
Parameter-free statistical model invalidation for biochemical reaction
networks

Kenneth L. Ho (Stanford)

Joint work with Heather Harrington (Oxford)

Theranos, Apr. 2015



Motivation

I Model selection: observed data, multiple models; which model is ‘best’?

I Example (sequential phosphorylation):

S0
κ01 //

κ02

77S1
κ12 // S2

I Two models: distributive (κ02 = 0), processive (κ02 > 0)

I Closely related to model invalidation

[Aoki/Yamada/Kunida/Yasuda/Matsuda]



Problem setting

I Data x , model f = f (κ) with parameters κ

I How to tell if model is incompatible with data?

I Known parameters: compute x̂ = f (κ) and check ‖x − x̂‖
I Unknown parameters: fit parameters and check best-case error

Parameter problem: in biology, parameters are hardly ever known

I Technical limitations, uncertainties, etc.

I Partial data: experimentally inaccessible species

I Nonlinear, high-dimensional optimization often required

What can be done?
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Previous work

I Optimization ‘tricks’: random seeding, simulated annealing, etc.

I Convex relaxation + SDP: lower bound for best-case error
• Polynomial-time search through parameter space

This talk: (quantitative) parameter-free methods

I Like SDP but no dependence on parameters

I Based only on model structure/topology

I Not necessarily ‘better’ but new framework
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Philosophically related (qualitative):

I Chemical reaction network theory

I Stoichiometric network analysis

[Clarke, Feinberg, Horn, Jackson, ...]
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Chemical reaction networks

I Reactions:

N∑
j=1

rijXj
κi−→

N∑
j=1

pijXj , i = 1, . . . ,R

I Mass-action dynamics: ẋj =
R∑
i=1

κi (pij − rij)
N∏

k=1

x rik
k , j = 1, . . . ,N

Example: X1 + X2
κ1 // 2X1

3X1
κ2 // X2 + 2X3

X1

X3

κ3
55

κ4

))
X2

ẋ1 = κ1x1x2 − 3κ2x
3
1 + κ3x3

ẋ2 = −κ1x1x2 + κ2x
3
1 + κ4x3

ẋ3 = 2κ2x
3
1 − (κ3 + κ4)x3
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ẋ1 = κ1x1x2 − 3κ2x
3
1 + κ3x3

ẋ2 = −κ1x1x2 + κ2x
3
1 + κ4x3
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ẋ1 = κ1x1x2 − 3κ2x
3
1 + κ3x3

ẋ2 = −κ1x1x2 + κ2x
3
1 + κ4x3
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Model compatibility

I ODE: quantitative test for model compatibility

I Problem: partial data

• Derivatives unreliable; assume steady state
• Eliminate experimentally inaccessible species

Example:

0 =

ẋ1 = κ1x1x2 − 3κ2x
3
1 + κ3x3

0 =

ẋ2 = −κ1x1x2 + κ2x
3
1 + κ4x3

0 =

ẋ3 = 2κ2x
3
1 − (κ3 + κ4)x3

I Observe x1, x2; eliminate x3 =
2κ2x

3
1

κ3+κ4

=⇒ steady-state invariants

I In general, use computational algebraic geometry (Gröbner bases):

0 =
n∑

i=1

αi (κ)ϕi (x)

[Manrai/Gunawardena]
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0 = ẋ2 = −κ1x1x2 + κ2x
3
1 + κ4x3
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Parameter-free invalidation

n∑
i=1

αi (κ)ϕi (x
(1)) = 0

...
n∑

i=1

αi (κ)ϕi (x
(m)) = 0

I Let y (k) = (ϕ1(x (k)), . . . , ϕn(x (k))) ∈ Rn

I Geometry: y (1), . . . , y (m) are coplanar

I Depends only on data, hence parameter-free

followed by cE00;11 and cF11;00 for the remaining cases. The
specific values for the example in Fig. 3 are listed in the
Mathematica notebook. Fig. 3 also shows the plane defined
by Eq. 6. As discussed above, this plane intersects the posi-
tive quadrant and does not contain the origin. The disposi-
tions of the four curves with respect to this plane follow the
limiting behavior summarized in Fig. 2. It can be seen that
processivity in either or both of the enzymes is clearly dis-
tinguished by the geometry of the corresponding curve.
The curves in Fig. 3 were generated from the rational pa-

rameterization which, as mentioned previously, makes no
distinction between stable and unstable steady states. If the
(y1, y2, y3) data were being obtained from an experiment, or if
they were being generated from a numerical simulation of the
equations, then only stable steady states would be found. We
undertook such numerical simulations using randomly se-
lected sets of parameter values, as previously, along with
randomly chosen initial conditions. We found that for each
set of parameter values, the (y1, y2, y3) values of the stable

states were distributed throughout the expected curves (data
not shown). In particular, the stable states were not confined
to any portion of the curve but were to be found everywhere
along the curve. There was no difficulty in interpolating, by
eye, the shape of the curve despite having a limited number of
points on it corresponding to only the stable steady states.

