# Fast multipole matrix factorization 

Kenneth L. Ho (TSMC)

SIAM AN 2018

# Fast multipole matrix factorization 

Kenneth L. Ho (TSMC)

SIAM AN 2018


Structured matrix problems

$$
A x=b
$$



Structured matrix problems


- Data: $O\left(N^{2}\right)$
- Matvec: $O\left(N^{2}\right)$
- Factor: $O\left(N^{3}\right)$


- Integral equations:

$$
\begin{gathered}
a(x) u(x)+\int K(x, y) u(y) d y=f(x) \\
-\nabla \cdot(a(x) \nabla u(x))+b(x) u(x)=f(x) \\
f(\hat{x})=K(\hat{x}, x) K^{-1}(x, x) f(x)
\end{gathered}
$$



- Integral equations:
- PDEs:
- Stats/ML:

$$
\begin{gathered}
a(x) u(x)+\int K(x, y) u(y) d y=f(x) \\
-\nabla \cdot(a(x) \nabla u(x))+b(x) u(x)=f(x) \\
f(\hat{x})=K(\hat{x}, x) K^{-1}(x, x) f(x)
\end{gathered}
$$

## Brief history



- Core idea: geometry $\Longrightarrow$ low-rank, exploit hierarchically


## Brief history



- Core idea: geometry $\Longrightarrow$ low-rank, exploit hierarchically
- 80s/90s: fast matvec/iterative solvers with treecodes, FMM, $\mathcal{H}$-matrices


## Brief history



$$
\begin{gathered}
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \\
\Longrightarrow M^{-1}=\left[\begin{array}{cc}
A^{-1}+A^{-1} B S^{-1} C A^{-1} & -A^{-1} B S^{-1} \\
-S^{-1} C A^{-1} & S^{-1}
\end{array}\right], \quad S=D-C A^{-1} B
\end{gathered}
$$

- Core idea: geometry $\Longrightarrow$ low-rank, exploit hierarchically
- 80s/90s: fast matvec/iterative solvers with treecodes, FMM, $\mathcal{H}$-matrices
- 90s/00s: $\mathcal{H}$-matrix-based direct solvers


## Brief history



- Core idea: geometry $\Longrightarrow$ low-rank, exploit hierarchically
- 80s/90s: fast matvec/iterative solvers with treecodes, FMM, $\mathcal{H}$-matrices
- 90s/00s: $\mathcal{H}$-matrix-based direct solvers
- 00s/10s: more efficient "1D" solvers; Martinsson/Rokhlin, HSS, HODLR, etc.


## Brief history



- Core idea: geometry $\Longrightarrow$ low-rank, exploit hierarchically
- 80s/90s: fast matvec/iterative solvers with treecodes, FMM, $\mathcal{H}$-matrices
- 90s/00s: $\mathcal{H}$-matrix-based direct solvers
- 00s/10s: more efficient "1D" solvers; Martinsson/Rokhlin, HSS, HODLR, etc.

- Core idea: geometry $\Longrightarrow$ low-rank, exploit hierarchically
- 80s/90s: fast matvec/iterative solvers with treecodes, FMM, $\mathcal{H}$-matrices
- 90s/00s: $\mathcal{H}$-matrix-based direct solvers
- 00s/10s: more efficient "1D" solvers; Martinsson/Rokhlin, HSS, HODLR, etc.
- 10s: HSS-C, HIF, MHS, IFMM, ...


## Brief history



- Core idea: geometry $\Longrightarrow$ low-rank, exploit hierarchically
- 80s/90s: fast matvec/iterative solvers with treecodes, FMM, $\mathcal{H}$-matrices
- 90s/00s: $\mathcal{H}$-matrix-based direct solvers
- 00s/10s: more efficient "1D" solvers; Martinsson/Rokhlin, HSS, HODLR, etc.
- 10s: HSS-C, HIF, MHS, IFMM, ...


