
Journal of Computational Physics 412 (2020) 109427
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Multidimensional phase recovery and interpolative

decomposition butterfly factorization

Ze Chen a, Juan Zhang b, Kenneth L. Ho c, Haizhao Yang d,∗
a Department of Mathematics, National University of Singapore, Singapore
b Department of Mathematics and Computational Science, Xiangtan University, China
c Center for Computational Mathematics, Flatiron Institute, USA
d Department of Mathematics, Purdue University, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 August 2019
Received in revised form 23 March 2020
Accepted 24 March 2020
Available online 27 March 2020

Keywords:
Data-sparse matrix
Butterfly factorization
Interpolative decomposition
Operator compression
Randomized algorithm
Matrix completion

This paper focuses on the fast evaluation of the matrix-vector multiplication (matvec)
g = K f for K ∈CN×N , which is the discretization of a multidimensional oscillatory integral
transform g(x) = ∫

K (x, ξ) f (ξ)dξ with a kernel function K (x, ξ) = e2π i�(x,ξ), where �(x, ξ)

is a piecewise smooth phase function with x and ξ in Rd for d = 2 or 3. A new framework
is introduced to compute K f with O (N log (N)) time and memories complexity in the
case that only indirect access to the phase function � is available. This framework consists
of two main steps: 1) an O (N log (N)) algorithm for recovering the multidimensional
phase function � from indirect access is proposed; 2) a multidimensional interpolative
decomposition butterfly factorization (MIDBF) is designed to evaluate the matvec K f
with an O (N log (N)) complexity once � is available. Numerical results are provided to
demonstrate the effectiveness of the proposed framework.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with the efficient evaluation of multidimensional oscillatory integral transforms. After discretiza-
tion with N grid points in each variable, the integral transform is reduced to a dense matrix-vector multiplication (matvec)
as follows:

g(x) =
∑
ξ∈�

K (x, ξ) f (ξ) =
∑
ξ∈�

e2π i�(x,ξ) f (ξ), x ∈ X, (1)

where X and � are typically point sets in Rd for d > 1, K (x, ξ) = e2π i�(x,ξ) is a kernel function, �(x, ξ) is a piecewise
smooth phase function with O (1) discontinuous points in x and ξ , f (ξ) is a given function, and g(x) is a target function.

When the explicit formula of the kernel function is known, the direct computation of matvec in (1) takes O
(
N2

)
opera-

tions and is prohibitive in large-scale computation. There has been an active research line aiming at a nearly linear-scaling
matvec for evaluating (1). In the case of uniformly distributed point sets X and �, the fast Fourier transform (FFT) [36]
can evaluate (1) when �(x, ξ) = x · ξ in O (N log (N)) operations. When the point sets are non-uniform, the non-uniform
FFT (NUFFT) algorithms in [13,32] are able to evaluate (1) when �(x, ξ) = x · ξ in O (N log (N)) operations. For more gen-
eral kernel functions, the butterfly factorization (BF) [21,25,27,28] can factorize the dense matrix e2π i�(x,ξ) as a product of

* Corresponding author.
E-mail address: haizhao@purdue.edu (H. Yang).
https://doi.org/10.1016/j.jcp.2020.109427
0021-9991/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2020.109427
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2020.109427&domain=pdf
mailto:haizhao@purdue.edu
https://doi.org/10.1016/j.jcp.2020.109427

2 Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427
Table 1
Three scenarios of the indirect access of the phase functions.

Scenario 1: There exists an algorithm for evaluating an arbitrary entry of the kernel matrix K in O (1) operations [3,4,21,27].

Scenario 2: There exists an O (N log (N)) algorithm for applying the kernel matrix K and its transpose to a vector [14,21,23,31].

Scenario 3: The phase functions � are solutions of partial differential equations (PDE’s) [10]. O (1) rows and columns of the phase matrices are
available by solving PDE’s.

O (log (N)) sparse matrices, each of which has only O (N) non-zero entries. Hence, storing and applying e2π i�(x,ξ) via the
BF for evaluating (1) take only O (N log (N)) complexity.

However, for multidimensional kernel functions, existing algorithms are efficient only when the explicit formula of the
phase function � is known [1,32,25,6,20,21,23,28]. The case of indirect access of the kernel function is illustrated in Table 1
for a list of different scenarios. When O (1) rows and columns of the phase matrices are available by solving PDE’s, Scenario
3, as well as Scenario 1, are special cases of Scenario 2. Therefore, we will focus more on Scenario 2 in this paper and will
discuss the relationship between three Scenarios in detail. In fact, it is hard to evaluate any arbitrary entry of the kernel
matrix directly in O (1) operations in Scenario 2. Therefore, the computational challenge in the case of indirect access of
the kernel function motivates a series of new algorithms in this paper.

As the first main contribution of this paper, in the case of indirect access, a nearly linear scaling algorithm is proposed
to recover multidimensional phase matrices in the form of low-rank matrix factorization. In scientific computing, several
important problems require the construction of low-rank phase matrices [3,4,17,30,31,7,26,34,14]. Previously, a nearly linear
scaling algorithm has been proposed in [38] to recover the low-rank phase matrix with uniform discretization grid points in
1D. However, the 1D algorithm in [38] is problematic in the case of high-dimensional nonuniform discretization grid points.
In this paper, we address the problem in multidimensional cases via Delaunay triangulation (DT) and minimum spanning
tree (MST) construction. Assuming the geometric coordinates of the discretization grids are given, and the indirect access of
the phase functions is known, such as Scenario 2 in Table 1. The phase matrices will be recovered to piecewise smoothness
matrices by a fast MST algorithm based on DT. Then, low-rank approximations of the recovered phase matrices will be
constructed.

Secondly, when low-rank constructions of the phase matrices have been recovered, a new BF, multidimensional inter-
polative decomposition butterfly factorization (MIDBF), is proposed for the matvec K f with an O (N log (N)) complexity
for both precomputation and application. The MIDBF is a generalization of the interpolative decomposition butterfly fac-
torization (IDBF) [28] in multidimensional cases especially when the discretization grid points are non-uniform. These two
contributions lead to the first framework for multidimensional fast oscillatory integral transforms in the case of indirect
access with non-uniform grid points.

The rest of the paper is organized as follows. In Section 2, we revisit and generalize existing low-rank phase matrix
factorization techniques, and propose a new low-rank matrix factorization in the case of indirect access. Next, the MIDBF
will be introduced in Section 3. Finally, we provide several numerical examples to demonstrate the efficiency of the proposed
framework in Section 4. For simplicity, we adopt MATLAB notations for the algorithm described in this paper: given row
and column index sets I and J , K (I, J) is the submatrix with entries from rows in I and columns in J ; the index set for an
entire row or column is denoted as “:”.

2. Low-rank phase matrix factorization

This section introduces a new low-rank phase matrix factorization for indirect access, which is the first main step in the
proposed framework. We begin with a brief review of existing techniques and introduce a new algorithm afterward. These
low-rank factorization methods will be applied repeatedly.

2.1. Low-rank approximation by randomized sampling

Let us revisit an existing low-rank matrix factorization with linear complexity. For A ∈ Cm×n , a rank-r approximate
singular value decomposition (SVD) of A is defined as

A ≈ U�V T , (2)

where U ∈Cm×r is orthogonal, � ∈Rr×r is diagonal, and V ∈Cn×r is orthogonal, and r = O (1) independent of the matrix
size m and n with a prefactor depending only on the approximation error ε . Previously, [12,15] have proposed efficient
randomized tools to compute approximate SVDs for numerically low-rank matrices. The method in [12] is more attractive
because it only requires O (1) randomly sampled rows and columns of A for constructing (2) with O (m + n) operations and
memories complexity, and it is observed that |A(i, j) − (U�V T)(i, j)| = O (ε) in a probabilistic sense, where 1 ≤ i ≤ m and
1 ≤ j ≤ n.

The method is denoted as Function randomizedSVD and is presented in Algorithm 1. Assuming the whole low-rank
matrix A is known, the input of Function randomizedSVD is A, O (1) randomly sampled row indices R and column

Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427 3
indices C , as well as a rank parameter rε based on the error ε . Equivalently, it can also be assumed that A(R, :) and A(:, C)

are known as the inputs. Let r be an empirical estimation of rε , then the outputs are three matrices U ∈ Cm×r , � ∈ Rr×r ,
and V ∈ Cn×r satisfying (2). In Function randomizedSVD, for simplicity, given any matrix K ∈ Cs×t , Function qr(K)
performs a pivoted QR decomposition K (:, P) = Q R , where P is a permutation vector of the t columns, Q is a unitary
matrix, and R is an upper triangular matrix with positive diagonal entries in decreasing order. Function randperm(m,r)
denotes an algorithm that randomly selects r different samples in the set {1, 2, . . . , m}. If necessary, we can add an over
sampling parameter q such that we sample rq rows and columns and only generate a rank r truncated SVD in Line 10 in
Algorithm 1. Larger q results in better stability of Algorithm 1.

1 Function [U ,�, V] ← randomizedSVD(A, R, C, r)
2 [m,n] ← size(A)

3 P ← qr(A(R, :)) ; �col ← P (1 : r) // A(R, P) = Q R

4 P ← qr(A(:, C)T) ; �row ← P (1 : r) // A(P , C) = RT Q T

5 Q ← qr(A(:, �col)) ; Q col ← Q (:, 1 : r) // A(P , �col) = Q R

6 Q ← qr(A(�row , :)T) ; Q row ← Q (:, 1 : r) // A(�row , P) = RT Q T

7 Srow ← randperm(m, r) ; I ← [�row , Srow]
8 Scol ← randperm(n, r) ; J ← [�col, Scol]
9 M ← (Q col(I, :))† A(I, J) (Q T

row (:, J)
)†

// (·)†: pseudo-inverse
10 [U M ,�M , V M] ← svd(M)

11 U ← Q col U M ; � ← �M ; V ← Q row V M

Algorithm 1: Randomized sampling for a rank-r approximate SVD with O (m + n) operations, such that A ≈ U�V T .

2.2. One-dimensional phase matrix factorization with indirect access

A nearly linear scaling algorithm for constructing the low-rank factorization of the phase matrix � ∈ RN×N in (1) has
been proposed in [38] when only O (1) selected rows and columns of a 1D kernel matrix K = e2π i� with uniform discretiza-
tion grid points are available as Scenario 2 in Table 1. In this subsection, we revisit the algorithms in [38] as a motivation for
the multidimensional case proposed in this paper. The introduction of the 1D algorithms also helps to clarify the difficulties
in the multidimensional case.

The difficulty of reconstructing � from K = e2π i� comes from the fact that

1

2π
� (log (K (i, j)))) = 1

2π
�

(
log

(
e2π i�(i, j)

))
= 1

2π
arg

(
e2π i�(i, j)

)
= mod(�(i, j),1),

where �(·) returns the imaginary part of the complex number, and arg(·) returns the argument of a complex number. Thus,
� is only known up to modular 1.

