Linear-time factorization of covariance matrices

Kenneth L. Ho (Stanford)

Joint work with Lexing Ying

SIAM CSE 2015

Introduction

► Covariance matrices are central to Gaussian-process-based statistical modeling

Introduction

- Covariance matrices are central to Gaussian-process-based statistical modeling
- Many common covariance functions are long-ranged

Exponential (λ large): $C(r; \lambda) = \exp\left(-\frac{r}{\lambda}\right)$ Matérn (ν small or λ large): $C(r; \nu, \lambda) = \frac{1}{\Gamma(\nu)2^{\nu-1}} \left(\frac{\sqrt{2\nu}r}{\lambda}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2\nu}r}{\lambda}\right)$ Rational quadratic: $C(r; \alpha, \lambda) = \left(1 + \frac{r^2}{2\alpha\lambda^2}\right)^{-\alpha}$

Costs of computing with dense covariance matrices:

$$\begin{aligned} y &= Ax & O(N^2) \\ x &= (A + \sigma^2 I)^{-1} b & O(N^3) \\ A &= BB^{\mathsf{T}} & O(N^3) \\ \Delta &= \log \det A & O(N^3) \end{aligned}$$

Introduction

- Covariance matrices are central to Gaussian-process-based statistical modeling
- Many common covariance functions are long-ranged

Exponential (λ large): $C(r; \lambda) = \exp\left(-\frac{r}{\lambda}\right)$ Matérn (ν small or λ large): $C(r; \nu, \lambda) = \frac{1}{\Gamma(\nu)2^{\nu-1}} \left(\frac{\sqrt{2\nu}r}{\lambda}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2\nu}r}{\lambda}\right)$ Rational quadratic: $C(r; \alpha, \lambda) = \left(1 + \frac{r^2}{2\alpha\lambda^2}\right)^{-\alpha}$

Costs of computing with dense covariance matrices:

$$\begin{array}{ll} y = Ax & O(N^2) & \rightarrow O(N) \\ x = (A + \sigma^2 I)^{-1} b & O(N^3) & \rightarrow O(N) \\ A = BB^{\mathsf{T}} & O(N^3) & \rightarrow O(N) \\ \Delta = \log \det A & O(N^3) & \rightarrow O(N) \end{array}$$

Goal: enable large-scale calculations by accelerating to linear complexity

Main observation

- Covariance matrix is dense but structured
- ► Smooth far field ⇒ low-rank off-diagonal blocks
- Decompose and compress hierarchically
- Similar in flavor to fast multipole methods and treecodes

See also MS241 (linear-complexity dense linear algebra) on Tuesday

[Ambikasaran/Foreman-Mackey/Greengard/Hogg/O'Neil 2014, Ambikasaran/Li/Kitanidis/Darve 2013, Ambikasaran/O'Neil 2014, Anitescu/Chen/Wang 2012, Chen 2014, Chen/Wang/Anitescu 2014, Saibaba/Kitanidis 2012]

Overview

Problem setting:

- Matrix can be low-rank but best if rank is not too small
 - Otherwise just use low-rank techniques (random sampling)
- Low geometric dimensionality: think time or space
- Fixed-domain asymptotics ($N \rightarrow \infty$ with λ fixed)

Results:

- Generalized Cholesky decomposition by recursive skeletonization
 - Originally developed for solving integral equations/PDEs
- Optimal O(N) complexity with small constants
- Kernel-independent: depends weakly on specific covariance function
- Interpretation as adaptive model reduction

Overview

Problem setting:

- Matrix can be low-rank but best if rank is not too small
 - Otherwise just use low-rank techniques (random sampling)
- Low geometric dimensionality: think time or space
- Fixed-domain asymptotics ($N \rightarrow \infty$ with λ fixed)

Results:

- Generalized Cholesky decomposition by recursive skeletonization
 - Originally developed for solving integral equations/PDEs
- Optimal O(N) complexity with small constants
- Kernel-independent: depends weakly on specific covariance function
- Interpretation as adaptive model reduction