## Brief history

$$
\begin{gathered}
A=B+U S V^{*} \\
A x=b \Longrightarrow \underbrace{\left[\begin{array}{ccc}
B & U & \\
V^{*} & & -I \\
& -I & S
\end{array}\right]}_{\text {eliminate and compress }}\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
b \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

- Core idea: geometry $\Longrightarrow$ low-rank, exploit hierarchically
- 80s/90s: fast matvec/iterative solvers with treecodes, FMM, $\mathcal{H}$-matrices
- 90s/00s: $\mathcal{H}$-matrix-based direct solvers
- 00s/10s: more efficient "1D" solvers; Martinsson/Rokhlin, HSS, HODLR, etc.
- 10s: HSS-C, HIF, MHS, IFMM, ...

FMM factorization: direct sparsification/elimination via "far-field skeletons"

- Much simpler $O(N)$ with no tree breaking, nested hierarchy, auxiliary matrices, etc.
- Based on multiplicative recursive skeletonization factorization framework (RS-S)
- Generalized LU decomposition: matvec, solve, determinant, Cholesky, etc.
- Opinion: proper translation of FMM ideas to direct solver context
- Similar method for $\mathcal{H}^{2}$-matrices in [Sushnikova/Oseledets '17]


## This talk

FMM factorization: direct sparsification/elimination via "far-field skeletons"

- Much simpler $O(N)$ with no tree breaking, nested hierarchy, auxiliary matrices, etc.
- Based on multiplicative recursive skeletonization factorization framework (RS-S)
- Generalized LU decomposition: matvec, solve, determinant, Cholesky, etc.
- Opinion: proper translation of FMM ideas to direct solver context
- Similar method for $\mathcal{H}^{2}$-matrices in [Sushnikova/Oseledets '17]

Extensions/directions/perspectives:

- What else can we do?
- Where do we go from here?

- Brown: current box
- Blue: near field (neighbors)
- Red: far field (everybody else)

$$
A=\left[\begin{array}{c|c|c}
A_{b b} & A_{b n} & A_{b f} \\
\hline A_{n b} & A_{n n} & A_{n f} \\
\hline A_{f b} & A_{f b} & A_{f f}
\end{array}\right]
$$



- Find partitioning $b=r \cup s$ and interpolation matrix $T$ such that $\left[\begin{array}{c}A_{f r} \\ A_{r f}^{*}\end{array}\right] \approx\left[\begin{array}{l}A_{f s} \\ A_{s f}^{*}\end{array}\right] T$
- Interpolate redundant indices $r$ from skeleton indices $s$
- Structure-preserving compression; basically an RRQR

$$
\left[\begin{array}{c|c|c}
A_{b b} & A_{b n} & A_{b f} \\
\hline A_{n b} & A_{n n} & A_{n f} \\
\hline A_{f b} & A_{f b} & A_{f f}
\end{array}\right]=\left[\begin{array}{ll|l|l}
A_{r r} & A_{r s} & A_{r n} & A_{r f} \\
A_{s r} & A_{s s} & A_{s n} & A_{s f} \\
\hline A_{n r} & A_{n s} & A_{n n} & A_{n f} \\
\hline A_{f r} & A_{f s} & A_{f n} & A_{f f}
\end{array}\right] \approx\left[\begin{array}{cc|c|r}
A_{r r} & A_{r s} & A_{r n} & T^{*} A_{s f} \\
A_{s r} & A_{s s} & A_{s n} & A_{s f} \\
\hline A_{n r} & A_{n s} & A_{n n} & A_{n f} \\
\hline A_{f s} T & A_{f s} & A_{f n} & A_{f f}
\end{array}\right]
$$

## Far-field (strong) skeletonization



$$
\begin{aligned}
{\left[\begin{array}{cc|c|c}
A_{r r} & A_{r s} & A_{r n} & T^{*} A_{s f} \\
A_{s r} & A_{s s} & A_{s n} & A_{s f} \\
\hline A_{n r} & A_{n s} & A_{n n} & A_{n f} \\
\hline A_{f s} T & A_{f s} & A_{f n} & A_{f f}
\end{array}\right] } & \xrightarrow{\text { sparsify }}
\end{aligned} \begin{aligned}
& {\left[\begin{array}{cc|c|c}
X_{r r} & X_{r s} & X_{r n} & \\
X_{s r} & A_{s s} & A_{s n} & A_{s f} \\
\hline X_{n r} & A_{n s} & A_{n n} & A_{n f} \\
\hline & A_{f s} & A_{f n} & A_{f f}
\end{array}\right] } \\
& \xrightarrow{\text { elim }}\left[\begin{array}{ll|l|l}
X_{r r} & & \\
& X_{s s} & X_{s n} & A_{s f} \\
\hline & X_{n s} & X_{n n} & A_{n f} \\
\hline & A_{f s} & A_{f f} & A_{f f}
\end{array}\right]
\end{aligned}
$$

