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Introduction

Ax = b

=

I For A ∈ CN×N dense, solution generally requires O(N3) work

→ O(N)

I Classical methods infeasible beyond N ∼ 104

I Other common matrix problems:
• y = Ax : O(N2)

→ O(N)

• A = UV ∗: O(N3)

→ O(N)

• ∆ = detA: O(N3)

→ O(N)

I Observation: many matrices arising in practice are

I Goal: accelerate to linear complexity by exploiting matrix structure
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Introduction

I Hierarchical matrices: low-rank submatrices at a hierarchy of scales
I Canonical example: N-body problem

• Particle locations: xi , i = 1, . . . ,N
• Interaction kernel: K(x , y) = 1/‖x − y‖
• Forces: fi =

∑N
j=1 K(xi , xj )mj

I Matrix Aij = K(xi , xj) can be applied in O(N) time

[Greengard/Rokhlin 1987, Hackbusch/Börm 2002]



Introduction

I Applications: integral equations, elliptic PDEs, machine learning, etc.

[Greengard/Ho/Lee 2014, Ho 2012, Ho/Greengard 2012]



Introduction

Many structured matrix problems can be solved efficiently by iteration

I CG/GMRES + fast multiplication: O(niterN) complexity

I Very successful; industrial applications in electromagnetics, acoustics, etc.

But . . .

I What if niter is large (high contrasts, geometric singularities, ill-conditioning)?

I What if there are many RHS’s (time stepping, inverse problems)?

Compare with direct solvers: no convergence issues, efficient information reuse.

In certain important environments, there is a need for fast direct methods.
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Example: protein design

I Protein defined by a fixed backbone with flexible residue sidechains

I Each sidechain can be one of several rotamers ri ∈ Ri

I Energy E(r) depends on the joint rotamer configuration r

I Goal: find r such that E(r) is minimized

I NP-hard but various strategies are available

I One of many related formulations

[Pierce/Winfree 2002]



Example: protein design

I Simplest approach: pairwise approximation

E(r) ≈
∑
i

E(ri ) +
1

2

∑
i

∑
j 6=i

E(ri , rj)

I Number of energy evaluations: O((nrotNres)
2)

I Each evaluation requires a PDE solve for the electrostatic energy:

Aixi = bi , i = 1, . . . ,O((nrotNres)
2)

I Matrices Ai are perturbations of fixed backbone matrix A0

I Precompute A−1
0 , rapid update for each xi = A−1

i bi

Potential for massive acceleration using fast direct methods.

[Marshall/Vizcarra/Mayo 2005]



Overview

I This talk: our recent work on fast direct methods for structured matrices

I Many other contributors (apologies for an incomplete list)

I Focus on integral equations in 2D/3D, complex geometry

I Main result: linear-complexity generalized LU decomposition

I Sparsification/elimination + recursive dimensional reduction

Tools: sparse elimination, interpolative decomposition, skeletonization

[Ambikasaran, Bebendorf, Börm, Bremer, Chandrasekaran, Chen, Corona, Darve, Gillman, Greengard, Gu, Hackbusch, Li,

Martinsson, Rokhlin, Schmitz, Starr, Xia, Ying, Young, Zorin, . . . ]
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Sparse elimination

Let

A =

App Apq

Aqp Aqq Aqr

Arq Arr

 .
(Think of A as a sparse matrix.) If App is nonsingular, define

R∗p =

 I
−AqpA

−1
pp I

I

 , Sp =

I −A−1
pp Apq

I
I


so that

R∗pASp =

App

∗ Aqr

Arq Arr

 .
I DOFs p have been eliminated

I Interactions involving r are unchanged



Interpolative decomposition

If A:,q has numerical rank k, then there exist

I skeleton (q̂) and redundant (q̌) columns partitioning q = q̂ ∪ q̌ with |q̂| = k

I an interpolation matrix Tq

such that

A:,q̌ ≈ A:,q̂Tq.

