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Introduction

» Covariance matrices are central to Gaussian-process—based statistical modeling

» Many common covariance functions are long-ranged

Exponential (X large): C(rix)=exp(—%)
Matérn (v small or X large):  C(r;v,\) = 21, 1 (‘/iiw)y Ky ( iw)
Rational quadratic: C(ria,\) = (1 + 2(;2/\2>7a
» Costs of computing with dense covariance matrices:
y = Ax O(N?) — O(N)
x=(A+c*)"'b ON?) — O(N)
A= BB" O(N?) O(N)
A = logdet A Oo(N?) — O(N)

» Goal: enable large-scale calculations by accelerating to linear complexity



Main observation

v

Covariance matrix is dense but structured

v

Smooth far field = low-rank off-diagonal blocks

» Decompose and compress hierarchically

v

Similar in flavor to fast multipole methods and treecodes

“

> See also MS241 (linear-complexity dense linear algebra) on Tuesday

_|_

+

[Ambikasaran/Foreman-Mackey/Greengard /Hogg/O'Neil 2014, Ambikasaran/Li/Kitanidis/Darve 2013, Ambikasaran/O'Neil
2014, Anitescu/Chen/Wang 2012, Chen 2014, Chen/Wang/Anitescu 2014, Saibaba/Kitanidis 2012]



Overview

Problem setting:
> Matrix can be low-rank but best if rank is not too small
e Otherwise just use low-rank techniques (random sampling)

> Low geometric dimensionality: think time or space

» Fixed-domain asymptotics (N — oo with X fixed)

Results:
> Generalized Cholesky decomposition by recursive skeletonization
o Originally developed for solving integral equations/PDEs

» Optimal O(N) complexity with small constants
» Kernel-independent: depends weakly on specific covariance function

> Interpretation as adaptive model reduction

[Gillman/Young/Martinsson 2012, Ho/Greengard 2012, Ho/Ying 2013, Martinsson/Rokhlin 2005]



Overview

Problem setting:
> Matrix can be low-rank but best if rank is not too small
e Otherwise just use low-rank techniques (random sampling)

> Low geometric dimensionality: think time or space

» Fixed-domain asymptotics (N — oo with X fixed)

Results:
> Generalized Cholesky decomposition by recursive skeletonization
o Originally developed for solving integral equations/PDEs

» Optimal O(N) complexity with small constants
» Kernel-independent: depends weakly on specific covariance function

> Interpretation as adaptive model reduction

Tools: sparse elimination, interpolative decomposition, skeletonization

[Gillman/Young/Martinsson 2012, Ho/Greengard 2012, Ho/Ying 2013, Martinsson/Rokhlin 2005]



Sparse elimination

Let

App Agp T
Agp Agq Ay
Arq Arr

A=

be a “sparse” SPD matrix. Then define

I —ALAL

Sp: / e

» Classical tool in numerical PDEs
» DOFs p have been eliminated

> Interactions involving r are unchanged



Interpolative decomposition

If A. 4 has numerical rank k, then there exist
> skeleton (§) and redundant (§) columns partitioning ¢ = § U g with |§| = k

> an interpolation matrix T4

such that LR NN ) o ° °
®o0oo0oo0oo0e

Agn AT, siiit N
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@oco0oo0oe /1\
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» Essentially a pivoted QR written slightly differently
» Rank-revealing to any specified precison € > 0 (controllable error)

» Fast randomized algorithms are available

[Cheng/Gimbutas/Martinsson/Rokhlin 2005, Gu/Eisenstat 1996, Halko/Martinsson/Tropp 2011]



Skeletonization

» Efficient elimination of redundant DOFs
T
> Let A= [APP A‘”’} with Agp low-rank
ap qq
> Apply ID to Agp: Agp = Agp T)p
Asp Al Ag /
> Reorder A= | Az, Az Alp|. define Qo= |-T, [
Agp Agp Agq /
* * ) *
> Sparsify via ID: Q3 AQy &~ |+ Ay AL | LM « AL
Aqﬁ Aqq Aqb Aqq

> Reduces to a subsystem involving skeletons only

[Ho/Ying 2013, Xia/Xi/Gu 2012]



Algorithm

Build tree.
for each level £ =0,1,2,..., L from finest to coarsest do
Let C; be the set of all cells on level /.
for each cell c € C; do
Skeletonize remaining DOFs in c.
end for
end for

[Ho/Ying 2013]



Algorithm

Build tree.
for each level £ =0,1,2,..., L from finest to coarsest do
Let C; be the set of all cells on level /.
for each cell c € C; do
Skeletonize remaining DOFs in c.
end for
end for

Example. Matérn (v = 3/2) in the unit square (2D Gaussian random field):

C(riN) = <1 + @) exp (—@) A= %

Approximate to relative precision € = 107%: N = 16384 — 543.

