
Efficient operator factorizations for integral and
differential equations

Kenneth L. Ho (Stanford)

Joint work with Lexing Ying

Applied Math Seminar, UC Irvine, May 2014



Introduction

Elliptic PDEs in integral or differential form:

a(x)u(x) +

∫
Ω

K (x , y)u(y) dΩ(y) = f (x)

−∇ · (a(x)∇u(x)) + b(x)u(x) = f (x)

I Fundamental to physics and engineering

I Interested in 2D/3D, complex geometry

I Discretize → structured linear system Au = f

Goal: fast and accurate algorithms for the discrete operators

I Fast matrix-vector multiplication, fast direct solver, good preconditioner

I Ideally, fast matrix factorization

I Linear or nearly linear complexity, high practical efficiency



Direct vs. iterative solvers

I Direct solvers: no iteration (e.g., Gaussian elimination)

I Why direct solvers? Compare with iterative methods

Iterative solvers

I GMRES, CG, relaxation methods, multigrid, etc.

I Can achieve linear complexity under certain conditions

I But number of iterations can be large
• Ill-conditioning, high contrasts, geometric singularities
• Need preconditioners or may not converge at all

I Inefficient for multiple right-hand sides
• Time-stepping, inverse problems, optimization, design

Direct solvers

I No convergence issues, much more robust

I Typically very fast solves following initial factorization

I However, classical direct methods can be extremely expensive



Direct vs. iterative solvers

I Direct solvers: no iteration (e.g., Gaussian elimination)

I Why direct solvers? Compare with iterative methods

Iterative solvers

I GMRES, CG, relaxation methods, multigrid, etc.

I Can achieve linear complexity under certain conditions

I But number of iterations can be large
• Ill-conditioning, high contrasts, geometric singularities
• Need preconditioners or may not converge at all

I Inefficient for multiple right-hand sides
• Time-stepping, inverse problems, optimization, design

Direct solvers

I No convergence issues, much more robust

I Typically very fast solves following initial factorization

I However, classical direct methods can be extremely expensive



Direct vs. iterative solvers

I Direct solvers: no iteration (e.g., Gaussian elimination)

I Why direct solvers? Compare with iterative methods

Iterative solvers

I GMRES, CG, relaxation methods, multigrid, etc.

I Can achieve linear complexity under certain conditions

I But number of iterations can be large
• Ill-conditioning, high contrasts, geometric singularities
• Need preconditioners or may not converge at all

I Inefficient for multiple right-hand sides
• Time-stepping, inverse problems, optimization, design

Direct solvers

I No convergence issues, much more robust

I Typically very fast solves following initial factorization

I However, classical direct methods can be extremely expensive



Previous work for IEs

Fast matrix-vector multiplication

I O(N) or O(N logN) using FMM, treecode, H/H2-matrices

Fast direct solver

I HSS matrices/recursive skeletonization
• O(N) in 1D, O(N3/2) in 2D, O(N2) in 3D

I H-matrices: O(N logα N) but with a large constant

I HSS/RS with structured matrix algebra: O(N) in 2D
• Corona, Martinsson, Zorin (2013)



Previous work for PDEs

Fast matrix-vector multiplication: trivial

I Exploit sparsity, O(N) work

Fast direct solver:

I Nested dissection/multifrontal
• O(N3/2) in 2D, O(N2) in 3D; very small constants

I H-matrices: O(N logα N) but with a large constant

I MF with H-matrix algebra: O(N) with an improved constant

I MF with HSS/RS algebra: O(N) in 2D, O(N4/3) in 3D
• Xia, Chandrasekaran, Gu, Li (2009); Gillman, Martinsson (2013)



