
Linear-time factorization of covariance matrices

Kenneth L. Ho (Stanford)

Joint work with Lexing Ying

SIAM CSE 2015

Introduction

I Covariance matrices are central to Gaussian-process–based statistical modeling

I Many common covariance functions are long-ranged

Exponential (λ large): C(r ;λ) = exp
(
− r
λ

)
Matérn (ν small or λ large): C(r ; ν, λ) = 1

Γ(ν)2ν−1

(√
2νr
λ

)ν
Kν

(√
2νr
λ

)
Rational quadratic: C(r ;α, λ) =

(
1 + r2

2αλ2

)−α
I Costs of computing with dense covariance matrices:

y = Ax O(N2)

→ O(N)

x = (A + σ2I)−1b O(N3)

→ O(N)

A = BBT O(N3)

→ O(N)

∆ = log det A O(N3)

→ O(N)

I Goal: enable large-scale calculations by accelerating to linear complexity

Introduction

I Covariance matrices are central to Gaussian-process–based statistical modeling

I Many common covariance functions are long-ranged

Exponential (λ large): C(r ;λ) = exp
(
− r
λ

)
Matérn (ν small or λ large): C(r ; ν, λ) = 1

Γ(ν)2ν−1

(√
2νr
λ

)ν
Kν

(√
2νr
λ

)
Rational quadratic: C(r ;α, λ) =

(
1 + r2

2αλ2

)−α
I Costs of computing with dense covariance matrices:

y = Ax O(N2)

→ O(N)

x = (A + σ2I)−1b O(N3)

→ O(N)

A = BBT O(N3)

→ O(N)

∆ = log det A O(N3)

→ O(N)

I Goal: enable large-scale calculations by accelerating to linear complexity

Introduction

I Covariance matrices are central to Gaussian-process–based statistical modeling

I Many common covariance functions are long-ranged

Exponential (λ large): C(r ;λ) = exp
(
− r
λ

)
Matérn (ν small or λ large): C(r ; ν, λ) = 1

Γ(ν)2ν−1

(√
2νr
λ

)ν
Kν

(√
2νr
λ

)
Rational quadratic: C(r ;α, λ) =

(
1 + r2

2αλ2

)−α
I Costs of computing with dense covariance matrices:

y = Ax O(N2) → O(N)
x = (A + σ2I)−1b O(N3) → O(N)
A = BBT O(N3) → O(N)
∆ = log det A O(N3) → O(N)

I Goal: enable large-scale calculations by accelerating to linear complexity

Main observation

I Covariance matrix is dense but structured

I Smooth far field =⇒ low-rank off-diagonal blocks

I Decompose and compress hierarchically

I Similar in flavor to fast multipole methods and treecodes

I See also MS241 (linear-complexity dense linear algebra) on Tuesday

[Ambikasaran/Foreman-Mackey/Greengard/Hogg/O’Neil 2014, Ambikasaran/Li/Kitanidis/Darve 2013, Ambikasaran/O’Neil

2014, Anitescu/Chen/Wang 2012, Chen 2014, Chen/Wang/Anitescu 2014, Saibaba/Kitanidis 2012]

Overview

Problem setting:
I Matrix can be low-rank but best if rank is not too small

• Otherwise just use low-rank techniques (random sampling)

I Low geometric dimensionality: think time or space

I Fixed-domain asymptotics (N →∞ with λ fixed)

Results:
I Generalized Cholesky decomposition by recursive skeletonization

• Originally developed for solving integral equations/PDEs

I Optimal O(N) complexity with small constants

I Kernel-independent: depends weakly on specific covariance function

I Interpretation as adaptive model reduction

Tools: sparse elimination, interpolative decomposition, skeletonization

[Gillman/Young/Martinsson 2012, Ho/Greengard 2012, Ho/Ying 2013, Martinsson/Rokhlin 2005]

Overview

Problem setting:
I Matrix can be low-rank but best if rank is not too small

• Otherwise just use low-rank techniques (random sampling)

I Low geometric dimensionality: think time or space

I Fixed-domain asymptotics (N →∞ with λ fixed)

Results:
I Generalized Cholesky decomposition by recursive skeletonization

• Originally developed for solving integral equations/PDEs

I Optimal O(N) complexity with small constants

I Kernel-independent: depends weakly on specific covariance function

I Interpretation as adaptive model reduction

Tools: sparse elimination, interpolative decomposition, skeletonization

[Gillman/Young/Martinsson 2012, Ho/Greengard 2012, Ho/Ying 2013, Martinsson/Rokhlin 2005]

Sparse elimination

Let

A =

App AT
qp

Aqp Aqq AT
rq

Arq Arr


be a “sparse” SPD matrix. Then define

Sp =

I −A−1
pp AT

qp

I
I

 =⇒ ST
p ASp =

App

∗ AT
rq

Arq Arr

 .
I Classical tool in numerical PDEs

I DOFs p have been eliminated

I Interactions involving r are unchanged

Interpolative decomposition

If A:,q has numerical rank k, then there exist

I skeleton (q̂) and redundant (q̌) columns partitioning q = q̂ ∪ q̌ with |q̂| = k

I an interpolation matrix Tq

such that

A:,q̌ ≈ A:,q̂Tq.

