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1
METHOD AND APPARATUS FOR
COMPUTING FEATURE KERNELS FOR
OPTICAL MODEL SIMULATION

CROSS REFERENCE TO RELATED
APPLICATION

This is a continuation application of patent application
Ser. No. 16/423,190, filed on May 28, 2019, which claims
the priority benefit of U.S. provisional application Ser. No.
62/725,271, filed on Aug. 31, 2018, and is now allowed. The
entirety of each of the above-mentioned patent applications
is hereby incorporated by reference herein and made a part
of this specification.

BACKGROUND

In the manufacturing processes of modern semiconductor
devices, various materials and machines are manipulated to
create a final product. Due to the increasing complexity of
semiconductor devices and the development of ultra-small
transistors, the variation in the process has a greater impact
on the performance of the product. Lithography is one of the
key factors that cause the impact and lithographic simula-
tions are applied to estimate the performance of the product
to be manufactured before mass production.

A transmission cross-coefficient (TCC) matrix that math-
ematically describes properties of an optical imaging system
under Hopkins theory is adopted in lithographic simulations,
and computation of TCC kernels from the TCC matrix is
essential to the simulations. Standard methods for comput-
ing the TCC kernels, however, are very computationally
expensive, which may slow down the simulations and
increase an overall time of mask making process.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the present disclosure are best understood from
the following detailed description when read with the
accompanying figures. It is noted that, in accordance with
the standard practice in the industry, various features are not
drawn to scale. In fact, the dimensions of the various
features may be arbitrarily increased or reduced for clarity of
discussion.

FIG. 1 is a schematic diagram illustrating a model simu-
lation process according to an embodiment of the disclosure.

FIG. 2 is a schematic diagram illustrating a model-based
mask making process according to an embodiment of the
disclosure.

FIG. 3 illustrates a block diagram of an electronic appa-
ratus for computing feature kernels for optical model simu-
lation according to an embodiment of the disclosure.

FIG. 4 is a flowchart illustrating a method for computing
feature kernels for optical model simulation according to an
embodiment of the disclosure.

FIG. 5A is a flowchart illustrating a method for computing
feature kernels for optical model simulation by using EVD
algorithm according to an embodiment of the disclosure.

FIG. 5B is a schematic diagram illustrating an example of
computing feature kernels for optical model simulation by
using EVD algorithm according to an embodiment of the
disclosure.

FIG. 6A is a flowchart illustrating a method for finding a
low-rank basis through subspace iteration according to an
embodiment of the disclosure.
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FIG. 6B is a flowchart illustrating a method for finding a
low-rank basis through the block Krylov method according
to an embodiment of the disclosure.

FIG. 7A is a flowchart illustrating a method for computing
feature kernels for optical model simulation by using SVD
algorithm according to an embodiment of the disclosure.

FIG. 7B is a schematic diagram illustrating an example of
computing feature kernels for optical model simulation by
using SVD algorithm according to an embodiment of the
disclosure.

DESCRIPTION OF THE EMBODIMENTS

The following disclosure provides many different
embodiments, or examples, for implementing different fea-
tures of the provided subject matter. Specific examples of
components and arrangements are described below to sim-
plify the present disclosure. These are, of course, merely
examples and are not intended to be limiting. For example,
the formation of a first feature over or on a second feature
in the description that follows may include embodiments in
which the first and second features are formed in direct
contact, and may also include embodiments in which addi-
tional features may be formed between the first and second
features, such that the first and second features may not be
in direct contact. In addition, the present disclosure may
repeat reference numerals and/or letters in the various
examples. This repetition is for the purpose of simplicity and
clarity and does not in itself dictate a relationship between
the various embodiments and/or configurations discussed.

Further, spatially relative terms, such as ‘“beneath,”
“below,” “lower,” “above,” “upper” and the like, may be
used herein for ease of description to describe one element
or feature’s relationship to another element(s) or feature(s)
as illustrated in the figures. The spatially relative terms are
intended to encompass different orientations of the device in
use or operation in addition to the orientation depicted in the
figures. The apparatus may be otherwise oriented (rotated 90
degrees or at other orientations) and the spatially relative
descriptors used herein may likewise be interpreted accord-
ingly.

This invention aims to dramatically accelerate the com-
putation of transmission cross-coeflicient (TCC) kernels,
which are central to the efficient modeling of projection
optical imaging systems in modern lithography.

According to some embodiments of the invention, a
sampling matrix is formed from a random matrix, a pseu-
dorandom matrix, or a structured matrix. A transmission
cross-coefficient (TCC) matrix that mathematically
describes the properties of an optical system is iteratively
multiplied against the sampling matrix and the result is
adaptively rescaled (or orthogonalized) until a convergence
condition is met. As a result, a low-rank basis that approxi-
mately preserves the kernels of interest is formed according
to a final result of the iterations or an accumulation of the
intermediate results of the iterations. The low-rank basis is
used to compute a reduced TCC matrix of smaller size.