Overview

Hierarchical interpolative factorization

I RS/MF + recursive dimensional reduction

I Same idea as using structured algebra but much simpler

I New matrix sparsification framework, generalized LU decomposition

I Linear or nearly linear complexity, small constants

I Works for IEs and PDEs in 2D and 3D

I Handles adaptivity and complex geometry

Tools: block elimination, interpolative decomposition, skeletonization



Block elimination

Let

A =

App Apq

Aqp Aqq Aqr

Arq Arr

 .
(Think of A as a sparse matrix.) If App is nonsingular, define

R∗p =

 I
−AqpA

−1
pp I

I

 , Sp =

I −A−1
pp Apq

I
I


so that

R∗pASp =

App

∗ Aqr

Arq Arr

 .
I DOFs p have been eliminated

I Interactions involving r are unchanged



Interpolative decomposition

If A:,q is numerically low-rank, then there exist

I skeleton (q̂) and redundant (q̌) columns partitioning q = q̂ ∪ q̌

I an interpolation matrix Tq

such that

A:,q̌ ≈ A:,q̂Tq.

I Essentially a pivoted QR written slightly differently:

A:,(q̂,q̌) =
[
Q1 Q2

] [R11 R12

R22

]
≈ Q1

[
R11 R12

]
=⇒ A:,q̌ ≈ Q1R12 = Q1R11︸ ︷︷ ︸

A:,q̂

(
R−1

11 R12

)︸ ︷︷ ︸
Tq

Interactions between separated regions are low-rank.



Skeletonization

I Efficient elimination of redundant DOFs from dense matrices

I Let A =

[
App Apq

Aqp Aqq

]
with Apq and Aqp low-rank

I Apply ID to

[
Aqp

A∗pq

]
:

[
Aqp̌

A∗p̌q

]
≈
[
Aqp̂

A∗p̂q

]
Tp =⇒ Aqp̌ ≈ Aqp̂Tp

Ap̌q ≈ T ∗p Ap̂q

I Reorder A =

Ap̌p̌ Ap̌p̂ Ap̌q

Ap̂p̌ Ap̂p̂ Ap̂q

Aqp̌ Aqp̂ Aqq

, define Qp =

 I
−Tp I

I



I Sparsify via ID: Q∗pAQp ≈

∗ ∗
∗ Ap̂p̂ Ap̂q

Aqp̂ Aqq



I Block eliminate: R∗pQ
∗
pAQpSp ≈

∗ ∗ Ap̂q

Aqp̂ Aqq





Integral equations

I Old algorithm (RS) in new factorization form

I New algorithm: HIF-IE



Algorithm: recursive skeletonization factorization

Build quadtree/octree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c .
end for

end for



RSF in 2D: level 0

domain matrix



RSF in 2D: level 1

domain matrix



RSF in 2D: level 2

domain matrix



RSF in 2D: level 3

domain matrix



RSF in 3D: level 0

domain



RSF in 3D: level 1

domain



RSF in 3D: level 2

domain



RSF analysis

I Skeletonization operators:

U` =
∏
c∈C`

QcRc , V` =
∏
c∈C`

QcSc

Qc =

I∗ I
I

 , Rc ,Sc =

I ∗
I

I


I Block diagonalization:

D ≈ U∗L−1 · · ·U∗0AV0 · · ·VL−1

I Generalized LU decomposition:

A ≈ U−∗0 · · ·U−∗L−1DV
−1
L−1 · · ·V

−1
0

A−1 ≈ V0 · · ·VL−1D
−1U∗L · · ·U∗0

I Fast direct solver or preconditioner



RSF analysis

The cost is determined by the skeleton size.

1D 2D 3D

Skeleton size O(logN) O(N1/2) O(N2/3)
Factorization cost O(N) O(N3/2) O(N2)
Solve cost O(N) O(N logN) O(N4/3)

Question: How to reduce the skeleton size in 2D and 3D?

