Parameter-free statistical model invalidation for biochemical reaction networks

Kenneth L. Ho (Stanford)
Joint work with Heather Harrington (Oxford)

Theranos, Apr. 2015

- Model selection: observed data, multiple models; which model is 'best' ?
- Example (sequential phosphorylation):

- Two models: distributive $\left(\kappa_{02}=0\right)$, processive $\left(\kappa_{02}>0\right)$

- Closely related to model invalidation

Problem setting

- Data x, model $f=f(\kappa)$ with parameters κ
- How to tell if model is incompatible with data?
- Known parameters: compute $\hat{x}=f(\kappa)$ and check $\|x-\hat{x}\|$
- Unknown parameters: fit parameters and check best-case error

Problem setting

- Data x, model $f=f(\kappa)$ with parameters κ
- How to tell if model is incompatible with data?
- Known parameters: compute $\hat{x}=f(\kappa)$ and check $\|x-\hat{x}\|$
- Unknown parameters: fit parameters and check best-case error

Parameter problem: in biology, parameters are hardly ever known

- Technical limitations, uncertainties, etc.
- Partial data: experimentally inaccessible species
- Nonlinear, high-dimensional optimization often required

Problem setting

- Data x, model $f=f(\kappa)$ with parameters κ
- How to tell if model is incompatible with data?
- Known parameters: compute $\hat{x}=f(\kappa)$ and check $\|x-\hat{x}\|$
- Unknown parameters: fit parameters and check best-case error

Parameter problem: in biology, parameters are hardly ever known

- Technical limitations, uncertainties, etc.
- Partial data: experimentally inaccessible species
- Nonlinear, high-dimensional optimization often required

What can be done?

- Optimization 'tricks': random seeding, simulated annealing, etc.
- Optimization 'tricks': random seeding, simulated annealing, etc.
- Convex relaxation + SDP: lower bound for best-case error
- Polynomial-time search through parameter space

Previous work

- Optimization 'tricks': random seeding, simulated annealing, etc.
- Convex relaxation + SDP: lower bound for best-case error
- Polynomial-time search through parameter space

This talk: (quantitative) parameter-free methods

- Like SDP but no dependence on parameters

- Based only on model structure/topology
- Not necessarily 'better' but new framework

Previous work

- Optimization 'tricks': random seeding, simulated annealing, etc.
- Convex relaxation + SDP: lower bound for best-case error
- Polynomial-time search through parameter space

This talk: (quantitative) parameter-free methods

- Like SDP but no dependence on parameters

- Based only on model structure/topology
- Not necessarily 'better' but new framework

Philosophically related (qualitative):

- Chemical reaction network theory
- Stoichiometric network analysis

Chemical reaction networks

- Reactions:

$$
\sum_{j=1}^{N} r_{i j} X_{j} \xrightarrow{\kappa_{i}} \sum_{j=1}^{N} p_{i j} X_{j}, \quad i=1, \ldots, R
$$

- Mass-action dynamics: $\quad \dot{x}_{j}=\sum_{i=1}^{R} \kappa_{i}\left(p_{i j}-r_{i j}\right) \prod_{k=1}^{N} x_{k}^{r_{i k}}, \quad j=1, \ldots, N$

Chemical reaction networks

- Reactions:

$$
\sum_{j=1}^{N} r_{i j} X_{j} \xrightarrow{\kappa_{i}} \sum_{j=1}^{N} p_{i j} X_{j}, \quad i=1, \ldots, R
$$

- Mass-action dynamics: $\quad \dot{x}_{j}=\sum_{i=1}^{R} \kappa_{i}\left(p_{i j}-r_{i j}\right) \prod_{k=1}^{N} x_{k}^{r_{i k}}, \quad j=1, \ldots, N$

Example: $\quad X_{1}+X_{2} \xrightarrow{\kappa_{1}} 2 X_{1}$

$$
\begin{aligned}
& \dot{x}_{1}=\kappa_{1} x_{1} x_{2}-3 \kappa_{2} x_{1}^{3}+\kappa_{3} x_{3} \\
& \dot{x}_{2}=-\kappa_{1} x_{1} x_{2}+\kappa_{2} x_{1}^{3}+\kappa_{4} x_{3} \\
& \dot{x}_{3}=2 \kappa_{2} x_{1}^{3}-\left(\kappa_{3}+\kappa_{4}\right) x_{3}
\end{aligned}
$$