With the reduced TCC matrix, a block algorithm is
applied to compute an eigenvalue decomposition (EVD) or
a singular value decomposition (SVD), from which the
reduced TCC kernels are extracted and expanded to the full
space. The reconstructed TCC kernels are applied for model
calibration and mask correction/optimization so as to obtain
an optimized mask.

Through the method, since the dominant computation
includes only matrix multiplication, which includes O(N?)
operations generally or even just O(N log N) in special
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cases, the computational complexity can be dramatically
reduced and the lithography simulation for model-based
mask making can be accelerated.

FIG. 1 is a schematic diagram illustrating a model simu-
lation process according to an embodiment of the disclosure.
Referring to FIG. 1, the model simulation of the embodi-
ment is implemented to compute simulated images which
are used, for example, to compare with actual images
captured from the wafer to verify whether the simulated
model is appropriate.

In step S110, a plurality of optical models 11 and a mask
12 are given as inputs for model simulation. Each of the
optical models is, for example, a mathematical model com-
prising lots of parameters in association with the optics in a
projection optical imaging system, such as defocus, image
plane, wavelength of light, or numerical aperture. The mask
is, for example, a lithographic photomask used in photoli-
thography and developed with a pattern layer in integrated
circuit fabrication.

In step S120, each of the optical models is applied to
model simulation, which is implemented based on Hopkins
theory. The Hopkins theory uses the transmission cross-
coeflicients (TCC) to describe the interference of mask
transmission in contributing to the optical image which is
formed by Fourier transforming the product of the TCC
multiplied by the mask function.

In detail, the TCC for scalar optics may be presented as:

I, APESISTOP* (PO,

where the independent variables are 2D spatial frequency
coordinates, i.e., I=(f,, T). P(f) is a pupil function equal to
the Fourier transform of a point spread function. S(f) is the
source intensity distribution. The discretized T(f, f') is a TCC
matrix, in which one dimension is for f and the other is for
.

The TCC matrix T can also be written in a form as

T=pPprcC¥N peCH¥ (ahsorbing VS() into each of P, P*
since =0), where P is the “stacked shifted pupil matrix”
depending only on properties of the optical system (e.g.,
pupil function, source intensity, coherence factor, polariza-
tion) and P* is the conjugate transpose of pupil matrix P. In
modern lithographic simulations, M=10* and N=3000. The
TCC matrix T can be used to compute an aerial image Al as:

AIImDI, fim* (e df df,

where m(f) is a mask transmission function equal to a
mask diffraction operator. It is noted that, from projection
optics, the light diffracted by the pattern on the photomask
enters the photoresist and an image of the photomask formed
on the photoresist is called the aerial image.

The definition described above is for the scalar optical
theory. A similar formula holds for the vector optical theory.
That is, for a vector optical theory, P(f) is changed to a
matrix (i.e. multiple components to describe light polariza-
tion) and S(f) is changed to a matrix so as to capture the
polarization of each source point.

It follows that the TCC matrix T admits an eigendecom-
position T=VAV*, where V is unitary with columns v, and
A is diagonal with real entries A,;zA,= . . . 0. The TCC
kernels are the scaled eigenvectors ij:\/xj\/j. Typically only
some small number k<<N of leading kernels are retained,
which then comprise an optimal approximation of T up to
rank k.

Based on the above, in step S121, a plurality of TCC
kernels are generated and in step S122, the generated TCC
kernels are applied as part of the optical model.
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The present embodiment focuses on the generation of
TCC kernels in step S121. Through iteratively multiplying
the TCC matrix against a low-rank basis, a reduced TCC
matrix is obtained and used to compute decomposition
values. In the end, the TCC kernels can be generated by
extracting reduced TCC kernels from the computed decom-
position values and expanding the same to the full space.

In addition to applying the optical model, in step S130, a
resist/wafer model is further applied to the model simulation
such that a simulated image 13 is generated in step S140.
The simulated image is used to compare with an actual
image captured from the wafer so as to verify whether the
simulated model is appropriate.

As a result, the model simulation process can run faster
due to the reduced time for the generation of TCC kernels.

FIG. 2 is a schematic diagram illustrating a model-based
mask making process according to an embodiment of the
disclosure. Referring to FIG. 2, the mask making process is
based on the model simulation as illustrated in FIG. 1.

In the upper half of FIG. 2, a model calibration approach
for the qualification process of projection optics of wafer
steppers and scanners is illustrated, in which a plurality of
test patterns 21 are applied to make photomasks. The test
patterns 21 are transferred from the photomasks to the
photoresist formed on a substrate or a wafer by light, in
which a series of chemical treatments are conducted to
engrave the patterns into the material underneath the pho-
toresist. A plurality of test measurements 22 are then
obtained from the patterned substrate or wafer.