I Skeletons cluster near cell interfaces (Green’s theorem)

I Exploit skeleton geometry by further skeletonizing along interfaces

I Dimensional reduction



Algorithm: hierarchical interpolative factorization for IEs in 2D

Build quadtree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c .
end for
Let C`+1/2 be the set of all edges on level `.
for each cell c ∈ C`+1/2 do

Skeletonize remaining DOFs in c .
end for

end for



HIF-IE in 2D: level 0

domain matrix



HIF-IE in 2D: level 1/2

domain matrix



HIF-IE in 2D: level 1

domain matrix



HIF-IE in 2D: level 3/2

domain matrix



HIF-IE in 2D: level 2

domain matrix



HIF-IE in 2D: level 5/2

domain matrix



HIF-IE in 2D: level 3

domain matrix



RSF vs. HIF-IE in 2D

RSF HIF-IE



RSF vs. HIF-IE in 2D

RSF HIF-IE



Algorithm: hierarchical interpolative factorization for IEs in 3D

Build octree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c .
end for
Let C`+1/3 be the set of all faces on level `.
for each cell c ∈ C`+1/3 do

Skeletonize remaining DOFs in c .
end for
Let C`+2/3 be the set of all edges on level `.
for each cell c ∈ C`+2/3 do

Skeletonize remaining DOFs in c .
end for

end for



HIF-IE in 3D: level 0

domain



HIF-IE in 3D: level 1/3

domain



HIF-IE in 3D: level 2/3

domain



HIF-IE in 3D: level 1

domain



HIF-IE in 3D: level 4/3

domain



HIF-IE in 3D: level 5/3

domain



HIF-IE in 3D: level 2

domain



RSF vs. HIF-IE in 3D

RSF HIF-IE



HIF-IE analysis

I 2D: A ≈ U−∗0 U−∗1/2 · · ·U
−∗
L−1/2DV

−1
L−1/2 · · ·V

−1
1/2V

−1
0

A−1 ≈ V0V1/2 · · ·VL−1/2D
−1U∗L−1/2 · · ·U

∗
1/2U

∗
0

I 3D: A ≈ U−∗0 U−∗1/3U
−∗
2/3 · · ·U

−∗
L−1/3DV

−1
L−1/3 · · ·V

−1
2/3V

−1
1/3V

−1
0

A−1 ≈ V0V1/3V2/3 · · ·VL−1/3D
−1U∗L−1/3 · · ·U

∗
2/3U

∗
1/3U

∗
0

Conjecture: Skeleton size: O(logN)
Factorization cost: O(N)
Solve cost: O(N)



Numerical results in 2D

First-kind volume IE on the unit square with

a(x) ≡ 0, K (x , y) = − 1

2π
log ‖x − y‖.

I rskelf2 (white), hifie2 (black)

I Factorization time (◦), solve time (�), memory (�)
I Precision ε = 10−6



Numerical results in 3D

Second-kind boundary IE on the unit sphere with

a(x) ≡ −1

2
, K (x , y) =

∂

∂ν(y)

1

4π‖x − y‖
.

I rskelf3 (white), hifie3 (gray), hifie3x (black)

I Factorization time (◦), solve time (�), memory (�)
I Precision ε = 10−3



Numerical results in 3D

First-kind volume IE on the unit cube with

a(x) ≡ 0, K (x , y) =
1

4π‖x − y‖
.

I rskelf3 (white), hifie3 (black)

I Factorization time (◦), solve time (�), memory (�)
I Precision ε = 10−3



Differential equations

I Old algorithm (MF)

I New algorithm: HIF-DE

I Specialize to exploit sparsity wherever possible



Algorithm: multifrontal

Build quadtree/octree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Eliminate remaining interior DOFs in c .
end for

end for



MF in 2D: level 0

domain matrix



MF in 2D: level 1

domain matrix



MF in 2D: level 2

domain matrix



MF in 2D: level 3

domain matrix



MF in 3D: level 0

domain



MF in 3D: level 1

domain



MF in 3D: level 2

domain



MF analysis

I Elimination operator (assume A is Hermitian):

W` =
∏
c∈C`

Sc , Sc =

I ∗
I

I


I Block diagonalization:

D = W ∗L−1 · · ·W ∗0 AW0 · · ·WL−1

I LU decomposition:

A = W−∗0 · · ·W−∗L−1DW
−1
L−1 · · ·W

−1
0

A−1 = W0 · · ·WL−1D
−1W ∗L · · ·W ∗0

I Numerically exact: fast direct solver



MF analysis

The cost is determined by the separator/front size.