I Essentially a pivoted QR written slightly differently

I Rank-revealing to any specified precison ε > 0

Interactions between separated regions are low-rank.

[Cheng/Gimbutas/Martinsson/Rokhlin 2005, Gu/Eisenstat 1996]



Skeletonization

I Efficient elimination of redundant DOFs

I Let A =

[
App Apq

Aqp Aqq

]
with Apq and Aqp low-rank

I Apply ID to

[
Aqp

A∗pq

]
:

[
Aqp̌

A∗p̌q

]
≈
[
Aqp̂

A∗p̂q

]
Tp =⇒ Aqp̌ ≈ Aqp̂Tp

Ap̌q ≈ T ∗p Ap̂q

I Reorder A =

Ap̌p̌ Ap̌p̂ Ap̌q

Ap̂p̌ Ap̂p̂ Ap̂q

Aqp̌ Aqp̂ Aqq

, define Qp =

 I
−Tp I

I



I Sparsify via ID: Q∗pAQp ≈

∗ ∗
∗ Ap̂p̂ Ap̂q

Aqp̂ Aqq

 elim−−→

∗ ∗ Ap̂q

Aqp̂ Aqq


I Reduces to a subsystem involving skeletons only

[Ho/Ying 2013, Xia/Xi/Gu 2012]



Algorithm: recursive skeletonization factorization

Build quadtree/octree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c.
end for

end for

I Reformulation of old algorithm using new elimination framework

[Gillman/Young/Martinsson 2012, Ho/Greengard 2012, Ho/Ying 2013, Martinsson/Rokhlin 2005]



RSF in 2D: level 0

domain matrix

[Ho/Ying 2013]



RSF in 2D: level 1

domain matrix

[Ho/Ying 2013]



RSF in 2D: level 2

domain matrix

[Ho/Ying 2013]



RSF in 2D: level 3

domain matrix

[Ho/Ying 2013]



RSF in 3D: level 0

domain

[Ho/Ying 2013]



RSF in 3D: level 1

domain

[Ho/Ying 2013]



RSF in 3D: level 2

domain

[Ho/Ying 2013]



RSF analysis

I Skeletonization operators:

U` =
∏
c∈C`

QcRč , V` =
∏
c∈C`

QcSč

Qc =

I∗ I
I

 , Rč , Sč =

I ∗
I

I


I Block diagonalization:

D ≈ U∗L−1 · · ·U∗0 AV0 · · ·VL−1

I Generalized LU decomposition:

A ≈ U−∗0 · · ·U−∗L−1DV
−1
L−1 · · ·V

−1
0

A−1 ≈ V0 · · ·VL−1D
−1U∗L · · ·U∗0

I Fast direct solver or preconditioner

[Ho/Ying 2013]



RSF analysis

The cost is determined by the skeleton size.

1D 2D 3D

Skeleton size O(logN) O(N1/2) O(N2/3)

Factorization cost O(N) O(N3/2) O(N2)

Solve cost O(N) O(N logN) O(N4/3)

Question: How to reduce the skeleton size in 2D and 3D?

I Skeletons cluster near cell interfaces (Green’s theorem)

I Exploit skeleton geometry by further skeletonizing along interfaces

I Dimensional reduction

[Ho/Greengard 2012, Martinsson/Rokhlin 2005]



RSF analysis

Question: How to reduce the skeleton size in 2D and 3D?

I Skeletons cluster near cell interfaces (Green’s theorem)

I Exploit skeleton geometry by further skeletonizing along interfaces

I Dimensional reduction

[Corona/Martinsson/Zorin 2013, Ho/Ying 2013, Xia/Chandrasekaran/Gu/Li 2009]



Algorithm: hierarchical interpolative factorization for IEs in 2D

Build quadtree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c.
end for
Let C`+1/2 be the set of all edges on level `.
for each cell c ∈ C`+1/2 do

Skeletonize remaining DOFs in c.
end for

end for

[Ho/Ying 2013]