In step S210, the aforesaid test patterns 21 and test
measurements 22 are given as inputs for model calibration.
In the model calibration process in step S220, the model
simulation process as illustrated in FIG. 1 is applied to
simulate an optical model with the input test patterns (step
S221), and the simulated measurements (i.e. simulated
images) obtained from the model simulation are checked
against the test measurements 22 to see whether the model
is appropriate (step S222).

If the test measurements 22 and the simulated measure-
ments are far from each other, it means the model is not
robust and the process is returned back to step S221 to
correct and change the model and perform the simulation
again. The model calibration is performed repeatedly until
the test measurements 22 and the simulated measurements
are close to each other and accordingly a calibrated model 23
is outputted in step S230.

It is noted, every time the optical model is changed in step
S221, the parameters of the optics are changed and accord-
ingly the model simulation is performed again, which means
new TCC kernels are desired to be computed and therefore
the computation is a key factor that slows down the model
calibration process.

In the lower half of FIG. 2, a mask correction/optimiza-
tion process is illustrated, and in step S240, the model 23
calibrated in the previous model calibration process, a mask
24 and a target 25 are given as inputs to a plurality of
simulations in the mask correction/optimization process in
step S250. In the mask correction/optimization process, one
or a combination of simulations including, but not limited to,
optical proximity correction (OPC), inverse lithography
technology (ILT), model-based assist feature (MBAF), and
source-mask optimization (SMO) are performed in step
S251 and a lithography process check (LPC) is performed in
step S252 to check whether the mask made after correction/
optimization is appropriate.

In some embodiments, if a result image obtained by using
the given mask 24 is checked as not matching or similar to
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the target 25 (e.g. a desired pattern) in step S252, the
simulations in steps S251 are performed again to correct the
mask. On the other hand, if a result image obtained by using
the given mask 24 is checked as matching or similar to the
target 25 in step S252, an optimized mask 26 is output in
step S260.

It is noted, although some of the simulations (e.g. OPC/
ILT) in step S251 may apply the TCC kernels previously
generated in step S220, some simulations may need new
TCC kernels. For example, in some embodiments, for the
simulation of source-mask optimization (SMO), since the
optics are optimized in the simulation, the parameters of the
optics are changed and new TCC kernels are desired to be
computed. Similar to the simulation in step S221, the
computation of new TCC kernels in step S251 may slow
down the mask correction/optimization process and cause an
overall time of mask making process to be increased.

In view of above, a method for computing feature kernels
for optical model simulation is developed by the disclosure
to accelerate the computation of TCC kernels, so as to
reduce the time for model simulation process and mask
making process.

In detail, FIG. 3 illustrates a block diagram of an elec-
tronic apparatus for computing feature kernels for optical
model simulation according to an embodiment of the dis-
closure. Referring to FIG. 3, an electronic apparatus 30 of
the present embodiment is, for example, a personal com-
puter, a server, a work station or any other computing device,
and may include a data retrieving device 32, a storage
medium 34 and a processor 36 coupled to the data retrieving
device 32 and the storage medium 34.

In some embodiments, the eclectronic apparatus 30 is
externally connected to an optical imaging system (not
shown) and configured to retrieve a plurality of properties of
the optical imaging system and scan images obtained by the
optical imaging system performing hot scans on a substrate
or a wafer, so as to perform optical model simulation.

In some embodiments, the data retrieving device 32 is
configured to connect the optical imaging system and
retrieve the properties of the optical imaging system. The
data retrieving device 32 is, for example, any wired or
wireless interface such as USB, firewire, thunderbolt, uni-
versal asynchronous receiver/transmitter (UART), serial
peripheral interface bus (SPI), WiFi, or Bluetooth, but the
disclosure is not limited thereto.

The storage medium 34 is configured to store the prop-
erties retrieved by the data retrieving device 32. The storage
medium 34 is, for example, a random access memory
(RAM), a read-only memory (ROM), a flash memory, a hard
disk, a redundant array of independent disks (RAID), other
similar storage devices or a combination thereof, but the
disclosure is not limited thereto.

The processor 36 is, for example, a central processing unit
(CPU), other programmable general-purpose or specific-
purpose microprocessors, a digital signal processor (DSP), a
programmable controller, an application specific integrated
circuit (ASIC), a programmable logic device (PLD), other
similar devices, or a combination thereof, but the disclosure
is not limited thereto.

The electronic apparatus 30 is configured to execute
instructions for carrying out a method for computing feature
kernels for optical model simulation in accordance with
some embodiments of the present disclosure. In detail, FIG.
4 is a flowchart illustrating a method for computing feature
kernels for optical model simulation according to an
embodiment of the disclosure. The method of the present
embodiment is adapted to the electronic apparatus 30 of
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FIG. 3, and detailed steps of the method are described below
with reference to various components in the electronic
apparatus 30 of FIG. 3.