Chemical reaction networks

- Reactions:

$$
\sum_{j=1}^{N} r_{i j} X_{j} \xrightarrow{\kappa_{i}} \sum_{j=1}^{N} p_{i j} X_{j}, \quad i=1, \ldots, R
$$

- Mass-action dynamics: $\quad \dot{x}_{j}=\sum_{i=1}^{R} \kappa_{i}\left(p_{i j}-r_{i j}\right) \prod_{k=1}^{N} x_{k}^{r_{i k}}, \quad j=1, \ldots, N$

Example: $\quad X_{1}+X_{2} \xrightarrow{\kappa_{1}} 2 X_{1}$

$$
\begin{aligned}
& \dot{x}_{1}=\kappa_{1} x_{1} x_{2}-3 \kappa_{2} x_{1}^{3}+\kappa_{3} x_{3} \\
& \dot{x}_{2}=-\kappa_{1} x_{1} x_{2}+\kappa_{2} x_{1}^{3}+\kappa_{4} x_{3} \\
& \dot{x}_{3}=2 \kappa_{2} x_{1}^{3}-\left(\kappa_{3}+\kappa_{4}\right) x_{3}
\end{aligned}
$$

Chemical reaction networks

- Reactions:

$$
\sum_{j=1}^{N} r_{i j} X_{j} \xrightarrow{\kappa_{i}} \sum_{j=1}^{N} p_{i j} X_{j}, \quad i=1, \ldots, R
$$

- Mass-action dynamics: $\quad \dot{x}_{j}=\sum_{i=1}^{R} \kappa_{i}\left(p_{i j}-r_{i j}\right) \prod_{k=1}^{N} x_{k}^{r_{i k}}, \quad j=1, \ldots, N$

Example: $\quad X_{1}+X_{2} \xrightarrow{\kappa_{1}} 2 X_{1}$

$$
\xrightarrow{3 X_{1} \xrightarrow{\kappa_{2}} X_{2}^{\kappa_{2}} X_{2}+2 X_{3}}
$$

$$
\begin{aligned}
& \dot{x}_{1}=\kappa_{1} x_{1} x_{2}-3 \kappa_{2} x_{1}^{3}+\kappa_{3} x_{3} \\
& \dot{x}_{2}=-\kappa_{1} x_{1} x_{2}+\kappa_{2} x_{1}^{3}+\kappa_{4} x_{3} \\
& \dot{x}_{3}=2 \kappa_{2} x_{1}^{3}-\left(\kappa_{3}+\kappa_{4}\right) x_{3}
\end{aligned}
$$

Chemical reaction networks

- Reactions:

$$
\sum_{j=1}^{N} r_{i j} X_{j} \xrightarrow{\kappa_{i}} \sum_{j=1}^{N} p_{i j} X_{j}, \quad i=1, \ldots, R
$$

- Mass-action dynamics: $\quad \dot{x}_{j}=\sum_{i=1}^{R} \kappa_{i}\left(p_{i j}-r_{i j}\right) \prod_{k=1}^{N} x_{k}^{r_{i k}}, \quad j=1, \ldots, N$

Example: $\quad X_{1}+X_{2} \xrightarrow{\kappa_{1}} 2 X_{1}$

$$
\begin{aligned}
& \dot{x}_{1}=\kappa_{1} x_{1} x_{2}-3 \kappa_{2} x_{1}^{3}+\kappa_{3} x_{3} \\
& \dot{x}_{2}=-\kappa_{1} x_{1} x_{2}+\kappa_{2} x_{1}^{3}+\kappa_{4} x_{3} \\
& \dot{x}_{3}=2 \kappa_{2} x_{1}^{3}-\left(\kappa_{3}+\kappa_{4}\right) x_{3}
\end{aligned}
$$

Chemical reaction networks

- Reactions:

$$
\sum_{j=1}^{N} r_{i j} X_{j} \xrightarrow{\kappa_{i}} \sum_{j=1}^{N} p_{i j} X_{j}, \quad i=1, \ldots, R
$$

