Linear-time factorization of covariance matrices

Kenneth L. Ho (Stanford)
Joint work with Lexing Ying

SIAM CSE 2015

- Covariance matrices are central to Gaussian-process-based statistical modeling

Introduction

- Covariance matrices are central to Gaussian-process-based statistical modeling
- Many common covariance functions are long-ranged

$$
\begin{array}{ll}
\text { Exponential (} \lambda \text { large): } & C(r ; \lambda)=\exp \left(-\frac{r}{\lambda}\right) \\
\text { Matérn (} \nu \text { small or } \lambda \text { large }): & C(r ; \nu, \lambda)=\frac{1}{\Gamma(\nu) 2^{\nu-1}}\left(\frac{\sqrt{2 \nu} r}{\lambda}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2 \nu} r}{\lambda}\right) \\
\text { Rational quadratic: } & C(r ; \alpha, \lambda)=\left(1+\frac{r^{2}}{2 \alpha \lambda^{2}}\right)^{-\alpha}
\end{array}
$$

- Costs of computing with dense covariance matrices:

$$
\begin{array}{ll}
y=A x & O\left(N^{2}\right) \\
x=\left(A+\sigma^{2} I\right)^{-1} b & O\left(N^{3}\right) \\
A=B B^{\top} & O\left(N^{3}\right) \\
\Delta=\log \operatorname{det} A & O\left(N^{3}\right)
\end{array}
$$

Introduction

- Covariance matrices are central to Gaussian-process-based statistical modeling
- Many common covariance functions are long-ranged

$$
\begin{array}{ll}
\text { Exponential }(\lambda \text { large }): & C(r ; \lambda)=\exp \left(-\frac{r}{\lambda}\right) \\
\text { Matérn }(\nu \text { small or } \lambda \text { large }): & C(r ; \nu, \lambda)=\frac{1}{\Gamma(\nu) 2^{\nu-1}}\left(\frac{\sqrt{2 \nu} r}{\lambda}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2 \nu} r}{\lambda}\right) \\
\text { Rational quadratic: } & C(r ; \alpha, \lambda)=\left(1+\frac{r^{2}}{2 \alpha \lambda^{2}}\right)^{-\alpha}
\end{array}
$$

- Costs of computing with dense covariance matrices:

$$
\begin{array}{lll}
y=A x & O\left(N^{2}\right) \rightarrow O(N) \\
x=\left(A+\sigma^{2} I\right)^{-1} b & O\left(N^{3}\right) & \rightarrow O(N) \\
A=B B^{\top} & O\left(N^{3}\right) & \rightarrow O(N) \\
\Delta=\log \operatorname{det} A & O\left(N^{3}\right) \rightarrow O(N)
\end{array}
$$

- Goal: enable large-scale calculations by accelerating to linear complexity

Main observation

- Covariance matrix is dense but structured
- Smooth far field \Longrightarrow low-rank off-diagonal blocks
- Decompose and compress hierarchically
- Similar in flavor to fast multipole methods and treecodes

- See also MS241 (linear-complexity dense linear algebra) on Tuesday
[Ambikasaran/Foreman-Mackey/Greengard/Hogg/O'Neil 2014, Ambikasaran/Li/Kitanidis/Darve 2013, Ambikasaran/O'Neil 2014, Anitescu/Chen/Wang 2012, Chen 2014, Chen/Wang/Anitescu 2014, Saibaba/Kitanidis 2012]

Overview

Problem setting:

- Matrix can be low-rank but best if rank is not too small
- Otherwise just use low-rank techniques (random sampling)
- Low geometric dimensionality: think time or space
- Fixed-domain asymptotics ($N \rightarrow \infty$ with λ fixed)

Results:

- Generalized Cholesky decomposition by recursive skeletonization
- Originally developed for solving integral equations/PDEs
- Optimal $O(N)$ complexity with small constants
- Kernel-independent: depends weakly on specific covariance function
- Interpretation as adaptive model reduction

Problem setting:

- Matrix can be low-rank but best if rank is not too small
- Otherwise just use low-rank techniques (random sampling)
- Low geometric dimensionality: think time or space
- Fixed-domain asymptotics ($N \rightarrow \infty$ with λ fixed)

Results:

- Generalized Cholesky decomposition by recursive skeletonization
- Originally developed for solving integral equations/PDEs
- Optimal $O(N)$ complexity with small constants
- Kernel-independent: depends weakly on specific covariance function
- Interpretation as adaptive model reduction