Referring to FIG. 4, in step S402, the processor 36
identifies a feature matrix mathematically describing the
plurality of properties of the optical imaging system. The
feature matrix is, for example, a TCC matrix that math-
ematically describes the properties of an optical system such
as pupil function, source intensity, coherence factor, or
polarization, but the disclosure is not limited thereto.

In step S404, the processor 36 generates a sampling
matrix comprising at least one vector serving as input to
form a low-rank basis for the feature matrix. The sampling
matrix comprises, for example, a random matrix, a pseudo-
random matrix, or a structured matrix. In some embodi-
ments, when generating the sampling matrix, the processor
36 may perform oversampling (e.g. enlarge rank k to k+O
(1)) in order to improve random sampling error. In some
embodiments, groups of vectors (i.e. matrices) are acted on
simultaneously to exploit computer hardware cache effi-
ciency, but in some embodiments, single-vector-at-a-time
variants can also be derived, which can make the computa-
tion result more accurate.

In step S406, the processor 36 iteratively multiplies the
sampling matrix by the feature matrix and adaptively res-
cales a multiplication result according to numerical stability
until a convergence condition is met. The multiplication is
repeatedly applied to improve spectral approximation error.

In some embodiments, the multiplication by the feature
matrix is performed by exploiting a subset of the properties
without directly computing the full feature matrix. For
example, by performing the multiplication by the TCC
matrix T as Tx=P(P*x), the calculation may bypass con-
struction of T (includes O(N?) operations) and includes at
most O(N?) operations, which gives an overall O(N?) cost
for the algorithm. Other structures such as low-rank, sparse,
or tensor may be further exploited, and the disclosure is not
limited thereto.

In some embodiments, the multiplication by the feature
matrix is performed by computing a convolution of a pupil
matrix depending on the properties and a conjugate trans-
pose of the pupil matrix using fast Fourier transform (FFT)
when a plurality of source points are laid on a conformal
uniform grid. The convolutional structure of the pupil matrix
allows multiplication in O(N log N) time using FFT and
gives an overall O(N log N) for the algorithm.

In some embodiments, the multiplication by the feature
matrix is performed by computing a convolution of a pupil
matrix depending on the properties and a conjugate trans-
pose of the pupil matrix using FFT when a plurality of
source points in an arbitrary distribution are resampled onto
a uniform grid. The source points can be resampled onto the
uniform grid with controllable aerial image error, and gives
an overall O(N log N) for the algorithm as described above.

In some embodiments, the multiplication by the feature
matrix is performed by computing a convolution of a pupil
matrix depending on the properties and a conjugate trans-
pose of the pupil matrix using non-uniform FFT when a
plurality of source points in an arbitrary distribution are not
on a uniform grid. Even for the source points in the arbitrary
distribution, an overall O(N log N) for the algorithm can be
achieved by using non-uniform FFT.

In some embodiments, in addition to explicitly consider-
ing the TCC matrix with a structure T=PP* which provides
faster-than-O(N>) multiplication, TCC matrices with more
general structures, e.g., T=PDP* for diagonal indefinite (i.e.
can be negative) matrix D can also be applied.
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In step S408, the processor 36 uses iteration results to
form a reduced feature matrix.

In some embodiments, the reduced feature matrix is
obtained through subspace iteration, which is used to com-
pute a low-rank basis approximating the leading eigenspace.
Convergence can be tied to performing a fixed number of
iterations or to monitoring some metric of subspace simi-
larity. That is, in some embodiments, the convergence con-
dition is determined to be met when a number of iterations
reaches a predetermined number while in some embodi-
ments, the convergence condition is determined to be met
when an adaptive error metric is monitored, but the disclo-
sure is not limited thereto. Accordingly, the reduced feature
matrix is formed by using a final result of the iterations.

In some embodiments, the reduced feature matrix is
obtained through a block Krylov method, in which interme-
diate results are better used to construct a possibly larger
basis than the subspace iteration, in a fashion similar to the
classical Lanczos method. That is, the reduced feature
matrix is formed by initiating an empty basis and accumu-
lating an intermediate result of each iteration to the empty
basis. Compared to the subspace iteration, the approxima-
tion error is strictly no worse, but the price is that the
reduced feature matrix may be larger and the cost for
calculating the decomposition values may be higher.

In step S410, the processor 36 computes decomposition
values of the reduced feature matrix and in step S412, the
processor 36 extracts a plurality of feature kernels from the
computed decomposition values. In some embodiments, the
decomposition values of the reduced feature matrix are
computed by using a block algorithm such as an eigenvalue
decomposition (EVD) algorithm or a singular value decom-
position (SVD) algorithm, which are respectively illustrated
in detail below.