I Essentially a pivoted QR written slightly differently

I Rank-revealing to any specified precison ε > 0 (controllable error)

I Fast randomized algorithms are available

[Cheng/Gimbutas/Martinsson/Rokhlin 2005, Gu/Eisenstat 1996, Halko/Martinsson/Tropp 2011]

Skeletonization

I Efficient elimination of redundant DOFs

I Let A =

[
App AT

qp

Aqp Aqq

]
with Aqp low-rank

I Apply ID to Aqp: Aqp̌ ≈ Aqp̂Tp

I Reorder A =

Ap̌p̌ AT
p̂p̌ AT

qp̌

Ap̂p̌ Ap̂p̂ AT
qp̂

Aqp̌ Aqp̂ Aqq

, define Qp =

 I
−Tp I

I



I Sparsify via ID: Q∗p AQp ≈

∗ ∗
∗ Ap̂p̂ AT

qp̂

Aqp̂ Aqq

 elim−−→

∗ ∗ AT
qp̂

Aqp̂ Aqq


I Reduces to a subsystem involving skeletons only

[Ho/Ying 2013, Xia/Xi/Gu 2012]

Algorithm

Build tree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c.
end for

end for

Example. Matérn (ν = 3/2) in the unit square (2D Gaussian random field):

C(r ;λ) =

(
1 +

√
3r

λ

)
exp

(
−
√

3r

λ

)
, λ =

1

4
.

Approximate to relative precision ε = 10−6: N = 16384→ 543.

[Ho/Ying 2013]

Algorithm

Build tree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c.
end for

end for

Example. Matérn (ν = 3/2) in the unit square (2D Gaussian random field):

C(r ;λ) =

(
1 +

√
3r

λ

)
exp

(
−
√

3r

λ

)
, λ =

1

4
.

Approximate to relative precision ε = 10−6: N = 16384→ 543.

[Ho/Ying 2013]

Level 0

domain matrix

Level 1

domain matrix

Level 2

domain matrix

Level 3

domain matrix

Level 4

domain matrix

Properties

I Skeletonization operators:

U` =
∏
c∈C`

QcSc , Qp =

I
∗ I

I

 , Sp =

I ∗
I

I

 ,
I Symmetric block diagonalization:

D ≈ UT
L−1 · · ·UT

0 AU0 · · ·UL−1

I Generalized Cholesky/LDLT decomposition (SPD if εκ(A) < 1):

A ≈ U−T
0 · · ·U−T

L−1DU−1
L−1 · · ·U

−1
0

A−1 ≈ U0 · · ·UL−1D−1UT
L · · ·UT

0

I Fast multiplication/inversion, square root, det A = det D

I All operations are very cheap once the factorization has been constructed

I Skeletons: reduced order model at each length scale

[Ho/Ying 2013]

Accelerated compression

I Main cost of algorithm is computing IDs (of ApC,p)

I Naive compression is global =⇒ total cost of at least O(N2)

I Observation: if W:,q = XY:,q and Y:,q̌ = Y:,q̂Tq, then

W:,q̌ = XY:,q̌ = XY:,q̂Tq = W:,q̂Tq

I Can replace tall-and-skinny ID of W by short-and-skinny ID of Y

I How to find Y ? Use analyticity, sampling, etc.

Results in this talk:

I Keep all near-field interactions

I Sample far field on a few concentric rings of radii 1, 2, 4, 8, etc.

[Ho/Ying 2013]

Accelerated compression

I Main cost of algorithm is computing IDs (of ApC,p)

I Naive compression is global =⇒ total cost of at least O(N2)

I Observation: if W:,q = XY:,q and Y:,q̌ = Y:,q̂Tq, then

W:,q̌ = XY:,q̌ = XY:,q̂Tq = W:,q̂Tq

I Can replace tall-and-skinny ID of W by short-and-skinny ID of Y

I How to find Y ? Use analyticity, sampling, etc.

Results in this talk:

I Keep all near-field interactions

I Sample far field on a few concentric rings of radii 1, 2, 4, 8, etc.
[Ho/Ying 2013]

Complexity analysis

Theorem

If the off-diagonal block rank is bounded, then constructing the approximate factorization
requires O(N) operations.

I For fixed-domain asymptotics, interaction length scale is independent of N

I Therefore, number of “distinct” interactions is bounded

I Rank is bounded =⇒ linear complexity

I Note: constant has the form O(2d)

What about increasing-domain asymptotics?

I Number of interactions grows as 1/λ ∼ N1/d

I Cost becomes O(N3(1−1/d))
I Must do additional work to recover linear complexity

• Example: hierarchical interpolative factorization

[Ho/Ying 2013]

Complexity analysis

Theorem

If the off-diagonal block rank is bounded, then constructing the approximate factorization
requires O(N) operations.