- Redundant DOFs eliminated, neighbor interactions updated, far field unchanged
- Sequence of block triangular transformations


## Algorithm

Build (adaptive) quadtree/octree.
for each level $\ell=1,2, \ldots, L$ from finest to coarsest do for each box on level $\ell$ do

Far-field skeletonize remaining DOFs in box. end for
end for
$\left[\begin{array}{cc|c|c}* & * & * & * \\ * & * & * & * \\ \hline * & * & * & * \\ \hline * & * & * & *\end{array}\right] \longrightarrow\left[\begin{array}{cc|c|c}* & & & \\ & * & * & * \\ \hline & * & * & * \\ \hline & * & * & *\end{array}\right]$

## Algorithm

Build (adaptive) quadtree/octree.
for each level $\ell=1,2, \ldots, L$ from finest to coarsest do
for each box on level $\ell$ do
Far-field skeletonize remaining DOFs in box. end for
end for

- Block diagonalization:

$$
D \approx U_{L}^{*} \cdots U_{1}^{*} A V_{1} \cdots V_{L}
$$

- Generalized LU decomposition:

$$
\begin{aligned}
& A \approx U_{1}^{-*} \cdots U_{L}^{-*} D \quad V_{L}^{-1} \cdots V_{1}^{-1} \\
& A^{-1} \approx V_{1} \cdots V_{L} \\
& D^{-1} U_{L}^{*}
\end{aligned} \cdots U_{1}^{*}-1 .
$$

Level 1

Domain:

(but, of course, should just use RS)

## 1D cartoon

Level 1: box 1 (before)

Domain:


Matrix:

(but, of course, should just use RS)

## 1D cartoon

Level 1: box 1 (after)

Domain:


Matrix:

(but, of course, should just use RS)

## 1D cartoon

Level 1: box 2 (before)

Domain:


Matrix:

(but, of course, should just use RS)

## 1D cartoon

Level 1: box 2 (after)

Domain:


Matrix:

(but, of course, should just use RS)

## 1D cartoon

Level 1: box 3 (before)

Domain:


Matrix:

(but, of course, should just use RS)

## 1D cartoon

Level 1: box 3 (after)

Domain:


(but, of course, should just use RS)

## 1D cartoon

Level 1: ... box 8 (after)

Domain:

(but, of course, should just use RS)

## 1D cartoon

Level 2: permute and combine boxes

Domain:

(but, of course, should just use RS)

## 1D cartoon

Level 2: ... and so on

Domain:


Matrix:

(but, of course, should just use RS)

Level 1: box 1 (before)

## Domain:



Level 1: box 1 (before), use proxy trick


Level 1: box 1 (after)

Domain:

| $\square$ |  |  |  |  |  |  | (19+5: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | ** |
|  |  | \% | +18 | \% | \% | \% | 80808 |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | +\%:\% |
|  |  |  |  |  |  |  | +20\%\% |
|  |  |  | + |  |  |  | +ixizet |
|  |  |  |  |  |  |  | +808\% |
|  |  |  |  | + |  |  | +7\% |
|  |  |  | + |  |  |  |  |
|  |  |  |  |  |  |  | $\ldots$ |
| + |  |  | + | + |  |  |  |
| \% |  |  | + | \% |  |  | +2+\%t |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  | tott |  | +0tote |
| \% |  |  | + | + | + |  | +68t+ |
| Hie |  |  |  |  |  |  | +0707 |
| \% |  |  | + |  |  |  | + |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | +07+2\% |
|  |  |  |  |  |  |  | + +2+\% |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  | +0+6+ |  |  |  |  | +2707t | + +ix+et |

