# Efficient operator factorizations for integral and differential equations

Kenneth L. Ho (Stanford)

Joint work with Lexing Ying

Applied Math Seminar, UC Irvine, May 2014

#### Introduction

Elliptic PDEs in integral or differential form:

$$a(x)u(x) + \int_{\Omega} K(x, y)u(y) d\Omega(y) = f(x)$$
$$-\nabla \cdot (a(x)\nabla u(x)) + b(x)u(x) = f(x)$$

- Fundamental to physics and engineering
- Interested in 2D/3D, complex geometry
- Discretize  $\rightarrow$  structured linear system Au = f

Goal: fast and accurate algorithms for the discrete operators

- ► Fast matrix-vector multiplication, fast direct solver, good preconditioner
- Ideally, fast matrix factorization
- Linear or nearly linear complexity, high practical efficiency



#### Direct vs. iterative solvers

- ▶ Direct solvers: no iteration (e.g., Gaussian elimination)
- Why direct solvers? Compare with iterative methods

#### Direct vs. iterative solvers

- ▶ Direct solvers: no iteration (e.g., Gaussian elimination)
- Why direct solvers? Compare with iterative methods

Iterative solvers

- GMRES, CG, relaxation methods, multigrid, etc.
- Can achieve linear complexity under certain conditions
- But number of iterations can be large
  - Ill-conditioning, high contrasts, geometric singularities
  - Need preconditioners or may not converge at all
- Inefficient for multiple right-hand sides
  - Time-stepping, inverse problems, optimization, design

#### Direct vs. iterative solvers

- ▶ Direct solvers: no iteration (e.g., Gaussian elimination)
- Why direct solvers? Compare with iterative methods

Iterative solvers

- GMRES, CG, relaxation methods, multigrid, etc.
- Can achieve linear complexity under certain conditions
- But number of iterations can be large
  - Ill-conditioning, high contrasts, geometric singularities
  - Need preconditioners or may not converge at all
- Inefficient for multiple right-hand sides
  - Time-stepping, inverse problems, optimization, design

Direct solvers

- No convergence issues, much more robust
- Typically very fast solves following initial factorization
- However, classical direct methods can be extremely expensive

#### Previous work for IEs

Fast matrix-vector multiplication

•  $\mathcal{O}(N)$  or  $\mathcal{O}(N \log N)$  using FMM, treecode,  $\mathcal{H}/\mathcal{H}^2$ -matrices





Fast direct solver

- HSS matrices/recursive skeletonization
  - $\mathcal{O}(N)$  in 1D,  $\mathcal{O}(N^{3/2})$  in 2D,  $\mathcal{O}(N^2)$  in 3D
- $\mathcal{H}$ -matrices:  $\mathcal{O}(N \log^{\alpha} N)$  but with a large constant
- ▶ HSS/RS with structured matrix algebra:  $\mathcal{O}(N)$  in 2D
  - Corona, Martinsson, Zorin (2013)

#### Previous work for PDEs

Fast matrix-vector multiplication: trivial

• Exploit sparsity,  $\mathcal{O}(N)$  work





Fast direct solver:

- Nested dissection/multifrontal
  - $\mathcal{O}(N^{3/2})$  in 2D,  $\mathcal{O}(N^2)$  in 3D; very small constants
- $\mathcal{H}$ -matrices:  $\mathcal{O}(N \log^{\alpha} N)$  but with a large constant
- MF with H-matrix algebra: O(N) with an improved constant
- MF with HSS/RS algebra:  $\mathcal{O}(N)$  in 2D,  $\mathcal{O}(N^{4/3})$  in 3D
  - Xia, Chandrasekaran, Gu, Li (2009); Gillman, Martinsson (2013)

#### Overview

Hierarchical interpolative factorization

- ► RS/MF + recursive dimensional reduction
- Same idea as using structured algebra but much simpler
- ► New matrix sparsification framework, generalized LU decomposition
- Linear or nearly linear complexity, small constants
- Works for IEs and PDEs in 2D and 3D
- Handles adaptivity and complex geometry