Since the point sets of the 1D kernel matrix are uniformly distributed, the main idea of [38] is to recover � by looking
for the solution of the following combinatorial constrained T V 3-norm1 minimization problem:

min
�∈RN×N

∑
i∈R

‖�(i, :)‖T V 3 +
∑
j∈C

‖�(:, j)‖T V 3

subject to mod (�(i, j),1) = 1

2π
� (log (K (i, j))) for i ∈ R or j ∈ C,

(3)

where R and C are row and column index sets with O (1) randomly selected indices, respectively. The optimization problem
above is appealing because it only requires the knowledge of O (1) rows and columns of K and the computational cost in
each iteration takes O (N) operations and memories. If the optimization problem can be solved in O (1) iterations, then the
recovered rows and columns of � can be used to compute the low-rank factorization of � by Function randomizedSVD
in Algorithm 1. The final computational cost is nearly linear in N . However, due to the non-convexity of (3), O (1) iterations
are almost impossible to give a good solution unless a very good initial guess is available. This motivates [38] to design an
empirical O (N) algorithm to provide a good initial guess to the optimization problem in (3).

The main algorithms of [38] are revisited and summarized in Algorithm 2 and Algorithm 3 in this paper for the prepa-
ration of higher dimensional cases. Algorithm 3 relies on the repeated application of Algorithm 2, which adjusts the values
of phase vectors by minimizing the absolute value of the third-order derivative, to provide an empirical solution to (3). The
functions in these two algorithms are denoted as RecoveryVector1 and RecoveryMatrix1, respectively. In fact, the
algorithms presented in this paper are slightly different from those in [38] for robustness against discontinuity detection,
which relies on a class of vectors Cτ with a threshold τ defined via:

1 The T V 3-norm of a vector v ∈RN is defined as ‖v‖T V 3 := ∑N
i=4 |vi − 3vi−1 + 3vi−2 − vi−3| in this paper.

4 Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427
Cτ = {
u ∈Rn : |u(i) − 3u(i − 1) + 3u(i − 2) − u(i − 3)| < τ,∀i ∈ {4,5, . . . ,n}} . (4)

Essentially, Cτ consists of vectors with a small absolute value of the third order derivative controlled by τ in the sense of
finite difference. In our algorithms, if |u(i) − 3u(i − 1) + 3u(i − 2) − u(i − 3)| ≥ τ , we will consider the original function that
generates u to be discontinuous at the location corresponding to u(i). With this definition ready, we are able to explain our
algorithms as follows.

For Function RecoveryVector1 in Algorithm 2, input variables are a vector u of length N , a discontinuity detection
parameter τ , and a parameter f lag which indicates whether u will be recovered from the first entry or the fourth entry.
Then, the outputs are a smooth vector v satisfying mod(v, 1) = mod(u, 1) and a vector of indices D for discontinuity
locations.

1 Function [v,D] = RecoveryVector1(u, τ , f lag)
2 N ← length(u); v ← u; D ← [1]; n ← 1; c ← 1
3 while c ≤ n do
4 st ← D(c)
5 if f lag ∼= 1 or st ∼= 1 then
6 v(st + 1) ← u(st + 1) − round(u(st + 1) − v(st))
7 v(st + 2) ← u(st + 2) − round(u(st + 2) − 2v(st + 1) + v(st))

8 for a = st + 3 : N do
9 v(a) ← u(a) − round(u(a) − 3v(a − 1) + 3v(a − 2) − v(a − 3))

10 if |v(a) − 3v(a − 1) + 3v(a − 2) − v(a − 3)| ≥ τ and a ≤ N − 3 then
11 D ← [D,a] ; n ← n + 1 // detect discontinuous locations
12 v(a) ← u(a) − round(u(a) − v(a − 1))

13 Break

14 c ← c + 1

Algorithm 2: An O (N) algorithm for recovering a vector v from the observation u = mod(v, 1). The locations of
discontinuity in v are automatically detected. A vector v is identified via empirically minimizing the magnitude of the
absolute value of its third-order derivative.

In Function RecoveryMatrix1 in Algorithm 3, one of the input variables is a function handle �, which can evaluate
an arbitrary row or column of the phase matrix. The other inputs are a vector R and a vector C as the row and column
index sets indicating O (1) randomly selected rows and columns of the phase matrix, as well as a discontinuity detection
parameter τ .

Because it is more convenient to apply Algorithm 2 to recover a vector representing a continuous function, we first apply
Algorithm 2 with τ to identify the sets of discontinuous points Dr and Dc , each of which contains the first index 1. Next,
the phase matrix is partitioned into nr × nc blocks, each of which is denoted as �.BsBt representing a continuous piece of
the phase function, where nr is the cardinality of Dr , nc is the cardinality of Dc , s = 1, 2, . . . , nr , and t = 1, 2, . . . , nc . This
procedure is referred to as the Function Partition1 in Line 6 in Algorithm 3. Similarly, R and C are partitioned into nr
and nc parts by Dr and Dc , and saved as R.Bs and C.Bt respectively. For example, Panel (a) in Fig. 1 visualizes an example
when the phase function contains only 4 continuous blocks: �.B1B1, �.B1B2, �.B2B1, �.B2B2. Panel (c) and (d) in Fig. 1
visualize the randomly selected rows R.B1 and columns C.B1 in �.B1B1.

1 Function [�,R,C] = RecoveryMatrix1(�, R, C, τ)
2 Dr ← RecoveryVector1(�(:, C(1)), τ , 0) // Dr: discontinuous point set
3 Dc ← RecoveryVector1(�(R(1), :), τ , 0) // Dc: discontinuous point set
4 R ← [R,Dr] ; C ← [C,Dc]
5 nr ← length(Dr) ; nc ← length(Dc)
6 [�,R,C] ← Partition1(�, R, C, Dr , Dc)
7 for s = 1 : nr do
8 for t = 1 : nc do
9 �.BsBt (1, :) ← RecoveryVector1(�.BsBt (1, :), 1, 0)

10 �.BsBt (:, k) ← RecoveryVector1(�.BsBt (:, k), 1, 0) for k = 1, 2, 3
11 �.BsBt (k, :) ← RecoveryVector1(�.BsBt (k, :), 1, 1) for k = 2, 3
12 �.BsBt (R.Bs(k), :) ← RecoveryVector1(�.BsBt (R.Bs(k), :), 1, 1) for all k
13 �.BsBt (:, C.Bt (k)) ← RecoveryVector1(�.BsBt (:, C.Bt (k)), 1, 1) for all k

Algorithm 3: An O (N) algorithm for the approximate solution of the T V 3-norm minimization when the phase func-
tion �(x, ξ) is defined on R ×R.

Finally, the selected rows and columns are recovered by Algorithm 2 with a carefully designed order in Line 9-13 in
Algorithm 3. The parameter for detecting discontinuous points is set to 1 since there is no need to detect discontinuity

Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427 5
Fig. 1. An illustration of the low-rank matrix recovery for a 1D phase matrix in Algorithm 3. (a) Line 6 partitions the phase matrix into submatrices such
that there is no discontinuity along rows and columns in each submatrix. Then, Line 9-10 recovers the first row and column of each submatrix. (b) Next,
Line 10 recovers the second and the third columns for each submatrix. (c) Next, Line 11-12 recovers O (1) rows (including the second row and the third
row) of each submatrix. (d) Finally, Line 13 recovers O (1) columns of each submatrix.

anymore. Note that there is no uniqueness for recovering a smooth vector from its values after mod 1. Hence, we introduce
the specially designed order in Line 9-13 to guarantee that each recovered row and column at their intersection share
the same value, as long as the discontinuous points in the phase function are well distinguished by a parameter τ from
continuous points, which can be shown by Lemma 2.1 below.

Lemma 2.1. Given mod (φ, 1) ∈Rn×m and the recovered values of φ(1 : 3, 1 : 3), where φ is a one-dimensional phase matrix. Assum-
ing that all rows and columns of φ belong to the class Cτ with a threshold τ ≤ 1

16 , then the intersection of each recovered row and
column by Algorithm 3 share the same value.

The proof of Lemma 2.1 can be found in the appendix. The correct τ depends on the phase function and is not known
a priori. In practice, τ is set as 1

16 according to Lemma 2.1 and it performs good enough to identify O (1) discontinuous
points with O (N) operations.

Once the phase function recovery algorithm in Algorithm 3 is ready, following the idea of low-rank matrix factoriza-
tion via randomized sampling in Algorithm 1, we can obtain a nearly linear scaling algorithm to construct the low-rank
factorization of the phase matrix.

2.3. Multidimensional phase matrix factorization with indirect access

2.3.1. Overview
In this subsection, a nearly linear scaling algorithm for constructing the low-rank factorization of the multidimensional

phase matrix � ∈RN×N will be introduced when we only know the kernel matrix K = e2π i� with non-uniform discretiza-
tion grid points through Scenario 2 in Table 1. In the multidimensional case, the coordinates of N × N discretization grid
points will be required for our methods, where N = nd is the number of points in a d-dimensional domain, d = 2 or 3, and
n is the number of points in each dimension. Recall that the main purpose of our algorithm is to recover O (1) randomly
selected rows and columns of �, and construct the low-rank factorization in the end.

In Scenario 2, applying the kernel matrix K and its transpose to O (1) randomly selected natural basis vectors in RN

can obtain the rows and columns of K in O (N log (N)) operations. Notice that Scenario 1 is a special case of Scenario 2, we
only focus on Scenario 2 for phase recovery.

Similar to the 1D case, instead of recovering the exact � that generates K , our primary purpose is to find a low-rank
matrix � such that

mod(�,1) = 1

2π
� (log (K)) . (5)

Based on the piecewise smoothness of the multidimensional phase function, a recovery algorithm similar to the 1D case
can be proposed to recover the rows and columns of � up to an additive error matrix E that is numerically low-rank, i.e.,
the method returns a matrix � = � + E such that e2π i� = e2π i� and E is numerically low-rank. However, the discretization
of the integral operator especially in the case of non-uniform grid points can introduce “artificial” discontinuity along the
rows and columns of the phase matrix. Hence, it is impossible to apply the vector class Cτ and the algorithms in the 1D
case. Although informally the recovery problem can be stated as

Find piecewise smooth �(i, :) and �(:, j)

subject to mod (�(i, j),1) = 1

2π
� (log (K (i, j))) for i ∈ R or j ∈ C.

(6)

Notice that the vectors �(i, :) and �(:, j) are not “smooth” at the location when adjacent entries are corresponding to
non-adjacent points in the high-dimensional spatial domain in Rd . In other words, the definition of the smoothness of
these vectors should rely on the smoothness of the phase function in the original domain in Rd instead of the difference of
adjacent entries as in (4).

How to recover such piecewise smooth vectors is the main difficulty of the extension of the 1D algorithm to high-
dimensional cases. A naive algorithm is to identify the value according to the adjacent point with the smallest distance

6 Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427
through all points. However, this takes O
(
N2

)
operations to find the adjacent point. In other words, how to solve this

difficulty with nearly linear computational complexity is the main challenge for us.

2.3.2. Vector recovery
Let us use the example of a vector recovery in the high-dimensional case to illustrate the ideas to conquer the difficulty

mentioned above. Suppose v is the discretization of a piecewise smooth function φ(x) with N (possibly nonuniform) grid
points in [0, 1]d and O (1) pieces of domains in which φ(x) is smooth. The spatial locations of the N grid points are stored
in a matrix X ∈ RN×d , i.e., X (i, :) is the location of the i-th entry of v . Assume that k is a vector representing e2π iφ(x)

using the same discretization. Informally, the vector recovery problem is to find a “piecewise smooth” vector v subject to
mod(v, 1) = 1

2π � (log (k)).
To conquer the difficulty of artificial discontinuity, the entry values of v are identified via minimizing the variation of

φ(x) using physically adjacent locations in Rd . For this purpose, we introduce a special recovery path matrix P ∈Z(N−1)×2

with a beginning Node q such that P (:, 2) is a permutation of {1, 2, . . . , N} \ q, and (P (i, 1), P (i, 2)) is a pair of indices of v
with corresponding spatial locations adjacent to each other in Rd , i.e., X (P (i, 1), :) is an adjacent grid point of X (P (i, 2), :)
in Rd .