FIG. 5A is a flowchart illustrating a method for computing
feature kernels for optical model simulation by using EVD
algorithm according to an embodiment of the disclosure.
FIG. 5B is a schematic diagram illustrating an example of
computing feature kernels for optical model simulation by
using EVD algorithm according to an embodiment of the
disclosure. The method of the present embodiment is
adapted to the electronic apparatus 30 of FIG. 3, and detailed
steps of the method are described below with reference to
various components in the electronic apparatus 30 of FIG. 3.

Referring to both FIG. 5A and FIG. 5B, in step S502, the
processor 36 obtains a pupil matrix of the optical system, so
as to calculate a TCC matrix T that mathematically describes
the properties of the optical system.

In step S504, borrowing techniques from randomized
numerical linear algebra, the processor 36 finds a low-rank
basis Q of size O(k) that approximately preserves kernels of
interest.

In step S506, the processor 36 multiplies the low-rank
basis Q by the TCC matrix T to form a reduced TCC matrix
T, in which a conjugate transpose matrix Q* of the low-rank
basis Q is multiplied by the TCC matrix T and the low-rank
basis Q so as to compress the TCC matrix T into the reduced
TCC matrix T.

In step S508, the processor 36 computes a reduced EVD
from the reduced TCC matrix T.

In step S510, the processor 36 extracts kernels from the
computed reduced EVD. In some embodiments, the proces-
sor 36 extracts reduced TCC kernels (i.e. VVA) from the
computed reduced EVD and then expands the extracted
reduced TCC kernels to the full space by multiplying the
low-rank basis Q with the reduced TCC kernels so as to
recover the TCC kernels (i.e. QVVA).
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According to the present embodiment, the low-rank basis
is found and used to compress the TCC matrix into a small
reduced matrix (e.g. a TCC matrix with a size of order k by
order k, where k is the number of kernels of interest). The
computation is performed in the small, compressed space
and the results are expanded back to the original space. As
a result, the computational complexity can be dramatically
reduced and the generation of TCC kernels can be acceler-
ated.

In some embodiments, the method for finding the low-
rank basis may be performed through subspace iteration or
block Krylov method as introduced above.

In detail, FIG. 6A is a flowchart illustrating a method for
finding a low-rank basis through subspace iteration accord-
ing to an embodiment of the disclosure. FIG. 6B is a
flowchart illustrating a method for finding a low-rank basis
through the block Krylov method according to an embodi-
ment of the disclosure. The methods of the present embodi-
ments are adapted to the electronic apparatus 30 of FIG. 3.

Referring to FIG. 6A, in step S602, the processor 36
generates an oversampled random matrix. In some embodi-
ments, the processor 36 may generate the oversampled
random matrix by oversampling a random matrix, a pseu-
dorandom matrix, or a structured matrix.

In step S604, the processor 36 multiplies the generated
random matrix by the TCC matrix and in step 606, adap-
tively rescales a multiplication result according to numerical
stability. The rescaling is referred to as, for example, Gram-
Schmidt orthogonalization, primarily for the numerical sta-
bility, but the disclosure is not limited thereto.

In step S608, the processor 36 determines whether the
iteration is done. In some embodiments, the termination (i.e.
convergence) can be fixed based on a set number of itera-
tions or some adaptive error metric.

If the convergence condition is not met, the processor 36
returns to step S606 to iteratively multiply the generated
random matrix by the TCC matrix and rescales the multi-
plication result again until the convergence condition is met.
Once the convergence condition is met, the processor 36
proceeds to step S610 to orthogonalize the rescaled multi-
plication result and finally output the orthogonalized result
as the low-rank basis.

Referring to FIG. 6B, in step S612, the processor 36
initializes an empty basis and then in step S614 generates an
oversampled random matrix. In some embodiments, the
processor 36 may generate the oversampled random matrix
by oversampling a random matrix, a pseudorandom matrix,
or a structured matrix.

In step S616, the processor 36 multiplies the generated
random matrix by the TCC matrix and in step 618, adap-
tively rescales a multiplication result according to numerical
stability and adds the rescaled multiplication result to the
empty basis initialized in step S612. The rescaling is referred
to as, for example, Gram-Schmidt orthogonalization, pri-
marily for the numerical stability, but the disclosure is not
limited thereto.

In step S620, the processor 36 determines whether the
iteration is done. In some embodiments, the termination (i.e.
convergence) can be fixed based on a set number of itera-
tions or some adaptive error metric.

If the convergence condition is not met, the processor 36
returns to step S616 to iteratively multiply the generated
random matrix by the TCC matrix, rescales the multiplica-
tion result, and adds the rescaled multiplication to the
accumulated basis until the convergence condition is met.
Once the convergence condition is met, the processor 36
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proceeds to step S622 to orthogonalize the accumulated
basis and finally output the orthogonalized basis as the
low-rank basis.

Compared to the subspace iteration, as for the block
Krylov method, the intermediate results are accumulated to
construct a possibly larger basis than the subspace iteration.
As a result, the approximation error is strictly no worse, but
the cost for computing the EVD may be more expensive
since the generated basis is larger.