- Mass-action dynamics: $\quad \dot{x}_{j}=\sum_{i=1}^{R} \kappa_{i}\left(p_{i j}-r_{i j}\right) \prod_{k=1}^{N} x_{k}^{r_{i k}}, \quad j=1, \ldots, N$

Example: $\quad X_{1}+X_{2} \xrightarrow{\kappa_{1}} 2 X_{1}$

$$
\begin{aligned}
& \dot{x}_{1}=\kappa_{1} x_{1} x_{2}-3 \kappa_{2} x_{1}^{3}+\kappa_{3} x_{3} \\
& \dot{x}_{2}=-\kappa_{1} x_{1} x_{2}+\kappa_{2} x_{1}^{3}+\kappa_{4} x_{3} \\
& \dot{x}_{3}=2 \kappa_{2} x_{1}^{3}-\left(\kappa_{3}+\kappa_{4}\right) x_{3}
\end{aligned}
$$

Model compatibility

- ODE: quantitative test for model compatibility

Example:

$$
\begin{aligned}
& \dot{x}_{1}=\kappa_{1} x_{1} x_{2}-3 \kappa_{2} x_{1}^{3}+\kappa_{3} x_{3} \\
& \dot{x}_{2}=-\kappa_{1} x_{1} x_{2}+\kappa_{2} x_{1}^{3}+\kappa_{4} x_{3} \\
& \dot{x}_{3}=2 \kappa_{2} x_{1}^{3}-\left(\kappa_{3}+\kappa_{4}\right) x_{3}
\end{aligned}
$$

Model compatibility

- ODE: quantitative test for model compatibility
- Problem: partial data

Example:

$$
\begin{aligned}
& \dot{x}_{1}=\kappa_{1} x_{1} x_{2}-3 \kappa_{2} x_{1}^{3}+\kappa_{3} x_{3} \\
& \dot{x}_{2}=-\kappa_{1} x_{1} x_{2}+\kappa_{2} x_{1}^{3}+\kappa_{4} x_{3} \\
& \dot{x}_{3}=2 \kappa_{2} x_{1}^{3}-\left(\kappa_{3}+\kappa_{4}\right) x_{3}
\end{aligned}
$$

Model compatibility

- ODE: quantitative test for model compatibility
- Problem: partial data
- Derivatives unreliable; assume steady state

Example:

$$
\begin{aligned}
& 0=\dot{x}_{1}=\kappa_{1} x_{1} x_{2}-3 \kappa_{2} x_{1}^{3}+\kappa_{3} x_{3} \\
& 0=\dot{x}_{2}=-\kappa_{1} x_{1} x_{2}+\kappa_{2} x_{1}^{3}+\kappa_{4} x_{3} \\
& 0=\dot{x}_{3}=2 \kappa_{2} x_{1}^{3}-\left(\kappa_{3}+\kappa_{4}\right) x_{3}
\end{aligned}
$$

Model compatibility

- ODE: quantitative test for model compatibility
- Problem: partial data
- Derivatives unreliable; assume steady state
- Eliminate experimentally inaccessible species

Example:

$$
\begin{aligned}
& 0=\dot{x}_{1}=\kappa_{1} x_{1} x_{2}-3 \kappa_{2} x_{1}^{3}+\kappa_{3} x_{3} \\
& 0=\dot{x}_{2}=-\kappa_{1} x_{1} x_{2}+\kappa_{2} x_{1}^{3}+\kappa_{4} x_{3} \\
& 0=\dot{x}_{3}=2 \kappa_{2} x_{1}^{3}-\left(\kappa_{3}+\kappa_{4}\right) x_{3}
\end{aligned}
$$

Model compatibility

- ODE: quantitative test for model compatibility
- Problem: partial data
- Derivatives unreliable; assume steady state
- Eliminate experimentally inaccessible species

Example:

$$
\begin{aligned}
& 0=\dot{x}_{1}=\kappa_{1} x_{1} x_{2}-3 \kappa_{2} x_{1}^{3}+\kappa_{3} x_{3} \\
& 0=\dot{x}_{2}=-\kappa_{1} x_{1} x_{2}+\kappa_{2} x_{1}^{3}+\kappa_{4} x_{3} \\
& 0=\dot{x}_{3}=2 \kappa_{2} x_{1}^{3}-\left(\kappa_{3}+\kappa_{4}\right) x_{3}
\end{aligned}
$$