If the recovery path matrix P and a set of indices for discontinuous locations D are given, the recovery of v can be
solved via the optimization problem:

min
v∈RN

∑
i∈{1,...,N−1}\D

|v(P (i,2)) − v(P (i,1))|

subject to mod (v,1) = 1

2π
� (log (k)) .

(7)

We will introduce the construction of P later and focus on the construction of D and a nearly linear scaling empirical
solution to (7) first. Similarly to the 1D case, to detect discontinuity of the piecewise smooth function automatically, we
define a class of vectors Cτ ,P for a threshold τ and a recovery path matrix P via:

Cτ ,P = {
v ∈Rn : |v(P (i,2)) − v(P (i,1))| < τ,∀i ∈ {1,2, . . . ,n − 1}} .

Cτ ,P consists of vectors with a small absolute value of the first order derivative controlled by τ in the sense of finite
difference. In our assumption, if |v(P (i, 2)) − v(P (i, 1))| ≥ τ , we will consider the original function that generates v to be
discontinuous at the location X (P (i, 2), :), which will be justified by our method afterwards.

Function RecoveryVector2 in Algorithm 4 below identifies a piecewise smooth vector v from a given vector
u = 1

2π � (log (k)) via empirically minimizing |v(P (i, 2)) − v(P (i, 1))| such that mod(v(P (i, 2)), 1) = u(P (i, 2)), for each
i = 1, 2, . . . , N (corresponding to Line 5 in Algorithm 4). Each smooth piece of v belongs to Cτ ,P . The discontinuity lo-
cation i will be detected and assigned to the discontinuity location set D if |v(P (i, 2)) − v(P (i, 1))| ≥ τ . It is clear that the
complexity of Algorithm 4 to empirically solve (7) and detect discontinuity is O (N). Note that Function RecoveryVec-
tor2 in Algorithm 4 is based on the first-order derivative of the phase function while Function RecoveryVector1 in
Algorithm 2 is based on the third-order derivative. It is a simple extension to apply higher order derivative in Algorithm 4
using the high-order finite difference schemes in [18,37], which is left as future work if necessary.

1 Function [v,D] = RecoveryVector2(u, τ , P)
2 N ← length(u); D ← [1]; v ← u
3 for c = 1 : N − 1 do
4 bg ← P (c, 1); ed ← P (c, 2)

5 v(ed) ← u(ed) − round(u(ed) − v(bg))

6 if |v(ed) − v(bg)| ≥ τ then
7 D ← [D, ed] // detect discontinuous locations

Algorithm 4: An O (N) algorithm for recovering a vector v from the observation u = mod(v, 1) and detecting discon-
tinuity using the recovery path matrix P .

2.3.3. Recovery path
The main challenge of vector recovery is to identify a recovery path matrix P efficiently. Recall that the naive algorithm

to identify an adjacent point of a given location is to traverse all other points, compute distances, and pick up the smallest
one, which needs O

(
N2

)
operations to construct P for N points.

First of all, we consider an algorithm for constructing a recovery path matrix based on k-nearest neighbors algorithm
in O (N log (N)) operations [35]. When k-nearest neighbors of each point are found, the recovery path can be constructed
by the edges between each point and its k-nearest neighbors. However, it is not efficient to find an integrated recovery
path through all points. For example, in Fig. 2 (a), for a row vector v of a phase matrix, 100 points as the locations of v

Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427 7
Fig. 2. (a) 100 randomly generated points connected with their 2-nearest neighbors. (b) 100 randomly generated points connected with their 3-nearest
neighbors.

are randomly generated and connected with their 2-nearest neighbors. Then, the result shows that this graph is split to
19 connected components. If we recover v for each component, at least 19 column indices of the phase matrix should be
selected as initialization. Another similar example of a graph for connecting 3-nearest neighbors is illustrated in Fig. 2 (b).
In addition, for a graph of N points connected with their k-nearest neighbors, the largest number of connected components
is O

(
N

k+1

)
. Thus, this method may not be robust compared to our assumption: only O (1) rows and columns of the kernel

matrix can be used for recovery.
Secondly, we also consider an algorithm based on a radius search in O (N log (N)) operations [11]. By this method, a

graph of recovery path can be generated by connecting each point with their neighbors no further apart than a search
radius. Unfortunately, this graph may also be split to a number of connected components, which depends on the selection
of the search radius. Otherwise, how to choose a search radius and detect discontinuity will become new challenges.

Therefore, in the rest of this subsection, we propose an algorithm based on the Delaunay triangulation (DT) and the
minimum spanning tree (MST) with nearly linear computational complexity instead of k-nearest neighbors and radius search
algorithm to conquer the main difficulty of vector recovery.

Definition 2.2. For a set of points in the d-dimensional Euclidean space with locations X ∈RN×d , a Delaunay triangulation
is a triangulation DT(X) such that no point in this set is inside the circum-hypersphere of any d-simplex in DT(X).

Definition 2.3. A minimum spanning tree (MST) T is a subset of the edges of a connected, edge-weighted undirected graph
G that connects all the vertices, without any cycle and with the minimum possible total edge weight.

DTs are widely used in scientific computing in many diverse applications. The Delaunay criterion is the fundamental
property of DTs, which is often called as the empty circumcircle criterion in the case of 2D triangulations. In other words,
a Delaunay triangulation of a set of points in 2D ensures the circumcircle associated with each triangle containing no other
point in its interior. This property can be extended to higher dimensions. For instance, in 3D cases, the triangulation of a set
of points is composed of tetrahedra. Then, the circumspheres of all tetrahedra also satisfy the empty circumsphere criterion.

In our problem, given the location matrix X ∈ RN×d of N points in Rd , DT(X) can be treated as a fully connected
undirected graph G with edges weighted by the Euclidean distance of two connected points. Due to the property of DT,
useless long edges between X can be eliminated efficiently. Since a DT is a planar graph, and there are no more than
three times as many edges as vertices in any planar graph, DT(X) will generate only O (N) edges. Moreover, it has been a
standard routine to identify DT(X) with an expected runtime bounded by O (N log (N)) for d = 2 or 3 (e.g., see [5,24,33]).

Based on the fact in [9] that the set of edges of DT(X) contains an MST for X , we can use an MST T (X) as an efficient
representation of the graph G = DT(X). Since there are O (N) edges in DT(X), any of the standard minimum spanning tree
algorithms is able to find T (X) with an O (N log (N)) complexity such as the Prim’s algorithm [29].

Finally, a recovery path matrix P can be identified following the order of nodes in T (X). Breadth-first search algorithm
[19] can be applied for traversing T (X) starting from the root q and exploring all of the neighbor nodes at the present
depth prior to moving on to the nodes at the next depth level. It is an efficient method for constructing P with an O (N)

complexity. Otherwise, the definition of the recovery path matrix P is modified according to T as follows.

Definition 2.4. Given an MST T with N nodes and the root at Node q, a recovery path matrix P ∈ Z(N−1)×2 associated to
T is a matrix such that 1) P (:, 2) is a permutation vector of {1, 2, . . . , N} \ q; 2) the depth of Node P (i, 2) is less than or
equal to that of Node P (j, 2) if i ≤ j; 3) Node P (i, 1) is the predecessor node of Node P (i, 2) in T for all i = 1, 2, . . . , N − 1.

Fig. 3 visualizes an example of DT(X) and T (X) for X ∈R7×2. The process of constructing P by the Breadth-First search
algorithm is illustrated as well. The whole algorithm is summarized in Algorithm 5.

8 Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427
Fig. 3. An illustration of DT(X), T (X), and the corresponding P for X ∈ R7×2. (a) DT(X) (black dash line) and T (X) (in blue). (b) Starting from the
root (Node 1), find the first undiscovered node, e.g., Node 3 with depth 1, then let P = [1, 3]. (c) Add [1, 4] to P . (d) Add [1, 7] to P . (e) find the first
undiscovered node, e.g., Node 6 with depth 2, then add [3, 6] to P . (f) Add [4, 2] to P . (g) Add [4, 5] to P . Finally, a recovery path matrix P ∈R6×2 is set
to be P = [1, 3; 1, 4; 1, 7; 3, 6; 4, 2; 4, 5]. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

1 Function P = RecoveryPath(X)
2 G ← delaunayTriangulation(X);
3 T ← minspantree(G);
4 P ← bfsearch(T);

Algorithm 5: An O (N log (N)) algorithm for generating a recovery path matrix P .

Fig. 4. (a) An MST T (X) with a discontinuity location at Node 4. (b) Separate T (X) at the edge between Node 4 and its predecessor Node 1. (c) Two
resulting subtrees and the corresponding recovery path matrices [1, 3; 1, 7; 3, 6] and [4, 2; 4, 5].

2.3.4. Matrix recovery
When the vector recovery algorithms in Algorithm 4 and Algorithm 5 are ready, we apply them to design a matrix

recovery algorithm. Recall that the main idea is to identify piecewise smooth rows and columns of � satisfying (5) as
summarized in an informal problem statement in (6). Let X1 and X2 ∈RN×d store the spatial locations of the N grid points
for the discretization of �(x, ξ) in x and ξ , respectively.

First, Algorithm 5 is applied to construct the recovery path matrices P1 and P2 corresponding to X1 and X2, respectively.
Then the matrix recovery problem can be formally stated as

min
�∈RN×N

∑
i∈R

∑
s∈{1,...,N−1}\Dc

|�(i, P2(s,2)) − �(i, P2(s,1))|

+
∑
j∈C

∑
t∈{1,...,N−1}\Dr

|�(P1(t,2), j) − �(P1(t,1), j)|

subject to mod (�(i, j),1) = 1

2π
� (log (K (i, j))) for i ∈ R or j ∈ C,

(8)

where Dc and Dr are index sets indicating the discontinuous locations of � along columns and rows, R and C are row and
column index sets with O (1) randomly selected indices, respectively.

Next, Algorithm 4 is applied with τ to identify the sets of discontinuous points Dr and Dc to make (8) self-contained.
Similarly to the 1D case, we can partition the phase matrix into (usually non-contiguous) submatrices corresponding to the
domains in which the phase matrix is continuous, which is equivalent to dividing the MST T (X) into subtrees whenever
an edge connects a predecessor node considered as a discontinuous point. Correspondingly, the recovery path matrix is
partitioned into submatrices associated with these subtrees. Fig. 4 visualizes an example when an MST T (X) is partitioned
into two MSTs at the discontinuity location at Node 4.

The partition procedure is denoted as Function Partition2 in Algorithm 6, resulting in nr × nc submatrices of the
phase matrix denoted as �.BsBt , nr submatrices of the recovery path matrix P1, and ns submatrices of the recovery path
matrix P2, for s = 1, 2, . . . , nr , and t = 1, 2, . . . , nc . The random samples of the row and column indices in the submatrices
are denoted as R.Bs and C.Bt , respectively. For example, Panel (a) in Fig. 5 visualizes an example when the phase function
contains only 4 continuous submatrices (from light color to dark color): �.B1B1, �.B1B2, �.B2B1, �.B2B2. Panel (b) in
Fig. 5 visualizes the root row and the root column of each submatrix. Panel (c) and (d) in Fig. 5 visualize the randomly
selected rows R.B1 and columns C.B1 in �.B1B1.