Tools: block elimination, interpolative decomposition, skeletonization

#### Block elimination

Let

$$A = \begin{bmatrix} A_{pp} & A_{pq} \\ A_{qp} & A_{qq} & A_{qr} \\ & A_{rq} & A_{rr} \end{bmatrix}.$$



(Think of A as a sparse matrix.) If  $A_{pp}$  is nonsingular, define

$$R_{\rho}^{*} = \begin{bmatrix} I & & \\ -A_{q\rho}A_{\rho\rho}^{-1} & I & \\ & & I \end{bmatrix}, \quad S_{\rho} = \begin{bmatrix} I & -A_{\rho\rho}^{-1}A_{\rhoq} & \\ & I & \\ & & I \end{bmatrix}$$

so that

$$R_{p}^{*}AS_{p} = \begin{bmatrix} A_{pp} & & \\ & * & A_{qr} \\ & A_{rq} & A_{rr} \end{bmatrix}.$$

- DOFs p have been eliminated
- Interactions involving r are unchanged

#### Interpolative decomposition

If  $A_{:,q}$  is numerically low-rank, then there exist

- ▶ skeleton  $(\hat{q})$  and redundant  $(\check{q})$  columns partitioning  $q = \hat{q} \cup \check{q}$
- ▶ an interpolation matrix  $T_q$

such that

$$A_{:,\check{q}} \approx A_{:,\hat{q}} T_q.$$

Essentially a pivoted QR written slightly differently:

$$\begin{aligned} A_{:,(\hat{q},\check{q})} &= \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} \\ & R_{22} \end{bmatrix} \approx Q_1 \begin{bmatrix} R_{11} & R_{12} \end{bmatrix} \\ &\implies A_{:,\check{q}} \approx Q_1 R_{12} = \underbrace{Q_1 R_{11}}_{A_{:,\check{q}}} \underbrace{(R_{11}^{-1} R_{12})}_{T_q} \end{aligned}$$

Interactions between separated regions are low-rank.

#### Skeletonization

▶ Efficient elimination of redundant DOFs from dense matrices

• Let 
$$A = \begin{bmatrix} A_{pp} & A_{pq} \\ A_{qp} & A_{qq} \end{bmatrix}$$
 with  $A_{pq}$  and  $A_{qp}$  low-rank

• Apply ID to 
$$\begin{bmatrix} A_{qp} \\ A_{pq}^* \end{bmatrix}$$
:  $\begin{bmatrix} A_{q\check{p}} \\ A_{\check{p}\check{q}}^* \end{bmatrix} \approx \begin{bmatrix} A_{q\hat{p}} \\ A_{\check{p}\check{q}}^* \end{bmatrix} T_p \implies \begin{array}{c} A_{q\check{p}} \approx A_{q\hat{p}} T_p \\ A_{\check{p}\check{q}} \approx T_p^* A_{\check{p}\check{q}} \end{bmatrix}$ 

$$\blacktriangleright \text{ Reorder } A = \begin{bmatrix} A_{\breve{p}\breve{p}} & A_{\breve{p}\breve{p}} & A_{\breve{p}q} \\ A_{\breve{p}\breve{p}} & A_{\breve{p}\breve{p}} & A_{\breve{p}q} \\ A_{q\breve{p}} & A_{q\breve{p}} & A_{qq} \end{bmatrix}, \text{ define } Q_p = \begin{bmatrix} I & & \\ -T_p & I & \\ & & I \end{bmatrix}$$

# Integral equations

- Old algorithm (RS) in new factorization form
- ► New algorithm: HIF-IE

```
Build quadtree/octree.

for each level \ell = 0, 1, 2, \dots, L from finest to coarsest do

Let C_{\ell} be the set of all cells on level \ell.

for each cell c \in C_{\ell} do

Skeletonize remaining DOFs in c.

end for

end for
```



domain

matrix



# RSF in 2D: level 2



# RSF in 2D: level 3



RSF in 3D: level 0



RSF in 3D: level 1



RSF in 3D: level 2



#### **RSF** analysis

Skeletonization operators:

$$U_{\ell} = \prod_{c \in C_{\ell}} Q_{c} R_{c}, \quad V_{\ell} = \prod_{c \in C_{\ell}} Q_{c} S_{c}$$
$$Q_{c} = \begin{bmatrix} I & & \\ * & I & \\ & & I \end{bmatrix}, \quad R_{c}, S_{c} = \begin{bmatrix} I & * & \\ & I & \\ & & I \end{bmatrix}$$