Tools: sparse elimination, interpolative decomposition, skeletonization

Sparse elimination

Let

$$
A=\left[\begin{array}{lll}
A_{p p} & A_{q p}^{\top} & \\
A_{q p} & A_{q q} & A_{r q}^{\top} \\
& A_{r q} & A_{r r}
\end{array}\right]
$$

be a "sparse" SPD matrix. Then define

$$
S_{p}=\left[\begin{array}{ccc}
I & -A_{p p}^{-1} A_{q p}^{\top} & \\
& I & \\
& & I
\end{array}\right] \quad \Longrightarrow \quad S_{p}^{\top} A S_{p}=\left[\begin{array}{ccc}
A_{p p} & & \\
& * & A_{r q}^{\top} \\
& A_{r q} & A_{r r}
\end{array}\right]
$$

- Classical tool in numerical PDEs
- DOFs p have been eliminated
- Interactions involving r are unchanged

If $A_{:, q}$ has numerical rank k, then there exist

- skeleton (\hat{q}) and redundant ((\check{q}) columns partitioning $q=\hat{q} \cup \breve{q}$ with $|\hat{q}|=k$
- an interpolation matrix T_{q}
such that

$$
A_{:,, \check{q}} \approx A_{:, \hat{q}} T_{q} .
$$

- Essentially a pivoted QR written slightly differently
- Rank-revealing to any specified precison $\epsilon>0$ (controllable error)
- Fast randomized algorithms are available

Skeletonization

- Efficient elimination of redundant DOFs
- Let $A=\left[\begin{array}{ll}A_{p p} & A_{q p}^{\top} \\ A_{q p} & A_{q q}\end{array}\right]$ with $A_{q p}$ low-rank
- Apply ID to $A_{q p}: A_{q \check{\rho}} \approx A_{q \hat{p}} T_{p}$
- Reorder $A=\left[\begin{array}{lll}A_{\check{\rho} \check{\rho}} & A_{\hat{\rho} \check{\rho}}^{\top} & A_{q \check{\rho}}^{\top} \\ A_{\hat{\rho} \check{\rho}} & A_{\hat{\rho} \hat{\rho}} & A_{q \hat{\rho}}^{\top} \\ A_{q \check{\rho}} & A_{q \hat{\rho}} & A_{q q}\end{array}\right]$, define $Q_{p}=\left[\begin{array}{ccc}I & & \\ -T_{p} & I & \\ & & I\end{array}\right]$
- Sparsify via ID: $Q_{p}^{*} A Q_{p} \approx\left[\begin{array}{ccc}* & * & \\ * & A_{\hat{p} \hat{p}} & A_{q \hat{p}}^{\top} \\ & A_{q \hat{p}} & A_{q q}\end{array}\right] \xrightarrow{\text { elim }}\left[\begin{array}{cccc}* & & \\ & * & A_{q \hat{p}}^{\top} \\ & A_{q \hat{p}} & A_{q q}\end{array}\right]$
- Reduces to a subsystem involving skeletons only

Algorithm

Build tree.
for each level $\ell=0,1,2, \ldots, L$ from finest to coarsest do Let C_{ℓ} be the set of all cells on level ℓ. for each cell $c \in C_{\ell}$ do

Skeletonize remaining DOFs in c. end for
end for

Algorithm

Build tree.
for each level $\ell=0,1,2, \ldots, L$ from finest to coarsest do Let C_{ℓ} be the set of all cells on level ℓ.

for each cell $c \in C_{\ell}$ do

Skeletonize remaining DOFs in c. end for
end for

Example. Matérn ($\nu=3 / 2$) in the unit square (2D Gaussian random field):

$$
C(r ; \lambda)=\left(1+\frac{\sqrt{3} r}{\lambda}\right) \exp \left(-\frac{\sqrt{3} r}{\lambda}\right), \quad \lambda=\frac{1}{4}
$$

Approximate to relative precision $\epsilon=10^{-6}: N=16384 \rightarrow 543$.

Level 0

domain
matrix

Level 1

matrix

matrix

Level 4

matrix

Properties

- Skeletonization operators:

$$
U_{\ell}=\prod_{c \in C_{\ell}} Q_{c} S_{c}, \quad Q_{p}=\left[\begin{array}{lll}
I & & \\
* & I & \\
& & I
\end{array}\right], \quad S_{p}=\left[\begin{array}{lll}
I & * & \\
& I & \\
& & I
\end{array}\right]
$$

- Symmetric block diagonalization:

$$
D \approx U_{L-1}^{\top} \cdots U_{0}^{\top} A U_{0} \cdots U_{L-1}
$$

- Generalized Cholesky/ $L D L^{\top}$ decomposition (SPD if $\epsilon \kappa(A)<1$):

$$
\begin{aligned}
A & \approx U_{0}^{-\top} \cdots U_{L-1}^{-\top} D U_{L-1}^{-1} \cdots U_{0}^{-1} \\
A^{-1} & \approx U_{0} \cdots U_{L-1} D^{-1} U_{L}^{\top} \cdots U_{0}^{\top}
\end{aligned}
$$