Finally, we apply Algorithm 4 again to recover each submatrix. The parameter for detecting discontinuity is set to 1 since
there is no need to detect discontinuity. The specially designed order also guarantees that each recovered row and column

Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427 9
Fig. 5. An illustration of the low-rank matrix recovery for multidimensional phase matrix in Algorithm 6. (a) Line 7 partitions the phase matrix into 4
submatrices in 4 kinds of color such that there is no discontinuity along rows and columns in each submatrix. (b) Line 10-11 recovers the row and column
of each submatrix corresponding to the root node of each sub-MST. (c) Line 12 recovers O (1) rows of each submatrix. (d) Line 13 recovers O (1) columns
of each submatrix.

at their intersection share the same value, as long as the discontinuous points in the phase function have already been well
distinguished, as proved by Lemma 2.5 below.

Lemma 2.5. Given mod(φ, 1) ∈Rn×m, where φ is a d-dimensional phase matrix, d = 2 or 3. Assuming that all rows and columns of
φ belong to the class Cτ ,P with a threshold τ ≤ 1

4 , then the intersection of each recovered row and column by Algorithm 6 share the
same value.

The proof of Lemma 2.5 is simple and similar to Lemma 2.1. For simplicity, we leave the proof to the reader.
Recall that the correct τ depends on the phase function and is not known a priori in one-dimensional cases. In practice,

τ can be set as 1
4 for identifying discontinuous point, which can guarantee that the intersection of each recovered row and

column share the same value. When the number of discontinuous points is too large, τ +ε is used to identify discontinuous
points, i.e. ε = 1

40 . This procedure can be repeated until O (1) discontinuous points have been detected and it takes at most
O (N) operations to obtain a reasonable τ . When τ increases to 1

2 , no more discontinuous point will be detected.
In fact, if τ is set larger than 1

4 , the consistency of the intersection of each recovered row and column should be checked
manually instead of by Lemma 2.5. As previously said, our method is based on the first-order derivative of the phase
function, the extension of Algorithm 4 using the high-order finite difference schemes in [18,37] is left as future work if the
recovered intersection values are not consistent. In our numerical tests for multidimensional cases, τ = 1

4 is good enough
for all numerical examples.

When O (1) discontinuous points have been detected, Algorithm 4 will recover O (1) randomly selected rows and
columns of the phase matrix with nearly linear computational complexity.

Algorithm 6 below summarizes the above steps and the whole process is illustrated in Fig. 5.

1 Function � = RecoveryMatrix2(�, R, C, X1, X2, τ)
2 P1 ← RecoveryPath(X1) ; P2 ← RecoveryPath(X2)
3 Dr ← RecoveryVector2(�(:, 1), τ , P1) // Dr: discontinuous point set
4 Dc ← RecoveryVector2(�(1, :), τ , P2) // Dc: discontinuous point set
5 R ← [R,Dr] ; C ← [C,Dc]
6 nr ← length(Dr) ; nc ← length(Dc)
7 [�,R,C, P1, P2] ← Partition2(�, R, C, P1, P2, Dr , Dc)
8 for s = 1 : nr do
9 for t = 1 : nc do

10 �.BsBt (1, :) ← RecoveryVector2(�.BsBt (1, :), 1, P2.Bt)
11 �.BsBt (:, 1) ← RecoveryVector2(�.BsBt (:, 1), 1, P1.Bs)
12 �.BsBt (R.Bs(k), :) ← RecoveryVector2(�(R.Bs(k), :), 1, P2.Bt) for all k
13 �.BsBt (:, C.Bt (k)) ← RecoveryVector2(�(:, C.Bt (k)), 1, P1.Bs) for all k

Algorithm 6: An O (N log (N)) algorithm for the solution of matrix recovery problem (6) when the phase function
�(x, ξ) is defined on Rd ×Rd .

2.3.5. Phase matrix factorization
Once the phase function recovery algorithm in Algorithm 6 is ready, following the idea of low-rank matrix factorization

via randomized sampling in Algorithm 1, we can introduce a nearly linear scaling algorithm to construct the low-rank fac-
torization of the phase matrix as summarized in Algorithm 7. In particular, Algorithm 7 constructs a low-rank factorization
U V T , where U ∈CN×r and V ∈CN×r , such that e2π iU V T ≈ e2π i� when we only know the kernel matrix K = e2π i� through
Scenarios 1 and 2 in Table 1.

In Algorithm 7, K (and �) is a function handle for evaluating an arbitrary entry of the kernel matrix, or evaluating
an arbitrary row or column of K (and �). Two coordinate matrices X1, X2 ∈ RN×d , a rank parameter r, an over-sampling
parameter q, and the matrix size N are also inputs. We randomly select rq rows and columns of the kernel matrix and

10 Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427
use RecoveryMatrix2 to obtain the corresponding rows and columns of � such that e2π i� ≈ K . Finally, apply Function
randomizedSVD in Algorithm 1 in Subsection 2.1 to evaluate the low-rank factorization of � ≈ U V T such that e2π iU V T ≈
K = e2π i� . The reconstructed phase matrix can be set as an initial guess to the optimization problem in (8) and it takes
O (1) iterations for sub-gradient descent methods to converge.

1 Function [U , V] = LowRankFactorization(K , X1, X2, r, q, N)
2 R ← randperm(N,rq) ; C ← randperm(N,rq)

3 � ← 1
2π � (log (K)) // generate a function handle for the evaluation of �

4 � ← RecoveryMatrix2(�,R,C,X1,X2)
// generate a function handle for the evaluation of �

5 [U ,�, V] ← randomizedSVD(�, R, C, r)
6 V ← V �

Algorithm 7: An O (N log (N)) algorithm for low-rank matrix factorization of phase functions in the case of indirect
access.

2.3.6. Summary
Before moving to the next algorithm, let us summarize how those algorithms in Subsection 2.3 can be applied to

construct the low-rank matrix factorization of the multidimensional phase functions with nearly linear computational com-
plexity.

For a general kernel function K (x, ξ) = e2π i�(x,ξ) , suppose we discretize �(x, ξ) with N grid points in each variable to
obtain the phase matrix �. When the explicit formulas of �(x, ξ) are known, it takes O (N) operations to evaluate one
column or one row of �. Then, the randomized SVD in Subsection 2.1 is able to construct the low-rank matrix factorization
of � in O (N) operations.

When the explicit formulas are unknown such as in Scenario 2, it takes O (N log (N)) operations to evaluate one column
or one row of the kernel matrix K . Hence, the phase recovery and the low-rank factorization of � can be constructed by
Algorithm 6 and Algorithm 7 in O (N log (N)) operations.

In the case of indirect access in Scenario 3, O (1) columns and rows of and phase functions are available by solving
certain PDE’s. For example, in practical applications like solving wave equations [10], each column or row can be obtained
via interpolating the solution of the PDE on a coarse grid of size independent of N . Thus, the phase recovery algorithm
is not required for Scenario 3, it only needs to construct a low-rank factorization of � by Algorithm 7 in O (N log (N))

operations.
For Scenario 1, which is a special case included in Scenario 2, any arbitrary entry of the kernel matrix is available in

O (1) operations. Therefore, it can be applied directly to the next algorithm.
Since Line 4 in Algorithm 7 identifies O (1) rows and columns of a low-rank matrix � such that mod(�(i, j), 1) =

1
2π � (log (K (i, j))) for i ∈ R or j ∈ C , there is not any error generated in this step. The approximation error of Algorithm 7
is O (ε), which is caused by the low-rank approximation algorithm (Line 5).

3. Multidimensional interpolative decomposition butterfly factorization (MIDBF)

This section will introduce the multidimensional interpolative decomposition butterfly factorization for a matrix K =
(K (x, ξ))x∈X,ξ∈� satisfying a complementary low-rank property [21], where X and � contain O (N) points possibly non-
uniformly distributed in [0, 1)d and d is the dimension of the domain. As a special example, the kernel matrix K (x, ξ) =
e2π i�(x,ξ) satisfies the complementary low-rank property. Hence, once the phase function � in Scenarios 2 and 3 has been
recovered by Algorithm 7 in Subsection 2.3.5 in the form of low-rank factorization, we can construct a function handle to
evaluate an arbitrary entry of K in O (1) operations. Especially, in Scenario 1, this kind of function handle is known directly.
Then, the MIDBF can construct the butterfly factorization of K for nearly linear scaling fast matvec, when the function
handle is given.

Let us recall the definition of complementary low-rank matrices in [21]. For such a matrix, we construct two trees T X
and T� for point sets X and �, respectively, assuming that both trees have the same depth L = O (log (N)), with the top-
level being level 0 and the bottom one being level L (see Fig. 6 for an illustration). Such a matrix K of size N × N is said to
satisfy the complementary low-rank property if for any level �, any node A in T X at level �, and any node B in T� at level
L − �, the submatrix K (A, B), obtained by restricting K to the rows indexed by the points in A and the columns indexed by
the points in B , is numerically low-rank.

3.1. Notations and overall structure

The notation of the 1D IDBF introduced in [28] will be adopted and adjusted to the multidimensional case in this paper.
With no loss of generality, we focus on the 2D case with uniform point distributions first. The notations and overall structure
discussed below are similar to that in [22,28].

Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427 11
Fig. 6. Trees of the row and column indices. Left: T X for the row indices X . Right: T� for the column indices �. The interaction between A ∈ T X and
B ∈ T� starts at the root of T X and the leaves of T� .

Fig. 7. An illustration of Z-order curve across levels. The superscripts indicate the different levels while the subscripts indicate the index in the Z-ordering.
The light gray lines show the ordering among the subdomains on the same level. Left: The root at level 0. Middle: At level 1, the domain A0

0 is divided into
2 × 2 subdomains A1

i with i ∈ I1 = {0, 1, 2, 3}. These 4 subdomains are ordered according to the Z-ordering. Right: At level 2, the domain A0
0 is divided

into 4 × 4 subdomains A2
i with i ∈ I2 = {0, 1, . . . , 15}. These 16 subdomains are ordered similarly.

Recall that n is the number of grid points on each dimension, N = n2 = 4Ln0 is the total number of points, n0 = O (1) is
the number of row or column indices in a leaf in the quadtrees of row and column spaces and, without loss of generality,
L is an even integer, i.e. T X and T� with L levels. For a fixed level � between 0 and L, the quadtree T X has 4� nodes at
level �. By defining I� = {0, 1, . . . , 4� − 1}, we denote these nodes by A�

i with i ∈ I� . These 4� nodes at level � are further
ordered according to a Z-order curve (or Morton order) as illustrated in Fig. 7. Based on this Z-ordering, the node A�

i at
level � has four child nodes denoted by A�+1

4i+t with t = 0, . . . , 3. The nodes plotted in Fig. 7 for � = 1 (middle) and � = 2
(right) illustrate the relationship between the parent node and its child nodes. Similarly, in the quadtree T� , the nodes at
level L − � are denoted as B L−�

j for j ∈ I L−� .