Block diagonalization:

$$D \approx U_{L-1}^* \cdots U_0^* A V_0 \cdots V_{L-1}$$

Generalized LU decomposition:

$$A \approx U_0^{-*} \cdots U_{L-1}^{-*} D V_{L-1}^{-1} \cdots V_0^{-1}$$
$$A^{-1} \approx V_0 \cdots V_{L-1} D^{-1} U_L^* \cdots U_0^*$$

► Fast direct solver or preconditioner

## RSF analysis

The cost is determined by the skeleton size.

|                                                   | 1D                                                                                       | 2D                                                                          | 3D                                                               |
|---------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------|
| Skeleton size<br>Factorization cost<br>Solve cost | $ \begin{array}{c} \mathcal{O}(\log N) \\ \mathcal{O}(N) \\ \mathcal{O}(N) \end{array} $ | $\mathcal{O}(N^{1/2})$<br>$\mathcal{O}(N^{3/2})$<br>$\mathcal{O}(N \log N)$ | $\mathcal{O}(N^{2/3}) \ \mathcal{O}(N^2) \ \mathcal{O}(N^{4/3})$ |

Question: How to reduce the skeleton size in 2D and 3D?

- Skeletons cluster near cell interfaces (Green's theorem)
- Exploit skeleton geometry by further skeletonizing along interfaces
- Dimensional reduction

\_

Algorithm: hierarchical interpolative factorization for IEs in 2D

Build quadtree.

```
for each level \ell = 0, 1, 2, \dots, L from finest to coarsest do

Let C_{\ell} be the set of all cells on level \ell.

for each cell c \in C_{\ell} do

Skeletonize remaining DOFs in c.

end for

Let C_{\ell+1/2} be the set of all edges on level \ell.

for each cell c \in C_{\ell+1/2} do

Skeletonize remaining DOFs in c.

end for

end for
```



domain

matrix









#### HIF-IE in 2D: level 3/2



#### HIF-IE in 2D: level 2





matrix

domain

HIF-IE in 2D: level 5/2



## HIF-IE in 2D: level 3



RSF vs. HIF-IE in 2D



RSF

HIF-IE



Build octree for each level  $\ell = 0, 1, 2, \dots, L$  from finest to coarsest **do** Let  $C_{\ell}$  be the set of all cells on level  $\ell$ . for each cell  $c \in C_{\ell}$  do Skeletonize remaining DOFs in c. end for Let  $C_{\ell+1/3}$  be the set of all faces on level  $\ell$ . for each cell  $c \in C_{\ell+1/3}$  do Skeletonize remaining DOFs in c. end for Let  $C_{\ell+2/3}$  be the set of all edges on level  $\ell$ . for each cell  $c \in C_{\ell+2/3}$  do Skeletonize remaining DOFs in c. end for end for



HIF-IE in 3D: level  $1/3\,$ 



HIF-IE in 3D: level  $2/3\,$ 


HIF-IE in 3D: level 1



HIF-IE in 3D: level 4/3



HIF-IE in 3D: level 5/3



HIF-IE in 3D: level 2





### **HIF-IE** analysis

► 2D:  $A \approx U_0^{-*} U_{1/2}^{-*} \cdots U_{L-1/2}^{-*} D V_{L-1/2}^{-1} \cdots V_{1/2}^{-1} V_0^{-1}$  $A^{-1} \approx V_0 V_{1/2} \cdots V_{L-1/2} D^{-1} U_{L-1/2}^* \cdots U_{1/2}^* U_0^*$ 