[Ho/Ying 2013]
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Properties

» Skeletonization operators:
/ | *
U= @S  Q=1|x 1 |, S=| 1| |,
ceCy / /

» Symmetric block diagonalization:

D~Ul - UJAUy -+ U4

v

Generalized Cholesky/LDL" decomposition (SPD if ex(A) < 1):

Ax Uy - U \DUY - Uyt
Al U U DU - U]

v

Fast multiplication/inversion, square root, det A = det D

v

All operations are very cheap once the factorization has been constructed

v

Skeletons: reduced order model at each length scale

[Ho/Ying 2013]



Accelerated compression

» Main cost of algorithm is computing IDs (of A ,)

» Naive compression is global == total cost of at least O(N?)
> Observation: if W, = XY. 4 and Y. 5 = Y. 5T, then

Wig=XYqg = XY qTqg=W,aTq

v

Can replace tall-and-skinny ID of W by short-and-skinny ID of Y

v

How to find Y7 Use analyticity, sampling, etc.

[Ho/Ying 2013]



Accelerated compression

» Main cost of algorithm is computing IDs (of A ,)

» Naive compression is global == total cost of at least O(N?)
> Observation: if W, = XY. 4 and Y. 5 = Y. 5T, then

Wig=XYqg = XY qTqg=W,aTq

v

Can replace tall-and-skinny ID of W by short-and-skinny ID of Y

v

How to find Y7 Use analyticity, sampling, etc.

Results in this talk:
» Keep all near-field interactions

» Sample far field on a few concentric rings of radii 1, 2, 4, 8, etc. ]
[Ho/Ying 2013]



Complexity analysis

If the off-diagonal block rank is bounded, then constructing the approximate factorization
requires O(N) operations.

[Ho/Ying 2013]
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If the off-diagonal block rank is bounded, then constructing the approximate factorization
requires O(N) operations.

v

For fixed-domain asymptotics, interaction length scale is independent of N

v

Therefore, number of “distinct” interactions is bounded

v

Rank is bounded = linear complexity
» Note: constant has the form O(27)

[Ho/Ying 2013]



Complexity analysis

If the off-diagonal block rank is bounded, then constructing the approximate factorization
requires O(N) operations.

v

For fixed-domain asymptotics, interaction length scale is independent of N

v

Therefore, number of “distinct” interactions is bounded

v

Rank is bounded = linear complexity
» Note: constant has the form O(27)

What about increasing-domain asymptotics?
» Number of interactions grows as 1/\ ~ N*/¢
» Cost becomes O(N3(=1/9)
» Must do additional work to recover linear complexity
e Example: hierarchical interpolative factorization

[Ho/Ying 2013]



Numerical benchmarks in MATLAB

Matérn (v = 3/2, A = 1/8) with nugget effect of o = 0.01

» Point distributions: unit line (1D) or square (2D)

d € N ‘SLl tr (5) ta/s (5) ty (5) €a €d
262144 4 1.8e+1 4.8e—1 9.8e—2 1.1e—08 1.2¢—9
1D 107 524288 4 3.5e+1 1.le+0 2.0e—1 4.3e—07 1.8e—7
1048576 4 7.0e+1 2.0e+0 3.9e—1 4.7e—07 1.le—7
262144 4 1.8e+1 4.7e—1 9.9e—2 2.1e—13 —
1D 1072 524288 4 3.5e+1 9.3e—1 2.0e—1 2.8e—13 —
1048576 4 7.0e+1  1.9e+0 4.0e—1 3.0e—13 —
2562 214  7.4e+0 1.2e—1 1.8e—2 5.8¢—07 2.6e—6
2D 107% 5122 219  2.8e+1 4.le—1 7.3e—2 1.8e—06 4.le—6
10242 220 1.le+2 1.6e+0 2.9e—1 1.7e—06 8.0e—6
2562 1081 3.2e+1 2.le—1 1.8e—2 b5.4e—10 —
2D 107% 5122 1227  6.7e+1 59e—1 T7.4e—2 1.1e—09 —
10242 1301  1.7e+2 1.9e+0 3.0e—1  4.0e—09 —

» Can be heavily accelerated by a more careful implementation



Example: Gaussian process regression

v

Unknown function f(x) on [0, 1]
» Prior: zero mean, Matérn covariance C(x,x’) with v =3/2 and A =1/8

» Measurements y; = f(x1) + ¢, e ~ N(0,02), at N uniform random points

v

Estimate values of y» = f(x2) at N equispaced points:

- 2

Y1 N 0 A Ap /’211 : g(xlaxl) + ol

| ™ 01" Ay Aml| ) 01 = C(x2, x1)
Az = C(x2, x2)

Mpost = A21 Aﬁlyl

= 2 |y Nltposts Avest), 07 A A

» N~ 10° 0% = 0.01: 273 s to compute fipost to precision 107°
> Generate conditional samples via y» = fipost + 22 — A21 A z1, where z ~ N(0, A)

» Estimate posterior variances to precision 102 by sampling: ~ 30 min



Summary

» Efficient factorization of covariance matrices

e Apply, solve, square root, determinant, etc.
e Extends to general structured matrices with low-rank off-diagonal blocks

» Linear complexity under fixed-domain asymptotics
e Can extend to increasing-domain asymptotics with some work
» Applications: Gaussian processes, maximum likelihood estimation, etc.
o There is no O(N3) bottleneck!
» Key idea: sparsification and elimination (skeletonization) via the 1D
Naturally parallelizable: independent for-loops at each level
However, effective only in low geometric dimensions
e High-dimensional setting will require new ideas

» Extensions: posterior variances by selected inversion, online data assimilation

[Ho/Ying 2013, Minden/Damle/Ho/Ying 2014]
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