For any level � between 0 and L, the kernel matrix K can be partitioned into O (N) submatrices K (A�
i , B

L−�
j) :=

(K (x, ξ))x∈A�
i ,ξ∈BL−�

j
for i ∈ I� and j ∈ I L−� . For simplicity, we shall denote K (A�

i , B
L−�
j) as K �

i, j , where the superscript �

denotes the level in the quadtree T X . Because of the complementary low-rank property, every submatrix K �
i, j is numerically

low-rank with the rank bounded by a uniform constant r independent of N .
The multidimensional interpolative decomposition butterfly factorization for K is a product of O (log (N)) sparse matri-

ces, each of which contains O
(

k2

n0
N

)
nonzero entries as follows:

K ≈ U L U L−1 · · · U h Sh V h · · · V L−1 V L, (9)

where k is a local rank parameter, h = L
2 , and the level L is assumed to be even.

3.2. Linear scaling interpolative decomposition (ID)

This subsection introduces the linear scaling ID method in [28]. Suppose K ∈Cm×n has a numerical rank kε � min{m, n},
i.e., K admits a rank kε factorization with ε relative approximation accuracy. Let s be an index set containing tk rows of K
chosen from the Mock-Chebyshev grids as in [38,16,2], t is an oversampling parameter, and k is an empirical estimation of
kε . s is empirically selected and gradually increased if not large enough. We apply the rank revealing thin QR to K (s, :):

K (s, :)
 = Q R = Q [R1 R2] with R1 ∈Ctk×tk and R2 ∈ Ctk×(n−tk).

Define

T = (R1(1 : k,1 : k))−1[R1(1 : k,k + 1 : kt) R2(1 : k, :)] ∈Ck×(n−k),

and V = [I T]
∗ ∈Ck×n . Let q be the index set with |q| = k such that

12 Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427
Fig. 8. The left figure is a complementary two-dimensional low-rank kernel matrix K . Assume that the depth of the quadtrees of column and row spaces
is 3. The middle figure illustrates the root-leaf partitioning that divides the row index set into 16 subsets as 16 leaves. The right one is for the leaf-root
partitioning that divides the column index set into 16 subsets as 16 leaves.

K (s,q) = Q R1(1 : k,1 : k),

then q and V will satisfy

K (s, :) ≈ K (s,q)V (10)

with an approximation error by the QR truncation. By the approximation power of Lagrange interpolation with Mock-
Chebyshev points if K is the discretization of a smooth function, we have

K ≈ K (:,q)V (11)

with an approximation error coming from the QR truncation and the Lagrange interpolation. Hence, K (:, q) are important
columns of K such that they can be “interpolated” back to K via a column interpolation matrix V . In this sense, q is called
the skeleton index set, and the rest of indices are called redundant indices. This column ID requires only O

(
nk2

)
operations

and O (nk) memories and is denoted as cID for short.
Similarly, a row ID with O

(
mk2

)
operations and O (mk) memories, denoted as rID, can be constructed via

K ≈
[I T]∗K (q, :) := U K (q, :) (12)

with a row interpolation matrix U .

3.3. Leaf-root complementary skeletonization (LRCS)

This subsection introduces the LRCS of a 2D complementary low-rank kernel matrix K , K ≈ U S V , via cIDs of the subma-
trices corresponding to the leaf-root levels of the column-row quadtrees (e.g., see the associated matrix partition in Fig. 8
(right)), and rIDs of the submatrices corresponding to the root-leaf levels of the column-row quadtrees (e.g., see the associ-
ated matrix partition in Fig. 8 (middle)). Assume kε is constant in all IDs for low-rank approximations and is denoted by k
for simplicity.

Assume that the row index set r and the column index set c of K can be partitioned into leaves {ri}i∈IL and {c j} j∈IL at
the leaf level of the row and column quadtrees as follows

r = [r0, r1, · · · , rm−1] (and c = [c0, c1, · · · , cm−1]), (13)

with |ri | = n0 (and |c j | = n0) for all 0 ≤ i, j ≤ m − 1, where m = 4L = N
n0

, L = log4 (N) − log4 (n0), and L + 1 is the depth of
quadtrees T X and T� . See an example of row and column quadtrees with m = 16 in Fig. 8.

Apply rID to each K (ri, :) to obtain the row interpolation matrix Ui and the associated skeleton indices r̂i ⊂ ri for all
0 ≤ i ≤ m − 1. Then, after denoting K (r̂, :) as the important skeleton of K , where

r̂ = [r̂0, r̂1, · · · , r̂m−1], (14)

we have

K ≈

⎛⎜⎜⎜⎝
U1

U2
. . .

Um

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

K (r̂0, c0) K (r̂0, c1) . . . K (r̂0, cm−1)

K (r̂1, c0) K (r̂1, c1) . . . K (r̂1, cm−1)
...

...
. . .

...

K (r̂m−1, c0) K (r̂m−1, c1) . . . K (r̂m−1, cm−1)

⎞⎟⎟⎟⎠ := U M.

Similarly, apply cID to each K (r̂, c j) to obtain the column interpolation matrix V j and the skeleton indices ĉ j ⊂ c j for all
0 ≤ j ≤ m − 1. Then, the LRCS of K will be formed as

Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427 13
Fig. 9. An example of the LRCS in (15) of the complementary two-dimensional low-rank kernel matrix K in Fig. 8. Non-zero submatrices in (15) are shown
in gray areas.

K ≈

⎛⎜⎜⎜⎝
U1

U2
. . .

Um

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

K (r̂0, ĉ0) K (r̂0, ĉ1) . . . K (r̂0, ĉm−1)

K (r̂1, ĉ0) K (r̂1, ĉ1) . . . K (r̂1, ĉm−1)
...

...
. . .

...

K (r̂m−1, ĉ0) K (r̂m−1, ĉ1) . . . K (r̂m−1, ĉm−1)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

V 1
V 2

. . .

Vm

⎞⎟⎟⎟⎠
:= U S V .

(15)

For a concrete example, Fig. 9 illustrates the non-zero pattern of the LRCS in (15) of K in Fig. 8.
The main contribution of the LRCS is that M and S are only required to be generated and stored via the skeleton of row

and column index sets with O
(

k3

n0
N

)
operations and O

(
k2

n0
N

)
memories, instead of being computed explicitly, since there

are only 2m = 2N
n0

IDs in total. Notice that the matrix S in K ≈ U S V is also a complementary low-rank matrix. The row and
column quadtrees T̂ X and T̂� of S are the compressed version of the row and column quadtrees T X and T� of K . If we
consider T̂ X and T̂� as quadtrees with one depth less than the leaf level of T X and T� , they will be compressible.

3.4. Matrix splitting with complementary skeletonization (MSCS)

Now we introduce another key idea repeatedly applied in 2D IDBF, the MSCS. According to the nodes of the second level
of the row and column quadtrees T X and T� (with m = 4L leaves), the complementary 2D low-rank kernel matrix K can
be split into a 4 × 4 block matrix

K =

⎛⎜⎜⎝
K11 K12 K13 K14
K21 K22 K23 K24
K31 K32 K33 K34
K41 K42 K43 K44

⎞⎟⎟⎠ . (16)

It is obvious that Kij is complementary low-rank for all 1 ≤ i, j ≤ 4, with row and column quadtrees T X,i j and T�,i j of depth
L − 1 and with m

4 leaves.
Suppose that the LRCS of each Kij is Kij ≈ Uij Si j V i j . Then, according to the LRCS of Kij , the matrix splitting with

complementary skeletonization (MSCS) of the kernel matrix K can be proposed as:

K ≈ U S V , (17)

where

U = (
U1 U2 U3 U4

)
with Uk =

⎛⎜⎜⎝
U1k

U2k
U3k

U4k

⎞⎟⎟⎠ , (18)

S =

⎛⎜⎜⎝
S̄11 S̄12 S̄13 S̄14

S̄21 S̄22 S̄23 S̄24

S̄31 S̄32 S̄33 S̄34

S̄41 S̄42 S̄43 S̄44

⎞⎟⎟⎠ with S̄ i j as a 4 by 4 block matrix with the (j, i)-th block as S ji , (19)

V =

⎛⎜⎜⎝
V 1
V 2
V 3
V

⎞⎟⎟⎠ with Vk =

⎛⎜⎜⎝
Vk1

Vk2
Vk3

V

⎞⎟⎟⎠ . (20)
4 k4

14 Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427
Fig. 10. The illustration of an MSCS of a complementary 2D low-rank kernel matrix K ≈ U S V with quadtrees of depth 3 and 16 leaf nodes in Fig. 8.
Non-zero blocks in (18)-(20) are shown in gray areas. {Ui}1≤i≤4, { S̄ i j}1≤i≤ j≤4, and {V i}1≤i≤4 are visualized by large submatrices with wide edges in the
middle left, middle right, and right figures, respectively.

Recall that the middle factor S is only required to be generated by some entries of the original kernel matrix, forming
(17)-(20) will be a linear scaling algorithm as well. Fig. 10 illustrates the MSCS of a complementary 2D low-rank kernel
matrix K with quadtrees of depth 3 and 16 leaf nodes in Fig. 8.

3.5. Recursive MSCS

This subsection applies MSCS recursively to obtain the full 2D IDBF of a complementary 2D low-rank kernel matrix K .
First, we denote the first level of MSCS of K in (17) as

K ≈ U L S L V L, (21)

where U L, S L, V L maintain the same structures as (18)-(20). Then, the index set r and the column index set c of K can be
partitioned into leaves {ri}0≤i≤m−1 and {c j}0≤ j≤m−1 at the leaf level of the row and column quadtrees as (13). In addition,
the skeleton index sets r̂i ⊂ ri and ĉ j ⊂ c j will be obtained by applying the rIDs and cIDs to the construction of (21), and
the middle factor S L will be constructed by the non-zero submatrices S L

i j for all 1 ≤ i, j ≤ 4 as follows:

S L
i j =

⎛⎜⎝ K (r̂(i−1)(m−1)/4+1, ĉ(j−1)(m−1)/4+1) · · · K (r̂(i−1)(m−1)/4+1, ĉ j(m−1)/4)
...

. . .
...

K (r̂i(m−1)/4, ĉ(j−1)(m−1)/4+1) · · · K (r̂i(m−1)/4, ĉ j(m−1)/4)

⎞⎟⎠ . (22)

Since S L
i j consists of the important rows and columns of Kij for all 1 ≤ i, j ≤ 4, it will inherit the complementary low-

rank property of Kij . Suppose that T X,i j and T�,i j are the quadtrees of the row and column spaces of Kij with m
4 leaves and

L − 1 depth. Then, S L
i j has compressible row and column quadtrees T̂ X,i j and T̂�,i j with m

16 leaves and L − 2 depth according
to Subsection 3.3.

Next, a recursive MSCS will be applied to each S L
i j . The first step is similar to that of MSCS, we divide each S L

i j into a
4 × 4 block matrix according to the nodes at the second level of its row and column quadtrees:

S L
i j =

⎛⎜⎜⎜⎜⎝
(S L

i j)11 (S L
i j)12 (S L

i j)13 (S L
i j)14

(S L
i j)21 (S L

i j)22 (S L
i j)23 (S L

i j)24

(S L
i j)31 (S L

i j)32 (S L
i j)33 (S L

i j)34

(S L
i j)41 (S L

i j)42 (S L
i j)43 (S L

i j)44

⎞⎟⎟⎟⎟⎠ . (23)

For each block (S L
i j)k� , the LRCS can be constructed as (S L

i j)k� ≈ (U L−1
i j)k�(S L−1

i j)k�(V L−1
i j)k� for all 1 ≤ k, � ≤ 4. After that, the

MSCS of S L
i j will be obtained as follows:

S L
i j ≈ U L−1

i j S L−1
i j V L−1

i j , (24)

where U L−1
i j , S L−1

i j , V L−1
i j are constructed by (U L−1

i j)k�(S L−1
i j)k�(V L−1

i j)k� for all 1 ≤ k, � ≤ 4 as in (18)-(20).