- Fast multiplication/inversion, square root, $\operatorname{det} A=\operatorname{det} D$
- All operations are very cheap once the factorization has been constructed
- Skeletons: reduced order model at each length scale

Accelerated compression

- Main cost of algorithm is computing IDs (of $A_{p c, p}$)
- Naive compression is global \Longrightarrow total cost of at least $O\left(N^{2}\right)$
- Observation: if $W_{:, q}=X Y_{:, q}$ and $Y_{:,, \check{q}}=Y_{:, \hat{q}} T_{q}$, then

$$
W_{:, \check{q}}=X Y_{:,, \check{q}}=X Y_{:, \hat{q}} T_{q}=W_{:, \hat{q}} T_{q}
$$

- Can replace tall-and-skinny ID of W by short-and-skinny ID of Y
- How to find Y ? Use analyticity, sampling, etc.

Accelerated compression

- Main cost of algorithm is computing IDs (of $A_{p c, p}$)
- Naive compression is global \Longrightarrow total cost of at least $O\left(N^{2}\right)$
- Observation: if $W_{:, q}=X Y_{:, q}$ and $Y_{:,, \check{q}}=Y_{:, \hat{q}} T_{q}$, then

$$
W_{:, \check{q}}=X Y_{:, \check{q}}=X Y_{:, \hat{q}} T_{q}=W_{:, \hat{q}} T_{q}
$$

- Can replace tall-and-skinny ID of W by short-and-skinny ID of Y
- How to find Y ? Use analyticity, sampling, etc.

Results in this talk:

- Keep all near-field interactions
- Sample far field on a few concentric rings of radii 1, 2, 4, 8, etc.

Complexity analysis

Theorem

If the off-diagonal block rank is bounded, then constructing the approximate factorization requires $O(N)$ operations.

Complexity analysis

Theorem

If the off-diagonal block rank is bounded, then constructing the approximate factorization requires $O(N)$ operations.

- For fixed-domain asymptotics, interaction length scale is independent of N
- Therefore, number of "distinct" interactions is bounded
- Rank is bounded \Longrightarrow linear complexity
- Note: constant has the form $O\left(2^{d}\right)$

Complexity analysis

Theorem

If the off-diagonal block rank is bounded, then constructing the approximate factorization requires $O(N)$ operations.

- For fixed-domain asymptotics, interaction length scale is independent of N
- Therefore, number of "distinct" interactions is bounded
- Rank is bounded \Longrightarrow linear complexity
- Note: constant has the form $O\left(2^{d}\right)$

What about increasing-domain asymptotics?

- Number of interactions grows as $1 / \lambda \sim N^{1 / d}$
- Cost becomes $O\left(N^{3(1-1 / d)}\right)$
- Must do additional work to recover linear complexity
- Example: hierarchical interpolative factorization

Numerical benchmarks in MATLAB

Matérn ($\nu=3 / 2, \lambda=1 / 8$) with nugget effect of $\sigma^{2}=0.01$

- Point distributions: unit line (1D) or square (2D)