HIF-IE in 2D: level 0

domain matrix

[Ho/Ying 2013]



HIF-IE in 2D: level 1/2

domain matrix

[Ho/Ying 2013]



HIF-IE in 2D: level 1

domain matrix
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HIF-IE in 2D: level 3/2

domain matrix

[Ho/Ying 2013]



HIF-IE in 2D: level 2

domain matrix

[Ho/Ying 2013]



HIF-IE in 2D: level 5/2

domain matrix

[Ho/Ying 2013]



HIF-IE in 2D: level 3

domain matrix

[Ho/Ying 2013]



RSF vs. HIF-IE in 2D

RSF HIF-IE

[Ho/Ying 2013]
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Algorithm: hierarchical interpolative factorization for IEs in 3D

Build octree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c.
end for
Let C`+1/3 be the set of all faces on level `.
for each cell c ∈ C`+1/3 do

Skeletonize remaining DOFs in c.
end for
Let C`+2/3 be the set of all edges on level `.
for each cell c ∈ C`+2/3 do

Skeletonize remaining DOFs in c.
end for

end for

[Ho/Ying 2013]



HIF-IE in 3D: level 0

domain

[Ho/Ying 2013]



HIF-IE in 3D: level 1/3

domain

[Ho/Ying 2013]



HIF-IE in 3D: level 2/3

domain

[Ho/Ying 2013]



HIF-IE in 3D: level 1

domain

[Ho/Ying 2013]



HIF-IE in 3D: level 4/3

domain

[Ho/Ying 2013]



HIF-IE in 3D: level 5/3

domain

[Ho/Ying 2013]



HIF-IE in 3D: level 2

domain

[Ho/Ying 2013]



RSF vs. HIF-IE in 3D

RSF HIF-IE

[Ho/Ying 2013]



HIF-IE analysis

I 2D: A ≈ U−∗0 U−∗1/2 · · ·U
−∗
L−1/2DV

−1
L−1/2 · · ·V

−1
1/2V

−1
0

A−1 ≈ V0V1/2 · · ·VL−1/2D
−1U∗L−1/2 · · ·U∗1/2U

∗
0

I 3D: A ≈ U−∗0 U−∗1/3U
−∗
2/3 · · ·U

−∗
L−1/3DV

−1
L−1/3 · · ·V

−1
2/3V

−1
1/3V

−1
0

A−1 ≈ V0V1/3V2/3 · · ·VL−1/3D
−1U∗L−1/3 · · ·U∗2/3U

∗
1/3U

∗
0

Conjecture: Skeleton size: O(logN)
Factorization cost: O(N)
Solve cost: O(N)

Actually slightly more complicated . . .

[Ho/Ying 2013]
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Numerical results in 2D

First-kind volume IE on the unit square:

− 1

2π

∫
(0,1)2

log ‖x − y‖u(y) dA(y) = f (x)

I rskelf2 (white), hifie2 (black)

I Factorization time (◦), solve time (�), memory (�) at precision ε = 10−6

I Reference scalings (gray dashes):

• Left: O(N) and O(N3/2)
• Right: O(N) and O(N log N)

[Ho/Ying 2013]



Numerical results in 3D

Second-kind boundary IE on the unit sphere:

−1

2
u(x) +

1

4π

∫
S2

∂

∂ν(y)

(
1

‖x − y‖

)
u(y) dS(y) = f (x)

I rskelf3 (white), hifie3 (gray), hifie3x (black)

I Factorization time (◦), solve time (�), memory (�) at precision ε = 10−3

I Reference scalings (gray dashes):

• Left: O(N) and O(N3/2)
• Right: O(N) and O(N log N)

[Ho/Ying 2013]



Numerical results in 3D

First-kind volume IE on the unit cube:

1

4π

∫
(0,1)3

u(y)

‖x − y‖ dV (y) = f (x)

I rskelf3 (white), hifie3 (black)
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[Ho/Ying 2013]