Eventually, the factorization in (24) for all 1 ≤ i, j ≤ 4 will be combined to form a factorization of S L :

S L ≈ U L−1 S L−1 V L−1, (25)

where

Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427 15
U L−1 =

⎛⎜⎜⎝
U L−1

1
U L−1

2
U L−1

3
U L−1

4

⎞⎟⎟⎠ with U L−1
k =

⎛⎜⎜⎝
U L−1

1k
U L−1

2k
U L−1

3k
U L−1

4k

⎞⎟⎟⎠ , (26)

S L−1 =

⎛⎜⎜⎜⎝
S̄ L−1

11 S̄ L−1
12 S̄ L−1

13 S̄ L−1
14

S̄ L−1
21 S̄ L−1

22 S̄ L−1
23 S̄ L−1

24

S̄ L−1
31 S̄ L−1

32 S̄ L−1
33 S̄ L−1

34

S̄ L−1
41 S̄ L−1

42 S̄ L−1
43 S̄ L−1

44

⎞⎟⎟⎟⎠ (27)

with S̄ L−1
i j as a 4 × 4 block matrix with the (j, i)-th block as S L−1

ji ,

V L−1 =

⎛⎜⎜⎝
V L−1

1
V L−1

2
V L−1

3
V L−1

4

⎞⎟⎟⎠ with V L−1
k =

⎛⎜⎜⎝
V L−1

k1
V L−1

k2
V L−1

k3
V L−1

k4

⎞⎟⎟⎠ . (28)

Hence, the second level factorization of K can be constructed as follows:

K ≈ U L U L−1 S L−1 V L−1 V L .

Comparing (21) and (25), a fractal structure can be found in each level of the middle factor S L and S L−1. For example,
S L and S L−1 have the same structure consisting of 16 submatrices as shown in (19) and (27). Besides, submatrices S L−1

i j

can be factorized into a product of three matrices U L−2
i j , S L−2

i j , V L−2
i j with the same sparsity structure as that of S L in

(25)-(28). Thus, the recursive MSCS can be applied repeatedly to each S� for � = L, L − 1, . . . , L
2 and the matrix factors can

be assembled hierarchically as follows:

K ≈ U L U L−1 · · · U h Sh V h · · · V L−1 V L, (29)

where h = L
2 .

In the �-th recursive MSCS, there are 42(L−�+1) dense submatrices with compressible row and column quadtrees, which
consist m

42(L−�+1) leaves and depth L − 2(L − � + 1), in S� . Thus, after h = L
2 iterations, the recursive MSCS will stop, since

there is not any compressible submatrix in Sh . Otherwise, when S� is still compressible, there are 42(L−�+1) m
42(L−�+1) = N

n0

low-rank submatrices to be factorized. Linear IDs only require O
(
k3

)
operations for each low-rank submatrix, and hence at

most O
(

k3

n0
N

)
for each level of factorization, and O

(
k3

n0
N log (N)

)
for the whole 2D IDBF.

3.6. Extensions

We have introduced the 2D IDBF for a complementary low-rank kernel matrix K in the entire domain X × �. Although
we have assumed the uniform grid in X and �, the butterfly factorization extends naturally to more general settings.
In the case with non-uniform point sets X or �, one can still construct a butterfly factorization for K following the same
procedure. More specifically, we construct two trees T X and T� adaptively via hierarchically partitioning the square domains
covering X and �. For non-uniform point sets X and �, the numbers of points in A�

i and B�
j are different. If a node does

not contain any point inside it, it is simply discarded from the quadtree. We can also extend the 2D IDBF to the 3D case by
constructing two octrees T X and T� via hierarchically partitioning the cube domains covering X and �. Lastly, the numerical
rank in all low-rank approximations in the IDBF presented is fixed. It’s easy to extend the current version to an adaptive one
with an adaptive rank kε in IDs depending on a target accuracy ε . For example, choose kε = min{k : R1(k, k) ≤ εR1(1, 1)}
and update k ← kε after the QR in IDs. An adaptive rank leads to a more compressed IDBF while a fixed rank results in a
more predictable sparsity pattern in IDBF.

4. Numerical results

This section presents several numerical examples to demonstrate the efficiency of the proposed framework. All im-
plementations are in MATLAB® on a server computer with a single thread and 3.2 GHz CPU, and are available in the
ButterflyLab (https://github .com /ButterflyLab /ButterflyLab).

Let {gd(x), x ∈ X} and {gb(x), x ∈ X} denote the results given by the direct matrix-vector multiplication and MIDBF,
respectively. The accuracy of applying fast algorithms is estimated by the relative error defined as follows:

εb =
√ ∑

x∈S |gb(x) − gd(x)|2∑ |gd(x)|2 , (30)

x∈S

https://github.com/ButterflyLab/ButterflyLab

16 Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427
where S is an index set containing 256 randomly sampled row indices of the kernel matrix K . The error for recovering the
kernel function is defined as

εK = ‖e2π i�(S,S) − e2π iU (S,:)V (:,S)T ‖2

‖e2π i�(S,S)‖2
, (31)

where � is the phase matrix and U V T is its low-rank recovery. In all of our examples, the tolerance parameter ε is set
to 10−9, the over-sampling parameter q in low-rank phase matrix factorization is set to 2, the threshold τ for detecting
discontinuity in multidimensional cases is set to 1

4 , the number of points in a leave node n0 in the MIDBF is set to 8d , and
the over-sampling parameter t in ID in MIDBF is set to 5. We apply IDs with an adaptive rank and k denotes our empirically
estimated rank.

4.1. Accuracy and scaling of low-rank matrix recovery and MIDBF

In this part, we present numerical results of several examples to demonstrate the accuracy and asymptotic scaling of the
proposed low-rank matrix recovery for phase functions, and MIDBF. With no loss of generality, we only focus on Scenario
2 of indirect access. Since there is not any detected discontinuous point in the phase matrices of Example 1 and Exam-
ple 3 when 1

4 ≥ τ ≥ 1
10 , we will only address the related discontinuities discussion in Example 2. Each experiment will be

repeatedly tested for 10 times.

Example 1. Our first example is to evaluate a 2D generalized Radon transform which is a Fourier integral operator (FIO) [38]
defined as follows:

g(x) =
∫
R

e2π i�(x,ξ) f̂ (ξ)dξ, (32)

where f̂ is the Fourier transform of f , and �(x, ξ) is a phase function given by

�(x, ξ) = x · ξ ′ +
√

c2
1(x) · ξ2

1 + c2
2(x) · ξ2

2 ,

c1(x) = (2 + sin(2πx1) sin(2πx2))/16,

and c2(x) = (2 + cos(2πx1) cos(2πx2))/16.

(33)

The discretization of (32) is

g(x) =
∑
ξ∈�

e2π i�(x,ξ) f̂ (ξ), x ∈ X, (34)

where X and � are the sets of O (N) points uniformly distributed in [0, 1) × [0, 1). The computation in (34) approximately
integrates over spatially varying ellipses, for which c1(x) and c2(x) are the axis lengths of the ellipse centered at the point
x ∈ X . The corresponding matrix form of (34) is simply

u = K g, K = (e2π i�(x,ξ))x∈X,ξ∈�. (35)

The framework is applied to recover the phase functions in the form of low-rank matrix factorization, compute the
MIDBF of the kernel function, and apply it to a randomly generated f in (32) to obtain g . Fig. 11 illustrates the results of
the recovery step for the phase matrix (�(x, ξ))x∈X,ξ∈� , the recovered phase matrix in (d) is set as an initial guess for the
low-rank factorization step.

Table 2 summarizes the results of this example for different grid sizes N = n2 and different rank parameters r, k. It
shows that the accuracy of the low-rank matrix recovery and the MIDBF stay almost of the same order, though the accuracy
becomes slightly worse as the problem size increases. The slightly increasing error is due to the randomness of the proposed
algorithm. As the problem size increases, the probability of capturing the low-rank matrix with a fixed rank parameter
becomes smaller. Otherwise, when the rank parameter r or k increases, the accuracy of results will increase as well. In
Fig. 12 (a), we see that the time for computing recovery path matrix, the reconstruction time of the phase functions, the
factorization time and the application time of the MIDBF scale nearly linearly, e.g. when r = 20 and k = 30.

Example 2. In this example, we evaluate a 3D non-uniform Fourier transform:

g(x) =
∑
ξ∈�

e2π ixT ξ f̂ (ξ), (36)

where X and � are the sets of N points randomly selected in [0, 1)3.

Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427 17
Fig. 11. Phase recovery results for the 2D uniform FIO given in (34). N = 642 is the size of the phase matrix (�(x, ξ))x∈X,ξ∈� . (a) A row vector of the phase
matrix before recovery and reshaped into a matrix of size 64 × 64. (b) A recovered row vector of the phase matrix when it is reshaped into a matrix of
size 64 × 64. (c) The phase matrix of size 642 × 642 before recovery. (d) The recovered phase matrix of size 642 × 642.

Table 2
Numerical results for the 2D uniform FIO given in (34). r is the rank parameter of the low-rank approximation of the phase function. k is the rank parameter
of the MIDBF. T path is the time for computing the recovery path matrix. Trec is the time for recovering the phase functions, T f ac is the time for computing
the MIDBF, Tapp is the time for applying the MIDBF, and Td is the time for a direct summation in (34).

n, r,k εb εK T path Trec T f ac Tapp Td/Tapp

16, 10, 30 2.85e-07 1.27e-08 7.77e-03 8.10e-03 2.23e-02 2.81e-04 2.11e+01
16, 20, 20 5.08e-06 2.64e-09 9.75e-03 1.67e-02 2.14e-02 2.87e-04 2.79e+01
16, 20, 30 3.01e-07 2.63e-09 7.62e-03 1.19e-02 2.15e-02 2.56e-04 2.17e+01

64, 10, 30 4.93e-08 1.29e-08 4.29e-02 9.56e-02 3.29e-01 4.43e-03 2.37e+02
64, 20, 20 2.36e-06 2.42e-09 4.15e-02 1.70e-01 2.59e-01 3.42e-03 3.24e+02
64, 20, 30 3.51e-08 2.36e-09 3.66e-02 1.39e-01 2.96e-01 4.08e-03 2.23e+02

256, 10, 30 1.19e-08 1.34e-08 5.14e-01 1.27e+00 5.10e+00 4.00e-02 5.33e+03
256, 20, 20 2.28e-08 2.28e-09 6.52e-01 2.43e+00 4.37e+00 4.33e-02 5.55e+03
256, 20, 30 4.12e-09 2.23e-09 6.87e-01 2.62e+00 5.88e+00 5.63e-02 4.75e+03

1024, 10, 30 1.60e-08 1.41e-08 1.10e+01 2.72e+01 8.74e+01 6.86e-01 1.00e+05
1024, 20, 20 3.29e-09 2.29e-09 1.42e+01 6.01e+01 9.29e+01 1.09e+00 9.21e+04
1024, 20, 30 2.76e-09 2.33e-09 1.34e+01 5.74e+01 1.08e+02 9.13e-01 9.21e+04

4096, 10, 30 1.27e-08 1.47e-08 2.74e+02 6.25e+02 1.79e+03 1.64e+01 2.11e+06
4096, 20, 20 3.16e-09 2.23e-09 2.62e+02 1.02e+03 1.39e+03 1.47e+01 2.24e+06
4096, 20, 30 2.30e-09 2.15e-09 2.60e+02 9.82e+02 1.66e+03 1.49e+01 2.18e+06

Fig. 12. The visualization of the computational complexity. N is the size of the matrix. (a) the 2D uniform FIO given in (34). (b) the 3D Fourier transform
given in (36). (c) the example in (37).