Level 1: box 2 (before)

## Domain:



Level 1: box 2 (after)

## Domain:



Level 1: box 3 (before)

## Domain:

| - ${ }^{\circ}$ |  |  |  |  |  | 5107tit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  | + | \%8892 | 38 |  | +207t | + |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  | +8\%8\% |
|  |  |  |  |  |  | +19+\% |
|  |  |  |  |  |  | +0tett |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  | + |  |  |  |  |
|  |  |  |  |  |  |  |
| + |  |  |  | fotut |  | + |
|  |  |  |  |  |  | ${ }^{\circ}$ |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  | \%tit |
|  |  |  |  |  |  | (titat |
|  |  |  |  |  |  | + |
|  |  |  |  |  |  | + |
|  |  |  |  |  |  | \% |
|  |  |  |  |  |  | + + + |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  | \% |
|  |  | +8\%18\| |  | Textete | +2:808 | + |

Level 1: box 3 (after)

## Domain:



Level 1: ... box 64 (after)

Domain:


Level 2: box 1 (before)

Domain:


Level 2: box 1 (after)

Domain:


Level 2: ... and so on

Domain:


## Remarks

$\left[\begin{array}{cc|c|c}* & * & * & * \\ * & * & * & * \\ \hline * & * & * & * \\ \hline * & * & * & *\end{array}\right] \longrightarrow\left[\begin{array}{cc|c|c}* & & & \\ & * & * & * \\ \hline & * & * & * \\ \hline & * & * & *\end{array}\right]$

Complexity sketch:

- Only local operations for each box using proxy trick
- Well-separated rank $|s| \simeq O(1) \Longrightarrow O(N)$ total cost

Uses: generalized FMM, fast direct solver, preconditioner, etc.

## Comparison with other methods:

- RS: superlinear cost, e.g., $O\left(N^{3 / 2}\right)$ in 2D, $O\left(N^{2}\right)$ in 3D
- HIF: $O(N)$ but slightly awkward "tree breaking"
- IFMM: $O(N)$ but works on extended sparse matrix


## 2D example

Laplace kernel in 2D with $N=2048^{2}$ at $\epsilon=10^{-6}$ :

$$
-\frac{1}{2 \pi} \int_{[0,1]^{2}} \log \|x-y\| u(y) d y=f(x)
$$

| level | \#boxes | $\sum\|b\| \rightarrow$ |  | $\sum\|s\|$ | avg. $\|b\| \rightarrow$ avg. $\|s\|$ |
| :---: | ---: | ---: | ---: | :---: | ---: |
| 1 | 65536 | 4194304 | 1378912 | 64.00 | 21.04 |
| 2 | 16384 | 1378912 | 423076 | 84.16 | 25.82 |
| 3 | 4096 | 423076 | 120792 | 103.29 | 29.49 |
| 4 | 1024 | 120792 | 32509 | 117.96 | 31.75 |
| 5 | 256 | 32509 | 8413 | 126.99 | 32.86 |
| 6 | 64 | 8413 | 2046 | 131.45 | 31.97 |
| 7 | 16 | 2046 | 446 | 127.88 | 27.88 |
| 8 | 4 | 446 | 232 | 111.50 | 58.00 |
| 9 | 1 | 232 | 0 | 232.00 | 0.00 |

## 2D example

Laplace kernel in 2D with $N=2048^{2}$ at $\epsilon=10^{-6}$ :

$$
-\frac{1}{2 \pi} \int_{[0,1]^{2}} \log \|x-y\| u(y) d y=f(x)
$$

| level | \#boxes | $\sum\|b\| \rightarrow \sum\|s\|$ |  | avg. $\|b\| \rightarrow$ avg. $\|s\|$ |  |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 65536 | 4194304 | 1378912 | 64.00 | 21.04 |
| 2 | 16384 | 1378912 | 423076 | 84.16 | 25.82 |
| 3 | 4096 | 423076 | 120792 | 103.29 | 29.49 |
| 4 | 1024 | 120792 | 32509 | 117.96 | 31.75 |
| 5 | 256 | 32509 | 8413 | 126.99 | 32.86 |
| 6 | 64 | 8413 | 2046 | 131.45 | 31.97 |
| 7 | 16 | 2046 | 446 | 127.88 | 27.88 |
| 8 | 4 | 446 | 232 | 111.50 | 58.00 |
| 9 | 1 | 232 | 0 | 232.00 | 0.00 |