Hierarchical interpolative factorization for PDEs in 2D

I Build on top of multifrontral to exploit sparsity

[Ho/Ying 2013]



Hierarchical interpolative factorization for PDEs in 3D

I Build on top of multifrontral to exploit sparsity

[Ho/Ying 2013]



Numerical results in 2D

Five-point stencil on the unit square with a(x) = 1:

−∇ · (a(x)∇u(x)) = f (x)

I mf2 (white), hifde2 (black)

I Factorization time (◦), solve time (�), memory (�) at precision ε = 10−9

I Reference scalings (gray dashes):

• Left: O(N) and O(N3/2)
• Right: O(N) and O(N log N)

[Ho/Ying 2013]



Numerical results in 2D

Five-point stencil on the unit square with a(x) a
quantized high-contrast (κ ∼ 104) random field:

−∇ · (a(x)∇u(x)) = f (x)

I mf2 (white), hifde2 (black)

I Factorization time (◦), solve time (�), memory (�) at precision ε = 10−9

I Reference scalings (gray dashes):

• Left: O(N) and O(N3/2)
• Right: O(N) and O(N log N)

[Ho/Ying 2013]



Remarks on HIF

I Efficient factorization of structured operators in 2D/3D

I Empirical linear complexity but no proof yet
I Approximate generalized LU decomposition

• Fast direct solver or preconditioner
• Extremely effective for multiple RHS’s

I Extensions: A1/2, detA, diagA−1

I Highly parallelizable [with A. Benson, Y. Li, J. Poulson, L. Ying]

I MATLAB codes available at https://github.com/klho/FLAM/

I Perspective: structured dense matrices can be sparsified very efficiently

I Can borrow directly from sparse algorithms, e.g., RSF = MF

I What other features of sparse matrices can be exploited?

https://github.com/klho/FLAM/
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Local updating

“Naive” approach: local geometric perturbations as low-rank updates

I Sherman-Morrison-Woodbury: rank k =⇒ O(Nk) cost

I Cannot accumulate updates across domain

Factorization updating

I Use Green’s theorem to localize effect of perturbation

I Redo computation up only one branch of tree: O(logα N) cost

1e+5 1e+6 1e+7
1e−2

1e−1

1e+0

1e+1

1e+2

1e+3

N

T
im

e
(s
)

[Greengard/Gueyffier/Martinsson/Rokhlin 2009, Minden/Damle/Ho/Ying 2014]



Conclusion

I Main thrust of my work: building technology for structured matrices

I Fast multiplication, direct solvers, least squares, factorizations

I Supporting tools: e.g., local updating

I Outlook: almost enough technology to make a deep run at some hard problems

I Other related work:
• Skeletonization/elimination as adaptive numerical coarsening
• Butterfly algorithms for oscillatory kernels [with Y. Li, H. Yang, E. Martin, L. Ying]

I Next steps:
• Global updating, spectral decompositions, matrix functions
• Applications: biology, materials science, machine learning, UQ
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Proxy compression

I Main cost of algorithm: computing IDs of tall-and-skinny matrices

I Global operation can be reduced to local operation using Green’s theorem

I Suffices to compress against neighbors plus “proxy” surface

I Essential for overcoming O(N2) complexity

[Cheng/Gimbutas/Martinsson/Rokhlin 2005, Gillman/Young/Martinsson 2012, Ho/Greengard 2012, Ho/Ying 2013,

Martinsson/Rokhlin 2005, Ying/Biros/Zorin 2004]



Second-kind IEs

I IEs of the form a(x)u(x) +

∫
Ω

K(x , y)u(y) dΩ(y) = f (x)

I High contrast in diagonal vs. off-diagonal entries

I Mixing of cell, face, edge in HIF-IE leads to error

I Need to use effective precision O(ε/N)

I Quasilinear complexity estimates:

2D 3D

Factorization cost O(N logN) O(N log6 N)
Solve cost O(N log logN) O(N log2 N)

[Ho/Ying 2013]