In aforesaid method illustrated in FIG. 5A to FIG. 6B, the
feature kernels are computed using the EVD algorithm.
However, in some embodiments, the feature kernels can be
computed using the SVD algorithm. Embodiments are given
below for further illustration.

FIG. 7Ais a flowchart illustrating a method for computing
feature kernels for optical model simulation by using SVD
algorithm according to an embodiment of the disclosure.
FIG. 7B is a schematic diagram illustrating an example of
computing feature kernels for optical model simulation by
using SVD algorithm according to an embodiment of the
disclosure. The method of the present embodiment is
adapted to the electronic apparatus 30 of FIG. 3, and detailed
steps of the method are described below with reference to
various components in the electronic apparatus 30 of FIG. 3.

Referring to both FIG. 7A and FIG. 7B, in step S702, the
processor 36 obtains a pupil matrix P of the optical system.

In step S704, borrowing techniques from randomized
numerical linear algebra, the processor 36 finds a low-rank
basis Q of size O(k) that approximately preserves kernels of
interest.

In step S706, the processor 36 multiplies a conjugate
transpose matrix Q¥ of the low-rank basis Q by the pupil
matrix P to form a reduced pupil matrix P, so as to compress
the pupil matrix P into the reduced pupil matrix P.

In step S708, the processor 36 computes a reduced SVD
from the reduced pupil matrix P. For a reduced TCC matrix
with eigendecomposition T:VA\NQ the corresponding
reduced pupil matrix SVD is P=VVAW, for some unitary
matrix W.

In step S710, the processor 36 extracts kernels from the
computed reduced SVD. In some embodiments, the proces-
sor 36 extracts reduced TCC kernels (i.e. VVA) from the
computed reduced SVD and then expands the extracted
reduced TCC kernels to the full space by multiplying the
low-rank basis Q with the reduced TCC kernels so as to
recover the TCC kernels (i.e. QVVA).

In some embodiments, the method for finding the low-
rank basis may be performed through subspace iteration or
block Krylov method as introduced above.

In detail, in some embodiments, the reduced feature
matrix may be obtained through subspace iteration, which is
used to compute a low-rank basis approximating the leading
eigenspace. Convergence can be tied to performing a fixed
number of iterations or to monitoring some metric of sub-
space similarity. Accordingly, the low-rank basis can be
found by iteratively multiplying the generated random
matrix by the TCC matrix (i.e., by the pupil matrix and its
conjugate transpose), rescaling the multiplication result, and
orthogonalizing the rescaled multiplication result.

In some embodiments, the reduced feature matrix may be
obtained through a block Krylov method, in which interme-
diate results are better used to construct a possibly larger
basis than the subspace iteration. Accordingly, the low-rank
basis can be found by initiating an empty basis, accumulat-
ing an intermediate result of each iteration to the empty
basis, and orthogonalizing the accumulated basis.

15

25

35

40

45

50

55

60

10

In the fast low-rank SVD algorithm for pupil matrix P of
the present embodiment, since the spectral decay for the
pupil matrix P is only half that for TCC matrix T, the error,
which depends on spectral decay, may be larger.

In the embodiments described above, a fast EVD-based
algorithm and a fast SVD-based algorithm are respectively
introduced to extract the TCC kernels, but in some embodi-
ments, the same ideas may also be used to generate various
fast low-rank factorizations beyond the classical decompo-
sitions, resulting in “non-canonical” TCC kernels with, e.g.,
reduced memory complexity.

In some embodiments, a non-transitory computer-read-
able recording medium comprising processor executable
instructions that when executed perform a method for com-
puting feature kernels for optical model simulation as illus-
trated in the embodiments above is provided. In some
embodiments, the non-transitory computer-readable record-
ing medium is a CD-R, a DVD-R, a flash drive, or a platter
of a hard disk drive, etc., on which is encoded computer-
readable data. The computer-readable data, such as binary
data comprising a plurality of zeros and ones, in turn
comprises a set of computer instructions configured to
operate according to one or more of the principles set forth
herein. In some embodiments, the processor-executable
computer instructions are configured to perform a method
for computing feature kernels for optical model simulation,
such as at least some of the exemplary method illustrated in
FIG. 4, for example. Many such computer-readable record-
ing media are devised by those of ordinary skill in the art that
are configured to operate in accordance with the techniques
presented herein.

According to some embodiments, a method for comput-
ing feature kernels for optical model simulation, adapted to
an electronic apparatus having a storage medium and a
processor, is provided. In the method, a feature matrix
mathematically describing a plurality of properties of an
optical imaging system retrieved from the optical imaging
system and stored in the storage medium is identified by the
processor. A sampling matrix comprising at least one vector
serving as input to form a low-rank basis for the feature
matrix is generated by the processor. The sampling matrix is
iteratively multiplied by the feature matrix and a multipli-
cation result is adaptively rescaled according to numerical
stability by the processor until a convergence condition is
met. The iteration results are used by the processor to form
a reduced feature matrix. Decomposition values of the
reduced feature matrix are computed and a plurality of
feature kernels are extracted from the computed decompo-
sition values by the processor.