- Observe x_{1}, x_{2}; eliminate $x_{3}=\frac{2 \kappa_{2} x_{1}^{3}}{\kappa_{3}+\kappa_{4}}$

Model compatibility

- ODE: quantitative test for model compatibility
- Problem: partial data
- Derivatives unreliable; assume steady state
- Eliminate experimentally inaccessible species

Example:

$$
\begin{aligned}
& 0=\kappa_{1} x_{1} x_{2}+\left(\frac{2 \kappa_{3}}{\kappa_{3}+\kappa_{4}}-3\right) \kappa_{2} x_{1}^{3} \\
& 0=-\kappa_{1} x_{1} x_{2}+\left(\frac{2 \kappa_{4}}{\kappa_{3}+\kappa_{4}}+1\right) \kappa_{2} x_{1}^{3}
\end{aligned}
$$

- Observe x_{1}, x_{2}; eliminate $x_{3}=\frac{2 \kappa_{2} x_{1}^{3}}{\kappa_{3}+\kappa_{4}} \Longrightarrow$ steady-state invariants

Model compatibility

- ODE: quantitative test for model compatibility
- Problem: partial data
- Derivatives unreliable; assume steady state
- Eliminate experimentally inaccessible species

Example:

$$
\begin{aligned}
& 0=\kappa_{1} x_{1} x_{2}+\left(\frac{2 \kappa_{3}}{\kappa_{3}+\kappa_{4}}-3\right) \kappa_{2} x_{1}^{3} \\
& 0=-\kappa_{1} x_{1} x_{2}+\left(\frac{2 \kappa_{4}}{\kappa_{3}+\kappa_{4}}+1\right) \kappa_{2} x_{1}^{3}
\end{aligned}
$$

- Observe x_{1}, x_{2}; eliminate $x_{3}=\frac{2 \kappa_{2} x_{1}^{3}}{\kappa_{3}+\kappa_{4}} \Longrightarrow$ steady-state invariants
- In general, use computational algebraic geometry (Gröbner bases):

$$
0=\sum_{i=1}^{n} \alpha_{i}(\kappa) \varphi_{i}(x)
$$

$$
\begin{gathered}
\sum_{i=1}^{n} \alpha_{i}(\kappa) \varphi_{i}\left(x^{(1)}\right)=0 \\
\vdots \\
\sum_{i=1}^{n} \alpha_{i}(\kappa) \varphi_{i}\left(x^{(m)}\right)=0
\end{gathered}
$$

$$
\begin{gathered}
\sum_{i=1}^{n} \alpha_{i}(\kappa) \varphi_{i}\left(x^{(1)}\right)=0 \\
\vdots \\
\sum_{i=1}^{n} \alpha_{i}(\kappa) \varphi_{i}\left(x^{(m)}\right)=0
\end{gathered}
$$

- Let $y^{(k)}=\left(\varphi_{1}\left(x^{(k)}\right), \ldots, \varphi_{n}\left(x^{(k)}\right)\right) \in \mathbb{R}^{n}$
- Geometry: $y^{(1)}, \ldots, y^{(m)}$ are coplanar
- Depends only on data, hence parameter-free

[Manrai/Gunawardena]

$$
\begin{gathered}
\sum_{i=1}^{n} \alpha_{i}(\kappa) \varphi_{i}\left(x^{(1)}\right)=0 \\
\vdots \\
\sum_{i=1}^{n} \alpha_{i}(\kappa) \varphi_{i}\left(x^{(m)}\right)=0
\end{gathered}
$$

- Let $y^{(k)}=\left(\varphi_{1}\left(x^{(k)}\right), \ldots, \varphi_{n}\left(x^{(k)}\right)\right) \in \mathbb{R}^{n}$
- Geometry: $y^{(1)}, \ldots, y^{(m)}$ are coplanar
- Depends only on data, hence parameter-free

Linear algebra: $Y \alpha=0$

- Compatible $\Longrightarrow \exists \alpha \in \operatorname{null}(Y) \Longrightarrow \operatorname{dim}(\operatorname{null}(Y))>0$