► 3D: 
$$A \approx U_0^{-*} U_{1/3}^{-*} U_{2/3}^{-*} \cdots U_{L-1/3}^{-*} DV_{L-1/3}^{-1} \cdots V_{2/3}^{-1} V_{1/3}^{-1} V_0^{-1}$$
$$A^{-1} \approx V_0 V_{1/3} V_{2/3} \cdots V_{L-1/3} D^{-1} U_{L-1/3}^* \cdots U_{2/3}^* U_{1/3}^* U_0^*$$

| Conjecture | Skeleton size:<br>Factorization cost: | $\frac{\mathcal{O}(\log N)}{\mathcal{O}(N)}$ |
|------------|---------------------------------------|----------------------------------------------|
|            | Solve cost:                           | $\mathcal{O}(N)$                             |

#### Numerical results in 2D

First-kind volume IE on the unit square with

$$a(x) \equiv 0, \quad K(x, y) = -\frac{1}{2\pi} \log ||x - y||.$$



- rskelf2 (white), hifie2 (black)
- ▶ Factorization time ( $\circ$ ), solve time ( $\Box$ ), memory ( $\diamond$ )
- Precision  $\epsilon = 10^{-6}$

#### Numerical results in 3D

Second-kind boundary IE on the unit sphere with



- rskelf3 (white), hifie3 (gray), hifie3x (black)
- ► Factorization time (○), solve time (□), memory (◊)
- Precision  $\epsilon = 10^{-3}$

#### Numerical results in 3D

First-kind volume IE on the unit cube with



- rskelf3 (white), hifie3 (black)
- ► Factorization time (◦), solve time (□), memory (◊)
- Precision  $\epsilon = 10^{-3}$

# Differential equations

- Old algorithm (MF)
- ► New algorithm: HIF-DE
- Specialize to exploit sparsity wherever possible

```
Build quadtree/octree.

for each level \ell = 0, 1, 2, \dots, L from finest to coarsest do

Let C_{\ell} be the set of all cells on level \ell.

for each cell c \in C_{\ell} do

Eliminate remaining interior DOFs in c.

end for

end for
```







domain

matrix

# MF in 2D: level 2



## MF in 2D: level 3



MF in 3D: level 0



MF in 3D: level 1



MF in 3D: level 2



#### MF analysis

• Elimination operator (assume A is Hermitian):

$$W_{\ell} = \prod_{c \in C_{\ell}} S_c, \quad S_c = \begin{bmatrix} I & * \\ & I \\ & & I \end{bmatrix}$$

Block diagonalization:

$$D = W_{L-1}^* \cdots W_0^* A W_0 \cdots W_{L-1}$$

LU decomposition:

$$A = W_0^{-*} \cdots W_{L-1}^{-*} D W_{L-1}^{-1} \cdots W_0^{-1}$$
$$A^{-1} = W_0 \cdots W_{L-1} D^{-1} W_L^* \cdots W_0^*$$

Numerically exact: fast direct solver

## MF analysis

The cost is determined by the separator/front size.

|                                                | 2D                                                                                                     | 3D                                                                     |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Front size<br>Factorization cost<br>Solve cost | $ \begin{array}{c} \mathcal{O}(N^{1/2}) \\ \mathcal{O}(N^{3/2}) \\ \mathcal{O}(N \log N) \end{array} $ | $\mathcal{O}(N^{2/3})$<br>$\mathcal{O}(N^2)$<br>$\mathcal{O}(N^{4/3})$ |

Question: How to reduce the front size?

\_

\_

- Frontal matrices are dense but rank-structured
- Use IE techniques by skeletonizing along fronts
- Dimensional reduction

Algorithm: hierarchical interpolative factorization for PDEs in 2D

Build quadtree.

```
for each level \ell = 0, 1, 2, \dots, L from finest to coarsest do

Let C_{\ell} be the set of all cells on level \ell.

for each cell c \in C_{\ell} do

Eliminate remaining interior DOFs in c.

end for

Let C_{\ell+1/2} be the set of all edges on level \ell.

for each cell c \in C_{\ell+1/2} do

Skeletonize remaining DOFs in c.

end for

end for
```