According to some embodiments, an apparatus for com-
puting feature kernels for optical model simulation includes
a data retrieving device, a storage medium and a processor.
The data retrieving device is configured to retrieve a plu-
rality of properties of an optical imaging system. The storage
medium is configured to store the properties retrieved by the
data retrieving device. The processor is coupled to the data
retrieving device and the storage medium, and configured to
execute instructions to identify a feature matrix mathemati-
cally describing the plurality of properties of the optical
imaging system, generate a sampling matrix comprising at
least one vector serving as input to form a low-rank basis for
the feature matrix, iteratively multiply the sampling matrix
by the feature matrix and adaptively rescale a multiplication
result according to numerical stability until a convergence
condition is met, use iteration results to form a reduced
feature matrix, and compute decomposition values of the
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reduced feature matrix and extract a plurality of feature
kernels from the computed decomposition values.

According to some embodiments, a non-transitory com-
puter-readable recording medium includes processor execut-
able instructions that when executed perform a method for
computing feature kernels for optical model simulation. In
the method, a feature matrix mathematically describing a
plurality of properties of an optical imaging system is
identified. A sampling matrix comprising at least one vector
serving as input to form a low-rank basis for the feature
matrix is generated. The sampling matrix is iteratively
multiplied by the feature matrix and a multiplication result
is adaptively rescaled according to numerical stability until
a convergence condition is met. The iteration results are used
to form a reduced feature matrix. Decomposition values of
the reduced feature matrix are computed and a plurality of
feature kernels are extracted from the computed decompo-
sition values.

The foregoing outlines features of several embodiments
so that those skilled in the art may better understand the
aspects of the present disclosure. Those skilled in the art
should appreciate that they may readily use the present
disclosure as a basis for designing or modifying other
processes and structures for carrying out the same purposes
and/or achieving the same advantages of the embodiments
introduced herein. Those skilled in the art should also realize
that such equivalent constructions do not depart from the
spirit and scope of the present disclosure, and that they may
make various changes, substitutions, and alterations herein
without departing from the spirit and scope of the present
disclosure.

What is claimed is:

1. A method for computing feature kernels for optical
model simulation, adapted to an electronic apparatus having
a storage medium and a processor, the method comprising:

identifying a feature matrix mathematically describing a

plurality of properties of an optical imaging system
retrieved from the optical imaging system and stored in
the storage medium by the processor;

generating a sampling matrix comprising at least one

vector serving as input to form a low-rank basis for the
feature matrix by the processor;
multiplying the sampling matrix by the feature matrix to
obtain a multiplication result and adaptively rescaling
the multiplication result according to numerical stabil-
ity of the multiplication result by the processor, and
iteratively multiplying the rescaled multiplication
result by the feature matrix to obtain a multiplication
result of a current iteration and rescaling the multipli-
cation result until a convergence condition is met;

orthogonalizing the rescaled multiplication result to
obtain an orthogonalized result as the low-rank basis by
the processor;

multiplying a conjugate transpose matrix of the low-rank

basis by the feature matrix and the low-rank basis to
form a reduced feature matrix by the processor; and
computing decomposition values of the reduced feature
matrix and extracting a plurality of feature kernels from
the computed decomposition values by the processor.

2. The method according to claim 1, wherein the reduced
feature matrix is formed by a final result of the iterations.

3. The method according to claim 1, wherein the reduced
feature matrix is formed by initiating an empty basis and
accumulating an intermediate result of each iteration to the
empty basis.

4. The method according to claim 1, wherein the sampling
matrix comprises a random matrix, a pseudorandom matrix,

40

45

65

12

or a structured matrix, and the step of generating the
sampling matrix further comprises:

performing oversampling to improve random sampling
error.

5. The method according to claim 1, wherein the conver-
gence condition is met when a number of iterations reaches
a predetermined number or an adaptive error metric is
monitored.

6. The method according to claim 1, wherein the multi-
plication by the feature matrix is performed by exploiting a
subset of the properties without directly computing the full
feature matrix.

7. The method according to claim 1, wherein the multi-
plication by the feature matrix is performed by computing a
convolution of a pupil matrix depending on the properties
and a conjugate transpose of the pupil matrix using fast
Fourier transform (FFT) when a plurality of source points
are laid on a conformal uniform grid.

8. The method according to claim 1, wherein the multi-
plication by the feature matrix is performed by computing a
convolution of a pupil matrix depending on the properties
and a conjugate transpose of the pupil matrix using FFT
when a plurality of source points in an arbitrary distribution
are resampled onto a uniform grid.