Experimental tests

The above results make clear predictions about existing
kinase-phosphatase-substrate systems. For instance, in the
Mek-MKP3-Erk system, the substrate Erk is doubly phos-
phorylated and both enzymes act distributively (10,11,13).
We therefore predict that this system satisfies the planarity
invariant (Eq. 6). This can be tested in vitro using purified
kinase, phosphatase, and substrate under conditions in which
ATP is not limiting. It is remarkable that such ‘‘systems
biochemistry’’ has rarely been attempted. Much has been
understood about individual kinases and phosphatases
through in vitro studies, but the two enzymes have rarely
been brought together to study their systems properties. Al-
though such experiments do not appear to be technically
challenging, several issues need discussion.
First, although the experimenter can control the total

amounts of substrate and enzymes and, to a lesser extent, the
initial phosphorylation state of the substrate, the amounts of
free enzymes at steady state are determined by the system’s
dynamics. The parameter t ¼ [E]/[F] is not within the ex-
perimenter’s direct control. However, it is not essential to
trace the curve generated by t in Fig. 3 in any monotonic
fashion. All that is required is to plot the (y1, y2, y3) points
defined by Eq. 7 as a set in R3. The t parameter can be ex-
ercised by varying the total amount of substrate and enzymes
over as broad a range as possible.
Second, any method for detecting the substrate phospho-

rylation state, whether antibodies or 2D gels or mass spec-
trometry, will not preserve transient enzyme-substrate
complexes. To avoid misquantifying the amounts of phos-
phoforms, it is necessary to maintain substrate in excess of
enzymes. In this regime, any error arising from breakdown of
enzyme-substrate complexes will be limited to no more than
the total amount of enzyme.
Third, it is necessary to distinguish and quantify each of

the four phosphoforms. Although antibodies and 2D gels
have often been used to detect phosphorylation state, it can be
difficult to distinguish intermediate phosphoforms (S01 and
S10) with these methods. For instance, although commercial
antibodies are available against all four phosphoforms of
Erk1/2, those against the intermediate phosphoforms show
poor specificity compared to the others (43). Mass spec-
trometry (MS) is a better option and has become the method
of choice for detecting protein posttranslational modifica-
tions (44). Mayya et al studied the cyclin-dependent kinases
CDK1/2, which are inhibited by double phosphorylation, and
usedMS to track all four phosphoforms dynamically over the

FIGURE 3 (y1, y2, y3) curves for each of the four combinations of enzyme

mechanisms, in the positive quadrant of R3. The paired labels indicate

kinase/phosphatase, where D is distributive and P is processive. blue, D/D
curve; cyan, D/P curve; red, P/D curve; purple, P/P curve. Each of the curves

is based on the same core set of parameter values as in the D/D case. These

values were drawn randomly from the uniform distribution on [0.00, 5.00]

and are listed in the Mathematica notebook. The plane defined by Eq. 6 is
shown with the D/D curve lying on it. The D/P curve has, in addition to the

already chosen parameter values, cF11;00 ¼ 2:57; whereas the P/D curve has

cE00;11 ¼ 4:83: The D/P and P/D curves look similar but have different
behaviors for small and large t, as described in Fig. 2. The P/P curve has both

cF11;00 ¼ 2:57 and cE00;11 ¼ 4:83: The value of t¼ [E]/[F] was varied in [0.01,
100]. This example was representative of 100 similarly generated ones. The

Mathematica notebook allows the vantage point of the plot to be varied,
which reveals the shape of the curves more clearly.

Geometry of Multisite Phosphorylation 5541

Biophysical Journal 95(12) 5533–5543

Linear algebra: Yα = 0

I Compatible =⇒ ∃α ∈ null(Y ) =⇒ dim(null(Y )) > 0

I Compute SVD, reject if σmin(Y ) > 0

[Manrai/Gunawardena]
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trometry, will not preserve transient enzyme-substrate
complexes. To avoid misquantifying the amounts of phos-
phoforms, it is necessary to maintain substrate in excess of
enzymes. In this regime, any error arising from breakdown of
enzyme-substrate complexes will be limited to no more than
the total amount of enzyme.
Third, it is necessary to distinguish and quantify each of

the four phosphoforms. Although antibodies and 2D gels
have often been used to detect phosphorylation state, it can be
difficult to distinguish intermediate phosphoforms (S01 and
S10) with these methods. For instance, although commercial
antibodies are available against all four phosphoforms of
Erk1/2, those against the intermediate phosphoforms show
poor specificity compared to the others (43). Mass spec-
trometry (MS) is a better option and has become the method
of choice for detecting protein posttranslational modifica-
tions (44). Mayya et al studied the cyclin-dependent kinases
CDK1/2, which are inhibited by double phosphorylation, and
usedMS to track all four phosphoforms dynamically over the