Tools: sparse elimination, interpolative decomposition, skeletonization

Sparse elimination

Let

$$A = \begin{bmatrix} A_{pp} & A_{qp}^{\mathsf{T}} & \\ A_{qp} & A_{qq} & A_{rq}^{\mathsf{T}} \\ & A_{rq} & A_{rr} \end{bmatrix}$$

be a "sparse" SPD matrix. Then define

$$S_{p} = \begin{bmatrix} I & -A_{pp}^{-1}A_{qp}^{\mathsf{T}} \\ I & I \end{bmatrix} \implies S_{p}^{\mathsf{T}}AS_{p} = \begin{bmatrix} A_{pp} & & \\ & * & A_{rq}^{\mathsf{T}} \\ & A_{rq} & A_{rr} \end{bmatrix}.$$

- Classical tool in numerical PDEs
- DOFs p have been eliminated
- Interactions involving r are unchanged

Interpolative decomposition

If $A_{:,q}$ has numerical rank k, then there exist

- **•** skeleton (\hat{q}) and redundant (\check{q}) columns partitioning $q = \hat{q} \cup \check{q}$ with $|\hat{q}| = k$
- an interpolation matrix T_q

such that

$$A_{:,\check{q}} \approx A_{:,\hat{q}} T_q.$$

- Essentially a pivoted QR written slightly differently
- Rank-revealing to any specified precision $\epsilon > 0$ (controllable error)
- Fast randomized algorithms are available

Skeletonization

Efficient elimination of redundant DOFs

► Let
$$A = \begin{bmatrix} A_{pp} & A_{qp}^{\mathsf{T}} \\ A_{qp} & A_{qq} \end{bmatrix}$$
 with A_{qp} low-rank

• Apply ID to
$$A_{qp}$$
: $A_{q\check{p}} \approx A_{q\hat{p}} T_p$

▶ Reorder A =

$$\begin{bmatrix} A_{\hat{p}\hat{p}} & A_{\hat{p}\hat{p}}^{\mathsf{T}} & A_{q\hat{p}}^{\mathsf{T}} \\
A_{\hat{p}\hat{p}} & A_{\hat{p}\hat{p}} & A_{q\hat{p}}^{\mathsf{T}} \\
A_{q\hat{p}} & A_{q\hat{p}} & A_{qq} \end{bmatrix}, \text{ define } Q_p = \begin{bmatrix} I \\
-T_p & I \\
I \end{bmatrix}$$

▶ Sparsify via ID: $Q_p^* A Q_p \approx \begin{bmatrix} * & * \\
* & A_{\hat{p}\hat{p}} & A_{q\hat{p}}^{\mathsf{T}} \\
A_{q\hat{p}} & A_{qq} \end{bmatrix} \xrightarrow{\text{elim}} \begin{bmatrix} * & * \\
* & A_{q\hat{p}} & A_{qq} \end{bmatrix}$

Reduces to a subsystem involving skeletons only

Algorithm

```
Build tree.

for each level \ell = 0, 1, 2, ..., L from finest to coarsest do

Let C_{\ell} be the set of all cells on level \ell.

for each cell c \in C_{\ell} do

Skeletonize remaining DOFs in c.

end for

end for
```

Algorithm

```
Build tree.

for each level \ell = 0, 1, 2, ..., L from finest to coarsest do

Let C_{\ell} be the set of all cells on level \ell.

for each cell c \in C_{\ell} do

Skeletonize remaining DOFs in c.

end for

end for
```

Example. Matérn ($\nu = 3/2$) in the unit square (2D Gaussian random field):

$$C(r; \lambda) = \left(1 + rac{\sqrt{3}r}{\lambda}
ight) \exp\left(-rac{\sqrt{3}r}{\lambda}
ight), \quad \lambda = rac{1}{4}$$

Approximate to relative precision $\epsilon = 10^{-6}$: $N = 16384 \rightarrow 543$.