- Compute SVD, reject if $\sigma_{\min }(Y)>0$
- Null hypothesis: $\sigma_{\text {min }}(Y)=\min _{\|\alpha\|=1}\|Y \alpha\|=0 \Longrightarrow \exists \alpha$ such that $Y \alpha=0$
- Assume Gaussian noise in $x^{(k)}$, estimate noise in $y^{(k)}=\varphi\left(x^{(k)}\right)$
- To first-order, Gaussian noise in $Y \Longrightarrow z=Y \alpha$ Gaussian
- Rescale rows: $D Y \Longrightarrow(D z)_{i} \sim \mathcal{N}\left(0, \sigma_{i}^{2}\right), \sigma_{i}^{2} \leq 1$
- Tail bound: $\operatorname{Pr}\left(\sigma_{\min }(D Y)>t\right) \leq \operatorname{Pr}(\|D z\|>t) \leq \operatorname{Pr}\left(\chi_{m}>t\right)$
- Other bounds possible: Weyl, Wielandt-Hoffman, concentration of measure, etc.

Algorithm

- Test coplanarity for each invariant
- Reject model if any invariant fails
- Main costs: elimination, $\sigma_{\text {min }}\left(\mathbb{R}^{m \times n}\right)$

Example: two-site phosphorylation

- Kinase/phosphatase: distributive/processive
- Four models: PP, PD, DP, DD
- 12 species, 22 parameters
- Variable ordering: $(k s_{00}, k s_{01}, k s_{10}, f s_{01}, f s_{10}, f s_{11}, k, f, \overbrace{s_{00}, s_{01}, s_{10}, s_{11}}^{\text {obs }})$
- Kinase is discriminative, can reject DP/DD models on basis of PP data
- Can discriminate instead on phosphatase by reversing variable ordering

Example: cell death signaling

- Extrinsic pathway
- FasL/Fas interactions
- Measure activated Fas
- Crosslinking model: sequential Fas recruitment (8 species, 2 parameters)
- Cluster model: scaffold for Fas clustering, bistable (6 species, 9 parameters)
- Can reject crosslinking model from cluster data

[Harrington/Ho/Thorne/Stumpf, Ho/Harrington, Lai/Jackson]
- Parameter-free statistical model invalidation
- Detection of non-parametric linear structure
- Very efficient once invariants have been computed

Broader perspective: parameter-independent model properties

- Structure, topology, robustness, modularity
- Algebraic systems biology

Limitations: nonlinear elimination, steady-state data, necessary but not sufficient

Extension: complex-linear networks

- CRNs: nonlinear ODEs \Longrightarrow nonlinear elimination
- Fundamental insight of CRNT: hidden linearity
- Complex-balanced networks: underlying Laplacian dynamics
- Study properties of Laplacian matrices
- Steady state: kernel = zero + constant + rank-one
- No elimination: decomposition based on graph connectivity
- Test σ_{1}, σ_{2}, etc.

Extension: complex-linear networks

- CRNs: nonlinear ODEs \Longrightarrow nonlinear elimination
- Fundamental insight of CRNT: hidden linearity
- Complex-balanced networks: underlying Laplacian dynamics
- Study properties of Laplacian matrices
- Steady state: kernel = zero + constant + rank-one
- No elimination: decomposition based on graph connectivity
- Test σ_{1}, σ_{2}, etc.

Extension: complex-linear networks

- CRNs: nonlinear ODEs \Longrightarrow nonlinear elimination
- Fundamental insight of CRNT: hidden linearity
- Complex-balanced networks: underlying Laplacian dynamics
- Study properties of Laplacian matrices
- Steady state: kernel = zero + constant + rank-one
- No elimination: decomposition based on graph connectivity
- Test σ_{1}, σ_{2}, etc.

Extension: complex-linear networks

- CRNs: nonlinear ODEs \Longrightarrow nonlinear elimination
- Fundamental insight of CRNT: hidden linearity
- Complex-balanced networks: underlying Laplacian dynamics
- Study properties of Laplacian matrices
- Steady state: kernel = zero + constant + rank-one
- No elimination: decomposition based on graph connectivity
- Test σ_{1}, σ_{2}, etc.