FIGURE 3 (y1, y2, y3) curves for each of the four combinations of enzyme

mechanisms, in the positive quadrant of R3. The paired labels indicate

kinase/phosphatase, where D is distributive and P is processive. blue, D/D
curve; cyan, D/P curve; red, P/D curve; purple, P/P curve. Each of the curves
is based on the same core set of parameter values as in the D/D case. These

values were drawn randomly from the uniform distribution on [0.00, 5.00]

and are listed in the Mathematica notebook. The plane defined by Eq. 6 is
shown with the D/D curve lying on it. The D/P curve has, in addition to the

already chosen parameter values, cF11;00 ¼ 2:57; whereas the P/D curve has

cE00;11 ¼ 4:83: The D/P and P/D curves look similar but have different
behaviors for small and large t, as described in Fig. 2. The P/P curve has both

cF11;00 ¼ 2:57 and cE00;11 ¼ 4:83: The value of t¼ [E]/[F] was varied in [0.01,
100]. This example was representative of 100 similarly generated ones. The

Mathematica notebook allows the vantage point of the plot to be varied,
which reveals the shape of the curves more clearly.
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Linear algebra: Yα = 0

I Compatible =⇒ ∃α ∈ null(Y ) =⇒ dim(null(Y )) > 0

I Compute SVD, reject if σmin(Y ) > 0

[Harrington/Ho/Thorne/Stumpf, Manrai/Gunawardena]



Statistical rejection

I Null hypothesis: σmin(Y ) = min‖α‖=1 ‖Yα‖ = 0 =⇒ ∃α such that Yα = 0

I Assume Gaussian noise in x (k), estimate noise in y (k) = ϕ(x (k))

I To first-order, Gaussian noise in Y =⇒ z = Yα Gaussian

I Rescale rows: DY =⇒ (Dz)i ∼ N (0, σ2
i ), σ2

i ≤ 1

I Tail bound: Pr(σmin(DY ) > t) ≤ Pr(‖Dz‖ > t) ≤ Pr(χm > t)

I Other bounds possible: Weyl, Wielandt-Hoffman, concentration of measure, etc.

[Harrington/Ho/Thorne/Stumpf]
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I Test coplanarity for each invariant

I Reject model if any invariant fails

I Main costs: elimination, σmin(Rm×n)

[Harrington/Ho/Thorne/Stumpf]



Example: two-site phosphorylation

S01 dd
$$

S00

zz
::

dd
$$

oo // S11

S10

zz
::

I Kinase/phosphatase: distributive/processive

I Four models: PP, PD, DP, DD

I 12 species, 22 parameters

I Variable ordering: (ks00, ks01, ks10, fs01, fs10, fs11, k, f ,

obs︷ ︸︸ ︷
s00, s01, s10, s11)

I Kinase is discriminative, can reject DP/DD models on basis of PP data

I Can discriminate instead on phosphatase by reversing variable ordering

[Harrington/Ho/Thorne/Stumpf, Manrai/Gunawardena]



Example: cell death signaling

I Extrinsic pathway

I FasL/Fas interactions

I Measure activated Fas

I Crosslinking model: sequential Fas recruitment (8 species, 2 parameters)

I Cluster model: scaffold for Fas clustering, bistable (6 species, 9 parameters)

I Can reject crosslinking model from cluster data

[Harrington/Ho/Thorne/Stumpf, Ho/Harrington, Lai/Jackson]



Summary

I Parameter-free statistical model invalidation

I Detection of non-parametric linear structure

I Very efficient once invariants have been computed

Broader perspective: parameter-independent model properties

I Structure, topology, robustness, modularity

I Algebraic systems biology

Limitations: nonlinear elimination, steady-state data, necessary but not sufficient



Extension: complex-linear networks

I CRNs: nonlinear ODEs =⇒ nonlinear elimination

I Fundamental insight of CRNT: hidden linearity

I Complex-balanced networks: underlying Laplacian dynamics

I Study properties of Laplacian matrices

I Steady state: kernel = zero + constant + rank-one

I No elimination: decomposition based on graph connectivity

I Test σ1, σ2, etc.
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Extension: time course data

I Differential elimination: dynamical invariants involving derivatives

I Example: Lotka-Volterra ẋ = ax − bxy

ẏ = −cy + dxy

=⇒ acx2 + axẋ − bcx3 − bx2ẋ = −ẋ2 + xẍ

I Estimate derivatives using Gaussian processes

[Harrington/Ho/Meshkat]



Extension: numerical algebraic geometry

I Goal: solve global nonlinear optimization

I Exploit polynomial structure, numerical algebraic geometry

I Find closest intersection between model and data varieties

I Maximum-likelihood parameter estimation, model invalidation, model selection

[Gross/Davis/Ho/Bates/Harrington]



Other work

I Mathematical modeling of cell signaling networks

I Automated all-atom protein crystal structure refinement

I Fast multipole methods, direct solvers, matrix factorizations

[Harrington/Ho/Ghosh/Tung, Ho/Harrington]
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