d	ϵ	N	$\left\|s_{L}\right\|$	$t_{f}(\mathrm{~s})$	$t_{\text {a/s }}(\mathrm{s})$	$t_{d}(\mathrm{~s})$	e_{a}	e_{d}
1D	10^{-08}	262144	4	$1.8 \mathrm{e}+1$	$4.8 \mathrm{e}-1$	$9.8 \mathrm{e}-2$	$1.1 \mathrm{e}-08$	$1.2 \mathrm{e}-9$
		524288	4	$3.5 \mathrm{e}+1$	$1.1 \mathrm{e}+0$	$2.0 \mathrm{e}-1$	$4.3 \mathrm{e}-07$	$1.8 \mathrm{e}-7$
		1048576	4	$7.0 \mathrm{e}+1$	$2.0 \mathrm{e}+0$	$3.9 \mathrm{e}-1$	$4.7 \mathrm{e}-07$	$1.1 \mathrm{e}-7$
1D	10^{-12}	262144	4	$1.8 \mathrm{e}+1$	$4.7 \mathrm{e}-1$	$9.9 \mathrm{e}-2$	$2.1 \mathrm{e}-13$	-
		524288	4	$3.5 \mathrm{e}+1$	$9.3 \mathrm{e}-1$	$2.0 \mathrm{e}-1$	$2.8 \mathrm{e}-13$	-
		1048576	4	$7.0 \mathrm{e}+1$	$1.9 \mathrm{e}+0$	$4.0 \mathrm{e}-1$	$3.0 \mathrm{e}-13$	-
2D	10^{-06}	$256{ }^{2}$	214	$7.4 \mathrm{e}+0$	$1.2 \mathrm{e}-1$	$1.8 \mathrm{e}-2$	$5.8 \mathrm{e}-07$	$2.6 \mathrm{e}-6$
		512^{2}	219	$2.8 \mathrm{e}+1$	$4.1 \mathrm{e}-1$	$7.3 \mathrm{e}-2$	$1.8 \mathrm{e}-06$	$4.1 \mathrm{e}-6$
		1024^{2}	220	$1.1 \mathrm{e}+2$	$1.6 \mathrm{e}+0$	$2.9 \mathrm{e}-1$	$1.7 \mathrm{e}-06$	$8.0 \mathrm{e}-6$
2D	10^{-09}	$256{ }^{2}$	1081	$3.2 \mathrm{e}+1$	$2.1 \mathrm{e}-1$	$1.8 \mathrm{e}-2$	$5.4 \mathrm{e}-10$	-
		512^{2}	1227	$6.7 \mathrm{e}+1$	$5.9 \mathrm{e}-1$	$7.4 \mathrm{e}-2$	$1.1 \mathrm{e}-09$	-
		$1024{ }^{2}$	1301	$1.7 \mathrm{e}+2$	$1.9 \mathrm{e}+0$	$3.0 \mathrm{e}-1$	$4.0 \mathrm{e}-09$	-

- Can be heavily accelerated by a more careful implementation

Example: Gaussian process regression

- Unknown function $f(x)$ on $[0,1]$
- Prior: zero mean, Matérn covariance $C\left(x, x^{\prime}\right)$ with $\nu=3 / 2$ and $\lambda=1 / 8$
- Measurements $y_{1}=f\left(x_{1}\right)+\epsilon, \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$, at N uniform random points
- Estimate values of $y_{2}=f\left(x_{2}\right)$ at N equispaced points:

$$
\begin{aligned}
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\right), \begin{array}{l}
A_{11}=C\left(x_{1}, x_{1}\right)+\sigma^{2} l \\
A_{21}=C\left(x_{2}, x_{1}\right) \\
A_{22}=C\left(x_{2}, x_{2}\right)
\end{array}} \\
& \Longrightarrow y_{2} \mid y_{1} \sim \mathcal{N}\left(\mu_{\text {post }}, A_{\text {post }}\right), \begin{array}{l}
\mu_{\text {post }}=A_{21} A_{11}^{-1} y_{1} \\
A_{\text {post }}=A_{22}-A_{21} A_{11}^{-1} A_{12}
\end{array}
\end{aligned}
$$

- $N \sim 10^{6}, \sigma^{2}=0.01: 273$ s to compute $\mu_{\text {post }}$ to precision 10^{-5}
- Generate conditional samples via $y_{2}=\mu_{\text {post }}+z_{2}-A_{21} A_{11}^{-1} z_{1}$, where $z \sim \mathcal{N}(0, A)$
- Estimate posterior variances to precision 10^{-2} by sampling: $\sim 30 \mathrm{~min}$

Summary

- Efficient factorization of covariance matrices
- Apply, solve, square root, determinant, etc.
- Extends to general structured matrices with low-rank off-diagonal blocks
- Linear complexity under fixed-domain asymptotics
- Can extend to increasing-domain asymptotics with some work
- Applications: Gaussian processes, maximum likelihood estimation, etc.
- There is no $O\left(N^{3}\right)$ bottleneck!
- Key idea: sparsification and elimination (skeletonization) via the ID
- Naturally parallelizable: independent for-loops at each level
- However, effective only in low geometric dimensions
- High-dimensional setting will require new ideas
- Extensions: posterior variances by selected inversion, online data assimilation

References

- K.L. Ho, L. Greengard. A fast direct solver for structured linear systems by recursive skeletonization. SIAM J. Sci. Comput. 34 (5): A2507-A2532, 2012.
- K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: differential equations. Preprint, arXiv:1307.2895 [math.NA], 2013. To appear, Comm. Pure Appl. Math.
- K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: integral equations. Preprint, arXiv:1307.2666 [math.NA], 2013. To appear, Comm. Pure Appl. Math.
- V. Minden, A. Damle, K.L. Ho, L. Ying. A technique for updating hierarchical factorizations of integral operators. Preprint, arXiv:1411.5706 [math.NA], 2014.

