np-ERK′,pY-ERK′,pYpT-ERK′) we define the data variety for the distributive model
as:

VDd =
{

(a, x, z) ∈ C16 : z = y
}
.

The data variety VDd has dimension 13. The data used is found in the supplementary data file (aoki data.txt).
The data variety VDp for the processive model is defined similarly. The computations that follow will be
for the distributive model. The computations for the processive model will be nearly identical so we do not
describe them in the same level of detail. We record information for both models.

We first compute a numerical irreducible decomposition (NID) of VMd
using Bertini [3]. With the NID,

one can verify that VMd
is a one-dimensional complex algebraic set of degree 8 (filename: MAPK D Model NID).

Similarly, for the processive model, the model variety VMp
is a one-dimensional complex algebraic set of

degree 11 (filename: MAPK P Model NID). There are several variables that may be intrinsically defined to
save computation. For example, x1, x2, x7, and x11 can be written in terms of the other variables fol-
lowed by x4. One may also verify that VMd

∩ VDd = ∅ and VMp
∩ VDp = ∅ using Bertini (filename(s):

MAPK D Model Data NID and MAPK P Model Data NID). We define the variables np-ERK, pY-ERK, and
pYpT-ERK intrinsically to save computation. Since VMd

∩ VDd = ∅ and VMp
∩ VDp = ∅, Algorithm 2

instructs us to minimize the distance between (VMd
)R and (VDd)R and similiarly between (VMp

)R and
(VDp)R for each data point.

Squaring up the polynomial system defining VMd
will be a necessary step to construct the polynomial

system from Proposition 1. This procedure was described briefly in Section 1.4 and in more detail in Section
4.1. The codimension of VMd

is c = 16− 1 = 15, the dimension of the ambient space minus the dimension
of VMd

as determined by the NID. Let A ∈ C15×17 whose entries are taken randomly from the complex unit
circle and set f∗(a, x, z) = AF (a, x, z). Our aim is to solve the optimization problem:

minimize ‖z − y‖

subject to (a, x, z) ∈ (VM)R ∩ R16
≥0.

(25)

We set up the Fritz John conditions:

f∗(a, x, z) = 0 (26)

Σ15
j=1

∂f∗j (a, x, z)

∂a1
λj = 0, (27)

Σ15
j=1

∂f∗j (a, x, z)

∂xi
λj = 0, for 1 ≤ i ≤ 12 (28)

(zi − yi)λ0 + Σ15
j=1

∂f∗j (a, x, z)

∂zi
λj = 0, for 1 ≤ i ≤ 3. (29)

where λ = [λ0, λ1, · · · , λ15] ∈ P15. This is a system of 31 variables and 31 equations on C16 × P15. There
exists a nonempty Zariski open subset A ⊂ C16 so that for each α = (α0, α1, . . . , α15) ∈ A, equations
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(26)–(29) may be defined using affine coordinates on a patch equation:

α0λ0 + α1λ1 + · · ·+ α15λ15 − 1 = 0.

The Fritz John conditions for optimality state that (a, x, z) is a critical point of ‖z−y‖ for (a, x, z) ∈ (VM)R
if there is a λ ∈ P15 so that (a, x, z, λ) is a solution to equations (26)–(29). We obtain the critical points by
projecting onto (a, x, z); π(a, x, z, λ) = (a, x, z). Our approach computes every critical point from equations
(26)–(29), and evaluates ‖z − y‖ for each critical point.

In Section 3.1, we explained an issue that can arise in solving constrained optimization problems such
as ones arising from equations (1)–(5). In this example, we want to ensure that x1, . . . , x12, a1, z1, z2, z3
are non-negative, i.e. SMd

= VMd
∩ R16

≥0. To minimize the distance between SMd
and VDd using a NAG

approach, we solve the system (26)–(29), and then solve the system many more times, setting combinations
of x1, . . . , x12, a1, z1, z2, z3 to zero. Since the complex dimension of VMd

is one, and VMd
is does not contain

any coordinate hyperplanes as components (i.e. where any coordinates of (a, x, z) are zero), one can verify
that VMd

restricted to every coordinate hyperplane is zero-dimensional. In this case, checking the various
boundary conditions of VMd

∩ R16
≥0 becomes trivial. See Section 3.1 for a more general discussion of this

approach.
We consider 36 data points where each data point consists of a triple y = (np-ERK′,pY-ERK′,pYpT-ERK′)

define in the supplementary data file (aoki data.txt). Rather than solve equations (26)–(29) independently
for each data point, we first define a homotopy H : C32 × C3 → C32:

H(a, x, z, λ; p) =


f∗(a, x, z)

Σ15
j=1

∂f∗j (a,x,z)