## 2D example

Laplace kernel in 2D with $N=2048^{2}$ at $\epsilon=10^{-6}$ :

$$
-\frac{1}{2 \pi} \int_{[0,1]^{2}} \log \|x-y\| u(y) d y=f(x)
$$

|  | level | RSF | HIF | FMF |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 47.92 | 47.92 | 21.04 |
|  | 2 | 99.51 | 41.27 | 25.82 |
|  | 3 | 187.87 | 62.70 | 29.49 |
|  | 4 | 345.63 | 85.81 | 31.75 |
|  | 5 | 663.88 | 108.35 | 32.86 |
|  | 6 | 1235.80 | 129.21 | 31.97 |
|  | 7 | 2118.81 | 139.79 | 27.88 |
|  | 8 | 2829.25 | 113.75 | 58.00 |
| top level $\|b\| \longrightarrow$ | final | 11317 | 455 | 232 |

## 2D example

Laplace kernel in 2D with $N=2048^{2}$ at $\epsilon=10^{-6}$ :

$$
-\frac{1}{2 \pi} \int_{[0,1]^{2}} \log \|x-y\| u(y) d y=f(x)
$$

|  | level | RSF | HIF | FMF |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 47.92 | 47.92 | 21.04 |
|  | 2 | 99.51 | 41.27 | 25.82 |
|  | 3 | 187.87 | 62.70 | 29.49 |
|  | 4 | 345.63 | 85.81 | 31.75 |
|  | 5 | 663.88 | 108.35 | 32.86 |
|  | 6 | 1235.80 | 129.21 | 31.97 |
|  | 7 | 2118.81 | 139.79 | 27.88 |
|  | 8 | 2829.25 | 113.75 | 58.00 |
| top level $\|b\| \longrightarrow$ | final | 11317 | 455 | 232 |
|  | $O\left(2^{\ell}\right) \rightarrow O\left(N^{3 / 2}\right)$ |  |  |  |

## 2D example

Laplace kernel in 2D with $N=2048^{2}$ at $\epsilon=10^{-6}$ :

$$
-\frac{1}{2 \pi} \int_{[0,1]^{2}} \log \|x-y\| u(y) d y=f(x)
$$

|  | level | RSF | HIF | FMF |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 47.92 | 47.92 | 21.04 |
|  | 2 | 99.51 | 41.27 | 25.82 |
|  | 3 | 187.87 | 62.70 | 29.49 |
|  | 4 | 345.63 | 85.81 | 31.75 |
|  | 5 | 663.88 | 108.35 | 32.86 |
|  | 6 | 1235.80 | 129.21 | 31.97 |
|  | 7 | 2118.81 | 139.79 | 27.88 |
|  | 8 | 2829.25 | 113.75 | 58.00 |
| top level $\|b\| \longrightarrow$ | final | 11317 | 455 | 232 |
|  |  |  | $O(\ell)$ | $O(N)$ |

## 3D example

Laplace kernel in 3D with $N=128^{3}$ at $\epsilon=10^{-3}$ :

$$
\frac{1}{4 \pi} \int_{[0,1]^{3}} \frac{1}{\|x-y\|} u(y) d y=f(x)
$$

| level | \#boxes | $\sum\|b\| \rightarrow$ | $\sum\|s\|$ | avg. $\|b\| \rightarrow$ avg. $\|s\|$ |  |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 32768 | 2097152 | 902380 | 64.00 | 27.54 |
| 2 | 4096 | 902380 | 175249 | 220.31 | 42.79 |
| 3 | 512 | 175249 | 29513 | 342.28 | 57.64 |
| 4 | 64 | 29513 | 3642 | 461.14 | 56.91 |
| 5 | 8 | 3642 | 2133 | 455.25 | 266.62 |
| 6 | 1 | 2133 | 0 | 2133.00 | 0.00 |