9. The method according to claim 1, wherein the multi-
plication by the feature matrix is performed by computing a
convolution of a pupil matrix depending on the properties
and a conjugate transpose of the pupil matrix using the
non-uniform FFT when a plurality of source points in an
arbitrary distribution are not on a uniform grid.

10. The method according to claim 1, wherein the step of
computing decomposition values of the reduced feature
matrix comprises:

computing the decomposition values of the reduced fea-
ture matrix by using a block algorithm comprising an
eigenvalue decomposition (EVD) algorithm or a sin-
gular value decomposition (SVD) algorithm.

11. An apparatus for computing feature kernels for optical

model simulation, comprising:

a data retrieving device, configured to retrieve a plurality
of properties of an optical imaging system;

a storage medium, configured to store the properties
retrieved by the data retrieving device;

a processor, coupled to the data retrieving device and the
storage medium, and configured to execute instructions
to perform steps of:

identifying a feature matrix mathematically describing the
plurality of properties of the optical imaging system;

generating a sampling matrix comprising at least one
vector serving as input to form a low-rank basis for the
feature matrix;

multiplying the sampling matrix by the feature matrix to
obtain a multiplication result and adaptively rescaling
the multiplication result according to numerical stabil-
ity of the multiplication result, and iteratively multi-
plying the rescaled multiplication result by the feature
matrix to obtain a multiplication result of a current
iteration and rescaling the multiplication result until a
convergence condition is met;

orthogonalizing the rescaled multiplication result to
obtain an orthogonalized result as the low-rank basis;

multiplying a conjugate transpose matrix of the low-rank
basis by the feature matrix and the low-rank basis to
form a reduced feature matrix; and

computing decomposition values of the reduced feature
matrix and extracting a plurality of feature kernels from
the computed decomposition values.
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12. The apparatus for computing feature kernels for
optical model simulation according to claim 11, wherein the
reduced feature matrix is formed by a final result of the
iterations.

13. The apparatus for computing feature kernels for
optical model simulation according to claim 11, wherein the
reduced feature matrix is formed by initiating an empty basis
and accumulating an intermediate result of each iteration to
the empty basis.

14. The apparatus for computing feature kernels for
optical model simulation according to claim 11, wherein the
sampling matrix comprises a random matrix, a pseudoran-
dom matrix, or a structured matrix, and the processor further
performs oversampling to improve random sampling error.

15. The apparatus for computing feature kernels for
optical model simulation according to claim 11, wherein the
convergence condition is met when a number of iterations
reaches a predetermined number or an adaptive error metric
is monitored.

16. The apparatus for computing feature kernels for
optical model simulation according to claim 11, wherein the
multiplication by the feature matrix is performed by the
processor exploiting a subset of the properties without
directly computing the full feature matrix.

17. The apparatus for computing feature kernels for
optical model simulation according to claim 11, wherein the
multiplication by the feature matrix is performed by the
processor computing a convolution of a pupil matrix
depending on the properties and a conjugate transpose of the
pupil matrix using FFT when a plurality of source points are
laid on a conformal uniform grid.

18. The apparatus for computing feature kernels for
optical model simulation according to claim 11, wherein the
multiplication by the feature matrix is performed by the
processor computing a convolution of a pupil matrix
depending on the properties and a conjugate transpose of the
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pupil matrix using FFT when a plurality of source points in
an arbitrary distribution are resampled onto a conformal
uniform grid.
19. The apparatus for computing feature kernels for
optical model simulation according to claim 11, wherein the
multiplication by the feature matrix is performed by the
processor computing a convolution of a pupil matrix
depending on the properties and a conjugate transpose of the
pupil matrix using non-uniform FFT when a plurality of
source points in an arbitrary distribution are not on a uniform
grid.
20. A non-transitory computer-readable recording
medium comprising processor executable instructions that
when executed perform a method for computing feature
kernels for optical model simulation, the method compris-
ing:
identifying a feature matrix mathematically describing a
plurality of properties of an optical imaging system;

generating a sampling matrix comprising at least one
vector serving as input to form a low-rank basis for the
feature matrix;
multiplying the sampling matrix by the feature matrix to
obtain a multiplication result and adaptively rescaling
the multiplication result according to numerical stabil-
ity of the multiplication result, and iteratively multi-
plying the rescaled multiplication result by the feature
matrix to obtain a multiplication result of a current
iteration and rescaling the multiplication result until a
convergence condition is met;
orthogonalizing the rescaled multiplication result to
obtain an orthogonalized result as the low-rank basis;

multiplying a conjugate transpose matrix of the low-rank
basis by the feature matrix and the low-rank basis to
form a reduced feature matrix; and

computing decomposition values of the reduced feature

matrix and extracting a plurality of feature kernels from
the computed decomposition values.
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