∂a1
λj

Σ15
j=1

∂f∗j (a,x,z)

∂xi
λj

(zi − pi)λ0 + Σ15
j=1

∂f∗j (a,x,z)

∂zi
λj

α0λ0 + α1λ1 + · · ·+ α15λ15 − 1

 (30)

using a general parameter p = (p1, p2, p3) ∈ C3. When the parameter is specialized to p = y, we recover the
Fritz John conditions for a given optimization problem using the data y. Using theory of parameter homo-
topies, there is a nonempty Zariski open subset P ⊆ C3 so that nonsingular isolated roots of H(a, x, z, λ; p)
is maximal as they vary in P. Furthermore, for any p∗ ∈ P, every isolated root of H(a, x, z, λ; y) may
be obtained by constructing the straight-line homotopy H(a, x, z, λ; p∗t + (1 − t)y) and tracking the one
real-dimensional solution paths starting at the nonsingular isolated roots of H(a, x, z, λ; p∗) and obtaining
the isolated roots of H(a, x, z, λ; y) as t → 0. Additional details on parameter homotopies can be found
in [1, 2, 13, 14] and large-scale problems may be implemented using Paramotopy [15] on the order of millions
of parameter values.

The benefit of employing a parameter homotopy is immense. Parameter homotopies significantly reduce
the computation required since solving the parameterized system at a generic parameter p = p∗ only needs
to be solved once. Any further specialization of the parameter p = y requires only a fraction of the
amount of computation. Concretely, this amounts to around a 58× speed up for the distributive model and
approximately a 100× speed up for the processive model.

In addition to employing a parameter homotopy solving scheme, equations (26)–(29), have a natural
homogeneous product structure. That is, after equations (26)–(29) are multihomogenized with respect to
the product of projective spaces P16 × P15, where the first space corresponds to the coordinates (a, x, z)
and the second space corresponds to the coordinates λ, the number of nonsingular solutions is significantly
reduced when compared to the space P31. In unison with parameter homotopies a more efficient homotopy is
used to solve H(a, x, z, λ; p∗) for p∗ ∈ P. References [1] and [2] contain further details on multihomogeneous
homotopies.

One additional reformulation that we can do to reduce computation is to define some of the variables
that occur in (26)–(29) intrinsically. This is most easily applied when one or more variables can be expressed
as a linear combination of other variables. Specifically, we know from Table 7 that:

x2 = cRAFtot
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Table 9: Path counts on processive and distributive models. ‘{(a, x, z), λ}-hom’ corresponds to a
{(a, x, z), λ}-homogeneous variable grouping and ‘intrinsic x2’ corresponds to the system where x2 is in-
trinstically defined.

Total Degree {(a, x, z), λ}-hom {(a, x, z), λ}-hom + intrinsic x2

Distributive Model 124,416 paths 3,744 paths 1,152 paths
Processive Model 248,832 paths 7,488 paths 2,304 paths

Table 10: Expected timings for the MAPK model collected over 20 ‘random’ runs.

Compute Dimension Initial Solve (parallel) Data Solve (all 36)

Distributive Model 4.50 sec ± 0.53 sec 44.80 sec ± 4.85 sec 27.80 sec ± 3.16 sec
Processive Model 6.64 sec ± 0.48 sec 91.67 sec ± 7.69 sec 32.77 sec ± 5.06 sec

where cRAFtot is defined as a constant in Table 8. Thus, we can “remove” x2 from our computations.
Partial derivatives are no longer necessary with respect to the variable x2, and x2 is no longer defined
explicitly when tracking homotopy paths.

Table 9 summarizes the sequence of reductions made in the number of paths by imposing a {(a, x, z), λ}-
homogeneous structure followed by intrinsically defining the variable x2 along with the number of paths
required using the standard total degree homotopy [1],[2].

Table 12 and Table 13 record the distances between the data and model varieties for all 36 data points.
A missing “interior” distance in Table 12 and Table 13 indicate there were no positive real critical points
found on the interior of VMd

∩ R16
≥0 for the given EGF level and replicate, for example. However, we may

still compute a distance to the boundary of the semi-algebraic set corresponding to each model. Bertini

input files, shell scripts, and MATLAB scripts are available within the supplementary files to analyze model
selection and parameter estimation. The distances are summarized graphically in Figure S1.