Level 0

domain

Level 1

domain

domain

Level 3

domain

Level 4

Properties

Skeletonization operators:

$$U_{\ell} = \prod_{c \in C_{\ell}} Q_c S_c, \qquad Q_{\rho} = \begin{bmatrix} I & & \\ * & I & \\ & & I \end{bmatrix}, \quad S_{\rho} = \begin{bmatrix} I & * & \\ & I & \\ & & I \end{bmatrix},$$

Symmetric block diagonalization:

$$D \approx U_{L-1}^{\mathsf{T}} \cdots U_0^{\mathsf{T}} A U_0 \cdots U_{L-1}$$

• Generalized Cholesky/LDL^T decomposition (SPD if $\epsilon \kappa(A) < 1$):

$$A \approx U_0^{-\mathsf{T}} \cdots U_{L-1}^{-\mathsf{T}} D U_{L-1}^{-1} \cdots U_0^{-\mathsf{T}}$$
$$A^{-1} \approx U_0 \cdots U_{L-1} D^{-1} U_L^{\mathsf{T}} \cdots U_0^{\mathsf{T}}$$

- Fast multiplication/inversion, square root, det A = det D
- > All operations are very cheap once the factorization has been constructed
- Skeletons: reduced order model at each length scale

Accelerated compression

- Main cost of algorithm is computing IDs (of A_{p^C,p})
- Naive compression is global \implies total cost of at least $O(N^2)$
- ▶ Observation: if $W_{:,q} = XY_{:,q}$ and $Y_{:,\check{q}} = Y_{:,\hat{q}}T_q$, then

$$W_{:,\check{q}} = XY_{:,\check{q}} = XY_{:,\hat{q}} T_q = W_{:,\hat{q}} T_q$$

- ► Can replace tall-and-skinny ID of W by short-and-skinny ID of Y
- ▶ How to find Y? Use analyticity, sampling, etc.

Accelerated compression

- Main cost of algorithm is computing IDs (of A_{p^C,p})
- Naive compression is global \implies total cost of at least $O(N^2)$
- ▶ Observation: if $W_{:,q} = XY_{:,q}$ and $Y_{:,\check{q}} = Y_{:,\hat{q}}T_q$, then

$$W_{:,\check{q}} = XY_{:,\check{q}} = XY_{:,\hat{q}} T_q = W_{:,\hat{q}} T_q$$

- ► Can replace tall-and-skinny ID of W by short-and-skinny ID of Y
- How to find Y? Use analyticity, sampling, etc.

Results in this talk:

- Keep all near-field interactions
- Sample far field on a few concentric rings of radii 1, 2, 4, 8, etc.

[Ho/Ying 2013]

Theorem

If the off-diagonal block rank is bounded, then constructing the approximate factorization requires O(N) operations.

Theorem

If the off-diagonal block rank is bounded, then constructing the approximate factorization requires O(N) operations.

- ► For fixed-domain asymptotics, interaction length scale is independent of *N*
- Therefore, number of "distinct" interactions is bounded
- Rank is bounded \implies linear complexity
- Note: constant has the form $O(2^d)$

Theorem

If the off-diagonal block rank is bounded, then constructing the approximate factorization requires O(N) operations.

- \blacktriangleright For fixed-domain asymptotics, interaction length scale is independent of N
- Therefore, number of "distinct" interactions is bounded
- ▶ Note: constant has the form O(2^d)

What about increasing-domain asymptotics?