Extension: time course data

- Differential elimination: dynamical invariants involving derivatives
- Example: Lotka-Volterra

$$
\begin{aligned}
& \dot{x}=a x-b x y \\
& \dot{y}=-c y+d x y
\end{aligned}
$$

$$
\Longrightarrow \quad a c x^{2}+a x \dot{x}-b c x^{3}-b x^{2} \dot{x}=-\dot{x}^{2}+x \ddot{x}
$$

- Estimate derivatives using Gaussian processes

Extension: numerical algebraic geometry

- Goal: solve global nonlinear optimization
- Exploit polynomial structure, numerical algebraic geometry
- Find closest intersection between model and data varieties
- Maximum-likelihood parameter estimation, model invalidation, model selection

Other work

- Mathematical modeling of cell signaling networks
- Automated all-atom protein crystal structure refinement
- Fast multipole methods, direct solvers, matrix factorizations

[Harrington/Ho/Ghosh/Tung, Ho/Harrington]

Other work

- Mathematical modeling of cell signaling networks
- Automated all-atom protein crystal structure refinement
- Fast multipole methods, direct solvers, matrix factorizations

Other work

- Mathematical modeling of cell signaling networks
- Automated all-atom protein crystal structure refinement
- Fast multipole methods, direct solvers, matrix factorizations

[Greengard/Ho/Lee, Ho/Greengard, Ho/Ying, Li/Yang/Martin/Ho/Ying, Minden/Damle/Ho/Ying]

Other work

- Mathematical modeling of cell signaling networks
- Automated all-atom protein crystal structure refinement
- Fast multipole methods, direct solvers, matrix factorizations

[Greengard/Ho/Lee, Ho/Greengard, Ho/Ying, Li/Yang/Martin/Ho/Ying, Minden/Damle/Ho/Ying]

References

Parameter-free invalidation:

- E. Gross, B. Davis, K.L. Ho, D.J. Bates, H.A. Harrington. Numerical algebraic geometry for model selection. In preparation.
- H.A. Harrington, K.L. Ho. Parameter-free statistical model invalidation for weakly complex-balanced chemical reaction networks. In preparation.
- H.A. Harrington, K.L. Ho, N. Meshkat. Model rejection using differential algebra techniques. In preparation.
- H.A. Harrington, K.L. Ho, T. Thorne, M.P.H. Stumpf. Parameter-free model discrimination criterion based on steady-state coplanarity. Proc. NatI. Acad. Sci. U.S.A. 109 (39): 15746-15751, 2012.

Other:

- J.A. Bell, K.L. Ho, R. Farid. Significant reduction in errors associated with nonbonded contacts in protein crystal structures: automated all-atom refinement with PrimeX. Acta Cryst. D68: 935-952, 2012.
- L. Greengard, K.L. Ho, J.-Y. Lee. A fast direct solver for scattering from periodic structures with multiple material interfaces in two dimensions. J. Comput. Phys. 258: 738-751, 2014.
- H.A. Harrington, K.L. Ho, S. Ghosh, KC Tung. Construction and analysis of a modular model of caspase activation in apoptosis. Theor. Biol. Med. Model. 5: 26, 2008.
- K.L. Ho. Fast direct methods for molecular electrostatics. Ph.D. thesis, New York University, 2012.
- K.L. Ho, L. Greengard. A fast direct solver for structured linear systems by recursive skeletonization. SIAM J. Sci. Comput. 34 (5): A2507-A2532, 2012.
- K.L. Ho, L. Greengard. A fast semidirect least squares algorithm for hierarchically block separable matrices. SIAM J. Matrix Anal. Appl. 35 (2): 725-748, 2014.
- K.L. Ho, H.A. Harrington. Bistability in apoptosis by receptor clustering. PLoS Comput. Biol. 6 (10): e1000956, 2010.
- K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: differential equations. Preprint, arXiv:1307.2895 [math.NA], 2013. To appear, Comm. Pure Appl. Math.
- K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: integral equations. Preprint, arXiv:1307.2666 [math.NA], 2013. To appear, Comm. Pure Appl. Math.
- Y. Li, H. Yang, E. Martin, K. Ho, L. Ying. Butterfly factorization. Preprint, arXiv:1502.01379 [math.NA], 2015.
- V. Minden, A. Damle, K.L. Ho, L. Ying. A technique for updating hierarchical factorizations of integral operators. Preprint, arXiv:1411.5706 [math.NA], 2014.