Timing summaries for both the processive and distributive model can be found in Table 10. These
timings include the NID required to compute the dimension of each pure-dimensional component of the
model variety VMd

and VMp
, computing the nonsingular solutions of (30) for the distributive model at a

generic parameter p∗ ∈ P required to employ a parameter homotopy scheme (and a similiar solve for the
processive model), and the parameter homotopy to solve equations (26)–(29) for each data point (and a
similiar parameter homotopy for the processive model). Timings to compute the dimension of the model
variety and the data solve were done in serial using a Apple MacBook Pro with 2.4 GHz Intel “Core i5”
processor. The initial solves for the parameter homotopies were done in parallel using 96 (2.67 GHz Xeon-
5650) compute nodes on the CentOS 5.11 operating system. The data solves were then done in serial using
the same MacBook Pro.
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Table 11: Parameter estimate of k1 for distributive and processive MAP Kinase models

EGF level Distributive Processive

1 (0.0244140625 ng/mL) 0.006655185015565 0.002630893498836
1 0.005169208080986 0.002666996926269
1 0.010517845922915 0.004869916688582
2 (0.048828125 ng/mL) 0.010599752816972 0.004139244229282
2 0.005294859090858 0.002185712163549
2 0.012645415710607 0.005598240936340
3 (0.09765625 ng/mL) 0.013040547423471 0.005555450037128
3 0.007862190037618 0.003676690633724
3 0.024444604812656 0.010890090940375
4 (0.1953125 ng/mL) 0.022314241866218 0.010026925643431
4 0.014767039426565 0.007566455646162
4 0.032112677267834 0.014358973830329
5 (0.390625 ng/mL) 0.057037089355902 0.028188983627260
5 0.034598433900389 0.018615955020805
5 0.046993978170047 0.023610675947125
6 (0.78125 ng/mL) 0.171132616846835 0.081810937526556
6 0.108600436914435 0.052541291660911
6 0.128469450822610 0.062127115025642
7 (1.5625 ng/ML) 0.552602449693311 0.311829951745706
7 0.198177806441867 0.094130793284515
7 0.307630980846652 0.162410456627762
8 (3.125 ng/ML) 1.535918937663103 1.104298831092815
8 1.558792683503445 0.653311235583313
8 1.114642498639134 0.700052847271073
9 (6.25 ng/ML) 0 0
9 6.741089632274929 2.682148283074402
9 0 0
10 (12.5 ng/ML) 62.84803495830790 0
10 0 0
10 2.556601780466427 1.856045810178470
11 (25 ng/ML) 0 0
11 0 0
11 18.13598179566577 12.162040343795182
12 (50 ng/ML) 0 0
12 0 0
12 0 0
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Table 12: Distance to (smaller) distributive model variety

EGF level Replicate “Interior” distance “Boundary” distance

1 1 0.0025 0.0309
2 0.0118 0.0266
3 0.0145 0.0496

2 1 0.0024 0.0485
2 0.0036 0.0249
3 0.0130 0.0581

4 1 0.0098 0.0594
2 0.0117 0.0377
3 0.0218 0.1062

8 1 0.0221 0.0981
2 0.0312 0.0714
3 0.0259 0.1349

16 1 0.0870 0.2189
2 0.0838 0.1559
3 0.0814 0.1904

32 1 0.1243 0.4343
2 0.1505 0.3374
3 0.0791 0.3784

64 1 0.0388 0.6990
2 0.1312 0.4648
3 0.0473 0.5889

128 1 0.0959 0.8398
2 0.0725 0.7501
3 0.0594 0.7931

256 1 — 0.9093
2 0.0427 0.8353
3 — 0.8839

512 1 0.1291 0.9154
2 — 0.8556
3 0.0947 0.8597

1024 1 — 0.9111
2 — 0.8817
3 0.0970 0.8883

2048 1 — 0.9272
2 — 0.8948
3 — 0.9197
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Table 13: Distance to (larger) processive model variety

EGF level Replicate “Interior” distance “Boundary” distance

1 1 0.0176 0.0309
2 0.0066 0.0266
3 0.0183 0.0496

2 1 0.0281 0.0485
2 0.0130 0.0249
3 0.0247 0.0581

4 1 0.0282 0.0594
2 0.0137 0.0377
3 0.0421 0.1062

8 1 0.0379 0.0981
2 0.0154 0.0714
3 0.0514 0.1349

16 1 0.0284 0.2189
2 0.0156 0.1559
3 0.0246 0.1904

32 1 0.0392 0.4343
2 0.0424 0.3374
3 0.0561 0.3784

64 1 0.0735 0.6990
2 0.0444 0.4648
3 0.0717 0.5889

128 1 0.1218 0.8398
2 0.0550 0.7501
3 0.0899 0.7931

256 1 — 0.9093
2 0.0557 0.8353
3 — 0.8839

512 1 — 0.9154
2 — 0.8556
3 0.1149 0.8597

1024 1 — 0.9111
2 — 0.8817
3 0.1105 0.8883

2048 1 — 0.9272
2 — 0.8948
3 — 0.9197
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