I For fixed-domain asymptotics, interaction length scale is independent of N

I Therefore, number of “distinct” interactions is bounded

I Rank is bounded =⇒ linear complexity

I Note: constant has the form O(2d)

What about increasing-domain asymptotics?

I Number of interactions grows as 1/λ ∼ N1/d

I Cost becomes O(N3(1−1/d))
I Must do additional work to recover linear complexity

• Example: hierarchical interpolative factorization

[Ho/Ying 2013]

Complexity analysis

Theorem

If the off-diagonal block rank is bounded, then constructing the approximate factorization
requires O(N) operations.

I For fixed-domain asymptotics, interaction length scale is independent of N

I Therefore, number of “distinct” interactions is bounded

I Rank is bounded =⇒ linear complexity

I Note: constant has the form O(2d)

What about increasing-domain asymptotics?

I Number of interactions grows as 1/λ ∼ N1/d

I Cost becomes O(N3(1−1/d))
I Must do additional work to recover linear complexity

• Example: hierarchical interpolative factorization

[Ho/Ying 2013]

Numerical benchmarks in MATLAB

Matérn (ν = 3/2, λ = 1/8) with nugget effect of σ2 = 0.01

I Point distributions: unit line (1D) or square (2D)

d ε N |sL| tf (s) ta/s (s) td (s) ea ed

1D 10−08
262144 4 1.8e+1 4.8e−1 9.8e−2 1.1e−08 1.2e−9
524288 4 3.5e+1 1.1e+0 2.0e−1 4.3e−07 1.8e−7

1048576 4 7.0e+1 2.0e+0 3.9e−1 4.7e−07 1.1e−7

1D 10−12
262144 4 1.8e+1 4.7e−1 9.9e−2 2.1e−13 —
524288 4 3.5e+1 9.3e−1 2.0e−1 2.8e−13 —

1048576 4 7.0e+1 1.9e+0 4.0e−1 3.0e−13 —

2D 10−06
2562 214 7.4e+0 1.2e−1 1.8e−2 5.8e−07 2.6e−6
5122 219 2.8e+1 4.1e−1 7.3e−2 1.8e−06 4.1e−6

10242 220 1.1e+2 1.6e+0 2.9e−1 1.7e−06 8.0e−6

2D 10−09
2562 1081 3.2e+1 2.1e−1 1.8e−2 5.4e−10 —
5122 1227 6.7e+1 5.9e−1 7.4e−2 1.1e−09 —

10242 1301 1.7e+2 1.9e+0 3.0e−1 4.0e−09 —

I Can be heavily accelerated by a more careful implementation

Example: Gaussian process regression

I Unknown function f (x) on [0, 1]

I Prior: zero mean, Matérn covariance C(x , x ′) with ν = 3/2 and λ = 1/8

I Measurements y1 = f (x1) + ε, ε ∼ N (0, σ2), at N uniform random points

I Estimate values of y2 = f (x2) at N equispaced points:

[
y1

y2

]
∼ N

([
0
0

]
,

[
A11 A12

A21 A22

])
,

A11 = C(x1, x1) + σ2I
A21 = C(x2, x1)
A22 = C(x2, x2)

=⇒ y2 | y1 ∼ N (µpost,Apost),
µpost = A21A−1

11 y1

Apost = A22 − A21A−1
11 A12

I N ∼ 106, σ2 = 0.01: 273 s to compute µpost to precision 10−5

I Generate conditional samples via y2 = µpost + z2 − A21A−1
11 z1, where z ∼ N (0,A)

I Estimate posterior variances to precision 10−2 by sampling: ∼ 30 min

Summary

I Efficient factorization of covariance matrices
• Apply, solve, square root, determinant, etc.
• Extends to general structured matrices with low-rank off-diagonal blocks

I Linear complexity under fixed-domain asymptotics
• Can extend to increasing-domain asymptotics with some work

I Applications: Gaussian processes, maximum likelihood estimation, etc.
• There is no O(N3) bottleneck!

I Key idea: sparsification and elimination (skeletonization) via the ID

I Naturally parallelizable: independent for-loops at each level
I However, effective only in low geometric dimensions

• High-dimensional setting will require new ideas

I Extensions: posterior variances by selected inversion, online data assimilation

[Ho/Ying 2013, Minden/Damle/Ho/Ying 2014]

References

I K.L. Ho, L. Greengard. A fast direct solver for structured linear systems by recursive skeletonization.
SIAM J. Sci. Comput. 34 (5): A2507–A2532, 2012.

I K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: differential equations.
Preprint, arXiv:1307.2895 [math.NA], 2013. To appear, Comm. Pure Appl. Math.

I K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: integral equations.
Preprint, arXiv:1307.2666 [math.NA], 2013. To appear, Comm. Pure Appl. Math.

I V. Minden, A. Damle, K.L. Ho, L. Ying. A technique for updating hierarchical factorizations of integral
operators. Preprint, arXiv:1411.5706 [math.NA], 2014.