Table 3 shows the relationship between the discontinuity threshold τ and the number of detected discontinuous points.
We set τ ≤ 1

4 in order to guarantee that the intersection of each recovered row and column share the same value. The
results show that the numbers of detected discontinuity for rows and columns (denoted as NDr and NDc , respectively) are
both bounded in O (1) when the problem size N increases. Therefore, τ = 1

4 is an appropriate choice for this example.
Table 4 summarizes the results of this example for different grid sizes N = n3 and different rank parameters r in the

low-rank approximation of the phase function. In the MIDBF, the rank parameter k is 80. The accuracy of the low-rank

18 Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427
Table 3
The number of discontinuous points of the 3D non-uniform Fourier transform given in (36). N = n3 is the size of grid. τ is the threshold for detecting the
discontinuity. NDr and NDc are the numbers of discontinuous points along recovery rows and columns of the phase matrix, respectively.

n τ NDr NDc n τ NDr NDc n τ NDr NDc

8 1
4 0 0 16 1

4 0 0 32 1
4 0 0

8 1
6 3.0 2.9 16 1

6 0 0 32 1
6 0 0

8 1
8 29.1 32.0 16 1

8 0.2 0.1 32 1
8 0 0

8 1
10 82.5 82.7 16 1

10 2.4 1.6 32 1
10 0 0

Table 4
Numerical results for the 3D Fourier transform given in (36). Td is the time for a direct summation in (36).

n, r εb εK T path Trec T f ac Tapp Td/Tapp

16, 3 2.61e-01 3.22e-01 1.11e-01 2.76e-02 1.32e+00 1.24e-02 7.33e+01
16, 4 1.10e-06 1.02e-14 1.21e-01 3.80e-02 1.81e+00 1.72e-02 5.15e+01
16, 5 1.10e-06 6.67e-15 1.03e-01 3.77e-02 1.65e+00 1.60e-02 5.35e+01

32, 3 2.85e-01 3.80e-01 1.15e+00 2.26e-01 1.32e+01 1.09e-01 6.01e+02
32, 4 4.19e-08 8.66e-15 1.15e+00 2.91e-01 1.93e+01 2.64e-01 2.41e+02
32, 5 3.85e-08 1.15e-14 1.08e+00 3.46e-01 1.95e+01 2.21e-01 2.74e+02

64, 3 3.37e-01 4.56e-01 1.16e+01 1.80e+00 9.72e+01 1.01e+00 4.25e+03
64, 4 5.33e-08 2.80e-14 1.09e+01 2.28e+00 1.37e+02 2.12e+00 1.71e+03
64, 5 4.91e-08 2.04e-14 1.13e+01 2.62e+00 1.38e+02 2.12e+00 1.87e+03

128, 3 4.54e-01 5.36e-01 1.32e+02 1.86e+01 8.60e+02 8.51e+00 3.50e+04
128, 4 2.92e-09 4.67e-14 1.27e+02 2.32e+01 1.59e+03 2.14e+01 1.51e+04
128, 5 3.42e-09 4.63e-14 1.27e+02 2.67e+01 1.60e+03 2.05e+01 1.56e+04

Table 5
Numerical results for the case given in (37). Td is the time for a direct summation in (37).

n εb εK T path Trec T f ac Tapp Td/Tapp

640 3.18e-09 1.31e-09 1.04e-02 8.58e-02 5.10e-02 4.87e-04 1.79e+02
2560 8.30e-09 4.48e-09 2.70e-02 2.82e-01 2.58e-01 1.96e-03 3.51e+02
10240 2.79e-08 1.12e-08 9.03e-02 1.12e+00 1.05e+00 9.24e-03 9.58e+02
40960 2.33e-08 2.43e-08 3.35e-01 4.31e+00 5.61e+00 3.39e-02 3.31e+03
163840 5.38e-08 5.98e-08 1.51e+00 2.09e+01 1.94e+01 1.28e-01 1.35e+04

matrix recovery and the MIDBF stay almost of the same order in Table 4. In Fig. 12 (b), we see that each part of the whole
process scales nearly linearly, e.g., when r = 5.

Example 3. The final example is the oscillatory part of the Green’s function of a Helmholtz equation [8]:

g(x) =
∑
ξ∈�

e2π i�(x,ξ) f̂ (ξ), x ∈ X, (37)

where �(x, ξ) = h · ‖x − ξ‖2 and h =
√

N
10 ∼ O (n). X and � are the sets of N points generated via a triangular mesh to

discretize the surface of a unit sphere. The triangular mesh is generated by uniformly refining an icosahedron and projecting
the new mesh nodes, which are the old mesh edge center, onto the sphere. The submatrix of the oscillatory part of the
Green’s function corresponding to one half of the sphere in X and the other half of the sphere in � is chosen as the matrix
to be reconstructed, factorized, and applied to a random vector.

In this example, rank parameters r = 50 and k = 50. As shown in Table 5, the accuracy of the low-rank matrix recov-
ery and the MIDBF stay almost of the same order. The result in Fig. 12 (c) demonstrates the efficiency of the proposed
framework.

5. Conclusion

This paper introduced a framework for O (N log (N)) evaluation of the multidimensional oscillatory integral transform
g(x) = ∫

e2π i�(x,ξ) f (ξ)dξ . In the case of indirect access of the phase functions, this paper proposed a novel fast algorithm
for recovering the phase functions in O (N log (N)) operations. Second, a new BF, the multidimensional interpolative de-
composition butterfly factorization (MIDBF), for multidimensional kernel matrices in the form of a low-rank factorization is
proposed, and it requires only O (N log (N)) operations to evaluate the oscillatory integral transform.

Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427 19
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

Z.C. was partially supported by the Ministry of Education - Singapore under the grant MOE2018-T2-2-147. J.Z. was par-
tially supported by National Natural Science Foundation of China (11771368, 11771370), Natural Science Foundation of
Hunan Province (2018JJ2376), and Project of Education Department of Hunan Province (18B057, 19A500). H.Y. was partially
supported by National Science Foundation under the grant award 1945029.

Appendix A

A.1. Proof of Lemma 2.1

Proof. First, let one of the block matrices be φ, which is partitioned by discontinuous point sets (corresponding to Line 6
in Algorithm 3). Then, Line 9-10 in Algorithm 3 can obtain the unique recovery values of the first 3 × 3 entries of φ, which
are the first three entries in the first three columns.

Next step, consider the intersection of the fourth row and the fourth column in φ. On one hand, after applying Algo-
rithm 2 in the first column, φ(4, 1) will be obtained by

φ(4,1) = φ(1,1) − 3φ(2,1) + 3φ(3,1) + ε1, (A.1)

where ε1 ∈ (− 1
16 , 1

16), according to the property of the first column of φ. Since mod (φ(4, 1), 1) has been given, the recovery
value of φ(4, 1) will be unique.

Similarly, φ(4, 2) and φ(4, 3) can be evaluated by

φ(4,2) = φ(1,2) − 3φ(2,2) + 3φ(3,2) + ε2,

φ(4,3) = φ(1,3) − 3φ(2,3) + 3φ(3,3) + ε3,
(A.2)

through the second and the third column, where ε2, ε3 ∈ (− 1
16 , 1

16).
Next, apply Algorithm 2 to the fourth row to evaluate φ(4, 4):

φ(4,4) = φ(4,1) − 3φ(4,2) + 3φ(4,3) + ε4

= φ(1,1) − 3φ(2,1) + 3φ(3,1) + ε1 − 3φ(1,2) + 9φ(2,2) − 9φ(3,2) − 3ε2

+ 3φ(1,3) − 9φ(2,3) + 9φ(3,3) + 3ε3 + ε4

= C + ε1 − 3ε2 + 3ε3 + ε4,

(A.3)

where ε4 ∈ (− 1
16 , 1

16) and C = φ(1, 1) − 3φ(2, 1) + 3φ(3, 1) − 3φ(1, 2) + 9φ(2, 2) − 9φ(3, 2) + 3φ(1, 3) − 9φ(2, 3) + 9φ(3, 3).
Since ε1 − 3ε2 + 3ε3 + ε4 ∈ (− 1

2 , 12), φ(4, 4) can be obtained by identifying a unique integer a, such that

mod(φ(4,4),1) + a ∈ (C − 1

2
, C + 1

2
). (A.4)

Then, the recovery value of φ(4, 4) through the fourth row will be unique as mod(φ(4, 4), 1) + a.
On the other hand, the same method can be applied to obtain

φ(1,4) = φ(1,1) − 3φ(1,2) + 3φ(1,3) + ε′
1,

φ(2,4) = φ(2,1) − 3φ(2,2) + 3φ(2,3) + ε′
2,

φ(3,4) = φ(3,1) − 3φ(3,2) + 3φ(3,3) + ε′
3,

(A.5)

where ε′
1, ε

′
2, ε

′
3 ∈ (− 1

16 , 1
16).

Next, apply Algorithm 2 again to the fourth column to evaluate φ(4, 4) accompanying with a parameter ε ′
4 ∈ (− 1

16 , 1
16):

φ(4,4) = φ(1,4) − 3φ(2,4) + 3φ(3,4) + ε′
4

= φ(1,1) − 3φ(1,2) + 3φ(1,3) + ε′
1 − 3φ(2,1) + 9φ(2,2) − 9φ(2,3) − 3ε′

2

+ 3φ(3,1) − 9φ(3,2) + 9φ(3,3) + 3ε′
3 + ε′

4

= C + ε′
1 − 3ε′

2 + 3ε′
3 + ε′

4

∈ (C − 1
, C + 1

).

(A.6)
2 2

20 Z. Chen et al. / Journal of Computational Physics 412 (2020) 109427
Similarly, φ(4, 4) can be obtained by identifying a unique integer b, such that

mod(φ(4,4),1) + b ∈ (C − 1

2
, C + 1

2
). (A.7)

Combining (A.4) and (A.7), integers a, b ∈ (C − mod(φ(4, 4), 1) − 1
2 , C − mod(φ(4, 4), 1) + 1

2), which is obvious to con-
clude that a = b. Thus, the intersection φ(4, 4) recovered by the fourth row and the fourth column using Algorithm 2 will
share the same value.

The same, when the recovered values of the first three entries of the second to fourth columns have been obtained using
the previous method, a unique recovery value of φ(4, 5) would be evaluated, which means that the intersection recovered
by the fourth row and the fifth column will share the same value.

Furthermore, the unique recovery values of φ(4, 6), φ(4, 7), . . . , φ(4, m) can also be evaluated. Therefore, when the values
of the first three entries of the first three columns have been fixed, any entry in the fourth row as the intersection will
share the same value when recovering the corresponding row and column. The method can be applied to prove the same
property in the rest rows.