## 3D example

Laplace kernel in 3D with $N=64^{3}$ at $\epsilon=10^{-3}$ :

$$
\frac{1}{4 \pi} \int_{[0,1]^{3}} \frac{1}{\|x-y\|} u(y) d y=f(x)
$$

| level | RSF | HIF | FMF |
| :---: | ---: | ---: | ---: |
| 1 | 64.00 | 64.00 | 27.24 |
| 2 | 273.26 | 75.05 | 40.31 |
| 3 | 1061.45 | 157.31 | 47.05 |
| 4 | 3000.62 | 328.33 | 228.25 |
| final | 24005 | 1970 | 1826 |
|  | $O\left(N^{2}\right)$ | $O(N \log N)$ | $O(N)$ |

## Extensions

$$
\left[\begin{array}{cc|c|c}
* & * & * & * \\
* & * & * & * \\
\hline * & * & * & * \\
\hline * & * & * & *
\end{array}\right] \longrightarrow\left[\begin{array}{cc|c|c}
* & & & \\
& * & * & * \\
\hline & * & * & * \\
\hline & * & * & *
\end{array}\right]
$$

Generalized LU decomposition $A \approx U_{1}^{-*} \cdots U_{L}^{-*} D V_{L}^{-1} \cdots V_{1}^{-1}$ like all RSF-type methods

- Fast matvec, solve, preconditioner
- Cholesky square root, determinant
- Local updating, sparse multiply/solve, trace, selected inversion
- Parallelization

[Ho/Ying '16; Minden/Damle/Ho/Ying '16, '17; Minden '17; Xia/Xi/Cauley/Balakrishnan '15; Li/Ying '17]


## Conclusion

## FMM factorization/RS-S:

- $O(N)$ factorization of structured matrices following FMM
- Simple multiplicative formulation, extremely flexible

Opinion: general framework done, now engineering/problem-specific optimizations

- Sparse matrices (PDEs) [Sushnikova/Oseledets '16]
- Analytic/pre-select skeletons, symmetries [Corona/Martinsson/Zorin '15]
- Partial factorization with iteration [Yu/March/Biros '17]


## Future directions:

- Preconditioning: 1D [Darve/Xia/Chow, ...], HIF-DE [Feliu-Fabà/Ho/Ying]
- Least squares [Ho/Greengard '14, Liu/Barnett/Ho]
- High dimensions, no explicit geometry [March/Yu/Biros et. al. '16, '17]
- Global updating [Xi/Xia/Chan '14, Greengard/Ho/Lee '14], SVD, matrix functions
- High-frequency: multidirectional FMM, butterfly


## Some references from us

- Minden/Ho/Damle/Ying, A recursive skeletonization factorization based on strong admissibility, MMS 2017
- Ho/Greengard, A fast direct solver for structured linear systems by recursive skeletonization, SISC 2012
- Ho/Greengard, A fast semidirect least squares algorithm for hierarchically block separable matrices, SIMAX 2014
- Greengard/Ho/Lee, A fast direct solver for scattering from periodic structures with multiple material interfaces in two dimensions, JCP 2014
- Ho/Ying, Hierarchical interpolative factorization for elliptic operators: integral equations, CPAM 2016
- Ho/Ying, Hierarchical interpolative factorization for elliptic operators: differential equations, CPAM 2016
- Minden/Damle/Ho/Ying, A technique for updating hierarchical skeletonization-based factorizations of integral operators, MMS 2016
- Minden/Damle/Ho/Ying, Fast spatial Gaussian process maximum likelihood estimation via skeletonization factorizations, MMS 2017
- Li/Ying, Distributed-memory hierarchical interpolative factorization, Res. Math. Sci., 2017
- Ho, Fast direct methods for molecular electrostatics, Ph.D. thesis, NYU, 2012
- Minden, Data-sparse algorithms for structured matrices, Ph.D. thesis, Stanford, 2017s
- Li/Yang/Martin/Ho/Ying, Butterfly factorization, MMS 2015
- Ho, FLAM: fast linear algebra in MATLAB, doi:10.5281/zenodo. 1253581