- Number of interactions grows as $1/\lambda \sim N^{1/d}$
- Cost becomes $O(N^{3(1-1/d)})$
- Must do additional work to recover linear complexity
 - Example: hierarchical interpolative factorization

Numerical benchmarks in MATLAB

Matérn ($\nu=3/2$, $\lambda=1/8$) with nugget effect of $\sigma^2=0.01$

d	ϵ	Ν	<i>s</i> L	t_f (s)	$t_{a/s}$ (s)	t_d (s)	ea	e _d
1D	10 ⁻⁰⁸	262144 524288 1048576	4 4 4	1.8e+1 3.5e+1 7.0e+1	4.8e-1 1.1e+0 2.0e+0	9.8e-2 2.0e-1 3.9e-1	1.1e-08 4.3e-07 4.7e-07	1.2e-9 1.8e-7 1.1e-7
1D	10 ⁻¹²	262144 524288 1048576	4 4 4	1.8e+1 3.5e+1 7.0e+1	4.7e-1 9.3e-1 1.9e+0	9.9e-2 2.0e-1 4.0e-1	2.1e-13 2.8e-13 3.0e-13	
2D	10 ⁻⁰⁶	256 ² 512 ² 1024 ²	214 219 220	7.4e+0 2.8e+1 1.1e+2	1.2e-1 4.1e-1 1.6e+0	1.8e-2 7.3e-2 2.9e-1	5.8e-07 1.8e-06 1.7e-06	2.6e-6 4.1e-6 8.0e-6
2D	10^{-09}	256 ² 512 ² 1024 ²	1081 1227 1301	3.2e+1 6.7e+1 1.7e+2	2.1e-1 5.9e-1 1.9e+0	1.8e-2 7.4e-2 3.0e-1	5.4e-10 1.1e-09 4.0e-09	

▶ Point distributions: unit line (1D) or square (2D)

Can be heavily accelerated by a more careful implementation

Example: Gaussian process regression

• **Unknown** function f(x) on [0,1]

- ▶ Prior: zero mean, Matérn covariance C(x, x') with $\nu = 3/2$ and $\lambda = 1/8$
- Measurements $y_1 = f(x_1) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2)$, at N uniform random points
- Estimate values of $y_2 = f(x_2)$ at N equispaced points:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \right), \qquad \begin{array}{l} A_{11} = C(x_1, x_1) + \sigma^2 I \\ A_{21} = C(x_2, x_1) \\ A_{22} = C(x_2, x_2) \end{array}$$

$$\implies y_2 \mid y_1 \sim \mathcal{N}(\mu_{\text{post}}, A_{\text{post}}), \qquad \begin{array}{l} \mu_{\text{post}} = A_{21} A_{11}^{-1} y_1 \\ A_{\text{post}} = A_{22} - A_{21} A_{11}^{-1} A_{12} \end{array}$$

- $N \sim 10^6$, $\sigma^2 = 0.01$: 273 s to compute $\mu_{\rm post}$ to precision 10^{-5}
- Generate conditional samples via $y_2 = \mu_{\text{post}} + z_2 A_{21}A_{11}^{-1}z_1$, where $z \sim \mathcal{N}(0, A)$
- Estimate posterior variances to precision 10^{-2} by sampling: ~ 30 min

Summary

- Efficient factorization of covariance matrices
 - Apply, solve, square root, determinant, etc.
 - Extends to general structured matrices with low-rank off-diagonal blocks
- Linear complexity under fixed-domain asymptotics
 - Can extend to increasing-domain asymptotics with some work
- > Applications: Gaussian processes, maximum likelihood estimation, etc.
 - There is no O(N³) bottleneck!
- Key idea: sparsification and elimination (skeletonization) via the ID
- Naturally parallelizable: independent for-loops at each level
- However, effective only in low geometric dimensions
 - High-dimensional setting will require new ideas
- Extensions: posterior variances by selected inversion, online data assimilation

References

- K.L. Ho, L. Greengard. A fast direct solver for structured linear systems by recursive skeletonization. SIAM J. Sci. Comput. 34 (5): A2507–A2532, 2012.
- K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: differential equations. Preprint, arXiv:1307.2895 [math.NA], 2013. To appear, Comm. Pure Appl. Math.
- K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: integral equations. Preprint, arXiv:1307.2666 [math.NA], 2013. To appear, Comm. Pure Appl. Math.
- V. Minden, A. Damle, K.L. Ho, L. Ying. A technique for updating hierarchical factorizations of integral operators. Preprint, arXiv:1411.5706 [math.NA], 2014.