## HIF-DE in 2D: level 1/2





domain

matrix





domain

matrix

## HIF-DE in 2D: level 3/2



#### HIF-DE in 2D: level 2



matrix

domain

HIF-DE in 2D: level 5/2







matrix





Build octree for each level  $\ell = 0, 1, 2, \dots, L$  from finest to coarsest **do** Let  $C_{\ell}$  be the set of all cells on level  $\ell$ . for each cell  $c \in C_{\ell}$  do Eliminate remaining interior DOFs in c. end for Let  $C_{\ell+1/3}$  be the set of all faces on level  $\ell$ . for each cell  $c \in C_{\ell+1/3}$  do Skeletonize remaining DOFs in c. end for Let  $C_{\ell+2/3}$  be the set of all edges on level  $\ell$ . for each cell  $c \in C_{\ell+2/3}$  do Skeletonize remaining DOFs in c. end for end for



HIF-DE in 3D: level 1/3



HIF-DE in 3D: level 2/3



HIF-DE in 3D: level 2



HIF-DE in 3D: level 4/3


HIF-DE in 3D: level 5/3



# domain



# domain

# MF vs. HIF-DE in 3D



MF

HIF-DE

#### **HIF-DE** analysis

$$A^{-1} pprox W_0 U_{1/3} U_{2/3} \cdots U_{L-1/3} D^{-1} U_{L-1/3}^* \cdots U_{2/3}^* U_{1/3}^* W_0^*$$

▶ No longer exact, fast direct solver or preconditioner depending on accuracy

| <b>c</b> · · |                      | (2/1 1/1)             |
|--------------|----------------------|-----------------------|
| Conjecture:  | Skeleton/front size: | $\mathcal{O}(\log N)$ |
|              | Factorization cost:  | $\mathcal{O}(N)$      |
|              | Solve cost:          | $\mathcal{O}(N)$      |

## Numerical results in 2D

Five-point stencil on the unit square with

$$a(x) \equiv 1, \quad b(x) \equiv 0$$



- mf2 (white), hifde2 (black)
- ► Factorization time (◦), solve time (□), memory (◊)
- Precision  $\epsilon = 10^{-9}$

## Numerical results in 2D

Five-point stencil on the unit square with a(x) a quantized high-contrast random field,  $b(x) \equiv 0$ .



- mf2 (white), hifde2 (black)
- ► Factorization time (◦), solve time (□), memory (◊)
- Precision  $\epsilon = 10^{-9}$ ; contrast ratio  $10^4$

## Numerical results in 3D

Seven-point stencil discretization on the unit cube with

$$b(x)\equiv 1, \quad b(x)\equiv 0.$$



mf3 (white), hifde3 (gray), hifde3x (black)

- ▶ Factorization time ( $\circ$ ), solve time ( $\Box$ ), memory ( $\diamond$ )
- ▶ Precision ϵ = 10<sup>-6</sup>

## Conclusions

Efficient factorization of structured operators in 2D and 3D

- Fast matrix-vector multiplication
- · Fast direct solver at high accuracy, preconditioner otherwise
- Empirical linear complexity but no proof yet
- Sparsification and elimination (skeletonization) via the ID
- Dimensional reduction by alternating between cells, faces, and edges
- Can be viewed as adaptive numerical upscaling
- **Extensions**: general structured matrices,  $A^{1/2}$ , log det A, diag  $A^{-1}$
- Naturally parallelizable, block-sweep structure
- > Perspective: structured dense matrices can be sparsified very efficiently
- Can borrow directly from sparse algorithms, e.g., RSF = MF
- What other features of sparse matrices can be exploited?

#### References

- E. Corona, P.-G. Martinsson, D. Zorin. An O(N) direct solver for integral equations on the plane. arXiv:1303.5466, 2013. To appear, Appl. Comput. Harmon. Anal.
- A. Gillman, P.-G. Martinsson. An O(N) algorithm for constructing the solution operator to 2D elliptic boundary value problems in the absence of body loads. arXiv:1302.5995, 2013. To appear, Adv. Comput. Math.
- K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: differential equations. arXiv:1307.2895, 2013.
- K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: integral equations. arXiv:1307.2666, 2013.
- J. Xia, S. Chandrasekaran, M. Gu, X.S. Li. Superfast multifrontal method for large structured linear systems of equations. SIAM J. Matrix Anal. Appl. 31 (3): 1382–1411, 2009.

MATLAB codes available at https://github.com/klho/FLAM/.