In conclusion, if the nine values of the first three entries of the first three columns have been fixed, any recovered row
and column by Algorithm 2 will share the same value at the intersection. �
References

[1] G. Bao, W.W. Symes, Computation of pseudo-differential operators, SIAM J. Sci. Comput. 17 (2) (1996) 416–429.
[2] J.P. Boyd, F. Xu, Divergence (Runge phenomenon) for least-squares polynomial approximation on an equispaced grid and Mock Chebyshev subset

interpolation, Appl. Comput. Math. 210 (1) (2009) 158–168.
[3] J. Bremer, An algorithm for the rapid numerical evaluation of Bessel functions of real orders and arguments, arXiv:1705 .07820 [math .NA], 2017.
[4] J. Bremer, An algorithm for the numerical evaluation of the associated Legendre functions that runs in time independent of degree and order, J.

Comput. Phys. 360 (2018) 15–38.
[5] K. Buchin, W. Mulzer, Delaunay triangulations in O (sort(n)) time and more, in: 2009 50th Annual IEEE Symposium on Foundations of Computer

Science, Oct 2009, pp. 139–148.
[6] E.J. Candès, L. Demanet, L. Ying, A fast butterfly algorithm for the computation of Fourier integral operators, Multiscale Model. Simul. 7 (4) (2009)

1727–1750.
[7] M. Costantin, A. Farina, F. Zirilli, A fast phase unwrapping algorithm for SAR interferometry, IEEE Trans. Geosci. Remote Sens. 37 (1) (1999).
[8] B. Davies, Green’s Functions, Springer New York, New York, NY, 2002, pp. 163–179.
[9] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Delaunay Triangulations, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 191–218.

[10] L. Demanet, L. Ying, Fast wave computation via Fourier integral operators, Math. Comput. 81 (279) (2012).
[11] M.T. Dickerson, R. Drysdale, Fixed-radius near neighbors search algorithms for points and segments, Inf. Process. Lett. 35 (5) (1990) 269–273.
[12] B. Engquist, L. Ying, A fast directional algorithm for high frequency acoustic scattering in two dimensions, Commun. Math. Sci. 7 (2) (2009) 327–345.
[13] L. Greengard, J.-Y. Lee, Accelerating the nonuniform fast Fourier transform, SIAM Rev. 46 (3) (2004) 443–454.
[14] H. Guo, Y. Liu, J. Hu, E. Michielssen, A butterfly-based direct integral-equation solver using hierarchical Lu factorization for analyzing scattering from

electrically large conducting objects, IEEE Trans. Antennas Propag. 65 (9) (Sept 2017) 4742–4750.
[15] N. Halko, P.-G. Martinsson, J.A. Tropp, Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions,

SIAM Rev. 53 (2) (2011) 217–288.
[16] P. Hoffman, K. Reddy, Numerical differentiation by high order interpolation, SIAM J. Sci. Stat. Comput. 8 (6) (1987) 979–987.
[17] H. Isozaki, J.L. Rousseau, Pseudodifferential multi-product representation of the solution operator of a parabolic equation, Commun. Partial Differ. Equ.

34 (7) (2009) 625–655.
[18] L. Jianchun, G.A. Pope, K. Sepehrnoori, A high-resolution finite-difference scheme for nonuniform grids, Appl. Math. Model. 19 (3) (1995) 162–172.
[19] C.Y. Lee, An algorithm for path connections and its applications, IRE Trans. Electron. Comput. EC-10 (3) (Sep. 1961) 346–365.
[20] Y. Li, H. Yang, Interpolative butterfly factorization, SIAM J. Sci. Comput. 39 (2) (2017) A503–A531.
[21] Y. Li, H. Yang, E.R. Martin, K.L. Ho, L. Ying, Butterfly factorization, Multiscale Model. Simul. 13 (2) (2015) 714–732.
[22] Y. Li, H. Yang, L. Ying, Multidimensional butterfly factorization, Appl. Comput. Harmon. Anal. (2017).
[23] Y. Liu, H. Guo, E. Michielssen, An HSS matrix-inspired butterfly-based direct solver for analyzing scattering from two-dimensional objects, IEEE Anten-

nas Wirel. Propag. Lett. 16 (2017) 1179–1183.
[24] S. Lo, Parallel Delaunay triangulation in three dimensions, Comput. Methods Appl. Mech. Eng. 237–240 (2012) 88–106.
[25] E. Michielssen, A. Boag, A multilevel matrix decomposition algorithm for analyzing scattering from large structures, IEEE Trans. Antennas Propag. 44 (8)

(Aug 1996) 1086–1093.
[26] G. Nico, G. Palubinskas, M. Datcu, Bayesian approaches to phase unwrapping: theoretical study, IEEE Trans. Signal Process. 48 (9) (2000).
[27] M. O’Neil, F. Woolfe, V. Rokhlin, An algorithm for the rapid evaluation of special function transforms, Appl. Comput. Harmon. Anal. 28 (2) (2010)

203–226.
[28] Q. Pang, K.L. Ho, H. Yang, Interpolative decomposition butterfly factorization, arXiv:1809 .10573 [math .NA], 2018.
[29] R. Prim, Shortest connection networks and some generalizations, Bell Syst. Tech. J. 36 (1957) 1389–1401.
[30] J.L. Rousseau, Fourier-integral-operator approximation of solutions to first-order hyperbolic pseudodifferential equations I: convergence in Sobolev

spaces, Commun. Partial Differ. Equ. 31 (6) (2006) 867–906.
[31] J.L. Rousseau, G. Hörmann, Fourier-integral-operator approximation of solutions to first-order hyperbolic pseudodifferential equations II: microlocal

analysis, J. Math. Pures Appl. 86 (5) (2006) 403–426.
[32] D. Ruiz-Antolín, A. Townsend, A nonuniform fast Fourier transform based on low rank approximation, SIAM J. Sci. Comput. 40 (1) (2018) A529–A547.
[33] M. Smid, The well-separated pair decomposition and its applications, in: Handbook of Approximation Algorithms and Metaheuristics, 2007.
[34] E. Trouvé, J.-M. Nicolas, H. Maître, Improving phase unwrapping techniques by the use of local frequency estimates, IEEE Trans. Geosci. Remote Sens.

36 (6) (1998).
[35] P. Vaidya, An O (n logn) algorithm for the all-nearest-neighbors problem, Discrete Comput. Geom. 4 (2) (1989) 101–116.
[36] C. Van Loan, Computational Frameworks for the Fast Fourier Transform, Society for Industrial and Applied Mathematics, 1992.
[37] O.V. Vasilyev, High order finite difference schemes on non-uniform meshes with good conservation properties, J. Comput. Phys. 157 (2) (2000) 746–761.
[38] H. Yang, A unified framework for oscillatory integral transforms: when to use NUFFT or butterfly factorization?, J. Comput. Phys. 388 (Jul 2019)

103–122.

http://refhub.elsevier.com/S0021-9991(20)30201-1/bib0B49D13C44AECACCC0331CA168939F0Es1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bibFC8BFCA065FCBB99F34B1F473B96D2B1s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bibFC8BFCA065FCBB99F34B1F473B96D2B1s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib2E99DB5BB5A25C81C05ACF6F3A5C21E2s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib12DC701D90B0D6445252314103BE34A7s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib12DC701D90B0D6445252314103BE34A7s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bibEEA83F5DA256E4815123CA41D93EA02Es1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bibEEA83F5DA256E4815123CA41D93EA02Es1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib4320947AB84EC498FBB92643A4CF1C95s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib4320947AB84EC498FBB92643A4CF1C95s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib9CE6D4B5C4897548F0FB2BCC0561213Ds1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib9F27410725AB8CC8854A2769C7A516B8s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib21FF90B3821C3715926D8A8B20002EB9s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib8E4B2BCE633E11D521C2B5CB63E410B1s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib48F87352BAE8D29FDF53C5427BF07402s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib405D7E8A08BADC93DBBB9D4D0784A3ADs1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib023CE8FD7F40616B308A9C0854E701E4s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib31D0F45FEA01939054AA03CF3E31025Ds1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib31D0F45FEA01939054AA03CF3E31025Ds1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib6ABCE09AAA02C9D593493CF1845EBA7Bs1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib6ABCE09AAA02C9D593493CF1845EBA7Bs1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib2A25343B82815661B946D3F644FD9A5Fs1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bibB9659721515A9311422EB2A9B2E643FAs1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bibB9659721515A9311422EB2A9B2E643FAs1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib39CFEFEB1AF7AD587CF3CE045D6821D7s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib838FEA3C1A3E8DD6C22FE9605A701668s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bibD36B0DFF589BA87AE64B86705A3DAA3Fs1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib7B8D2F92148F52CAD46E331936922E80s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bibDE301F944FEBA245A22CE7783678136Ds1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib3A443415C18FCB9515ACB7935DB4CBC1s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib3A443415C18FCB9515ACB7935DB4CBC1s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bibFBC2F4C8638EF895FCD8246E282F15F7s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bibE0EAAAEF02191D8414B264C177C9232Bs1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bibE0EAAAEF02191D8414B264C177C9232Bs1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bibC010839CE81390DFBC1AA0466D2C79B0s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib266AF3E3F6FBC52225D3D45110AA49ACs1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib266AF3E3F6FBC52225D3D45110AA49ACs1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib400F1FB7AEF169E36F67CC3519101623s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib2DD2C29E53BFA93CC4ED329BC57AA025s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib18CB4393971F9DD81726289894E39FC0s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib18CB4393971F9DD81726289894E39FC0s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib25F95B2DFAAF6268BC3FFB254F4A373As1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib25F95B2DFAAF6268BC3FFB254F4A373As1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib8C90E15223469A891E1340322E44A15Es1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib16D9EBED7DC8671794E2E0110347F828s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib5D1BC16FA409093AD443BD1E4BC6F78Fs1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib5D1BC16FA409093AD443BD1E4BC6F78Fs1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bibB602E23C0EC2466F3AA6CADE0CD5CE05s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib9FE9202282519E4316E8FFE5DE4D80FBs1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bibA187CFCD71AB83566C047CD7D3B7C085s1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib1C439378FF87ECE3EB4DE5CB2DB3B80Cs1
http://refhub.elsevier.com/S0021-9991(20)30201-1/bib1C439378FF87ECE3EB4DE5CB2DB3B80Cs1

	Multidimensional phase recovery and interpolative decomposition butterfly factorization
	1 Introduction
	2 Low-rank phase matrix factorization
	2.1 Low-rank approximation by randomized sampling
	2.2 One-dimensional phase matrix factorization with indirect access
	2.3 Multidimensional phase matrix factorization with indirect access
	2.3.1 Overview
	2.3.2 Vector recovery
	2.3.3 Recovery path
	2.3.4 Matrix recovery
	2.3.5 Phase matrix factorization
	2.3.6 Summary

	3 Multidimensional interpolative decomposition butterfly factorization (MIDBF)
	3.1 Notations and overall structure
	3.2 Linear scaling interpolative decomposition (ID)
	3.3 Leaf-root complementary skeletonization (LRCS)
	3.4 Matrix splitting with complementary skeletonization (MSCS)
	3.5 Recursive MSCS
	3.6 Extensions

	4 Numerical results
	4.1 Accuracy and scaling of low-rank matrix recovery and MIDBF

	5 Conclusion
	Acknowledgements
	References