2D 3D

Front size O(N1/2) O(N2/3)
Factorization cost O(N3/2) O(N2)
Solve cost O(N logN) O(N4/3)

Question: How to reduce the front size?

I Frontal matrices are dense but rank-structured

I Use IE techniques by skeletonizing along fronts

I Dimensional reduction



Algorithm: hierarchical interpolative factorization for PDEs in 2D

Build quadtree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Eliminate remaining interior DOFs in c .
end for
Let C`+1/2 be the set of all edges on level `.
for each cell c ∈ C`+1/2 do

Skeletonize remaining DOFs in c .
end for

end for



HIF-DE in 2D: level 0

domain matrix



HIF-DE in 2D: level 1/2

domain matrix



HIF-DE in 2D: level 1

domain matrix



HIF-DE in 2D: level 3/2

domain matrix



HIF-DE in 2D: level 2

domain matrix



HIF-DE in 2D: level 5/2

domain matrix



HIF-DE in 2D: level 3

domain matrix



MF vs. HIF-DE in 2D

MF HIF-DE



MF vs. HIF-DE in 2D

MF HIF-DE



Algorithm: hierarchical interpolative factorization for PDEs in 3D

Build octree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Eliminate remaining interior DOFs in c .
end for
Let C`+1/3 be the set of all faces on level `.
for each cell c ∈ C`+1/3 do

Skeletonize remaining DOFs in c .
end for
Let C`+2/3 be the set of all edges on level `.
for each cell c ∈ C`+2/3 do

Skeletonize remaining DOFs in c .
end for

end for



HIF-DE in 3D: level 0

domain



HIF-DE in 3D: level 1/3

domain



HIF-DE in 3D: level 2/3

domain



HIF-DE in 3D: level 2

domain



HIF-DE in 3D: level 4/3

domain



HIF-DE in 3D: level 5/3

domain



HIF-DE in 3D: level 2

domain



MF vs. HIF-DE in 3D

MF HIF-DE



HIF-DE analysis

I 2D: A ≈W−∗0 U−∗1/2 · · ·W
−∗
L−1U

−∗
L−1/2DU

−1
L−1/2W

−1
L−1 · · ·U

−1
1/2W

−1
0

A−1 ≈W0U1/2 · · ·WL−1UL−1/2D
−1U∗L−1/2W

∗
L−1 · · ·U∗1/2W

∗
0

I 3D: A ≈W−∗0 U−∗1/3U
−∗
2/3 · · ·U

−∗
L−1/3DU

−1
L−1/3 · · ·U

−1
2/3U

−1
1/3W

−1
0

A−1 ≈W0U1/3U2/3 · · ·UL−1/3D
−1U∗L−1/3 · · ·U

∗
2/3U

∗
1/3W

∗
0

I No longer exact, fast direct solver or preconditioner depending on accuracy

Conjecture: Skeleton/front size: O(logN)
Factorization cost: O(N)
Solve cost: O(N)



Numerical results in 2D

Five-point stencil on the unit square with

a(x) ≡ 1, b(x) ≡ 0.

I mf2 (white), hifde2 (black)

I Factorization time (◦), solve time (�), memory (�)
I Precision ε = 10−9



Numerical results in 2D

Five-point stencil on the unit square with a(x) a
quantized high-contrast random field, b(x) ≡ 0.

I mf2 (white), hifde2 (black)

I Factorization time (◦), solve time (�), memory (�)
I Precision ε = 10−9; contrast ratio 104



Numerical results in 3D

Seven-point stencil discretization on the unit cube with

a(x) ≡ 1, b(x) ≡ 0.

I mf3 (white), hifde3 (gray), hifde3x (black)

I Factorization time (◦), solve time (�), memory (�)
I Precision ε = 10−6



Conclusions

I Efficient factorization of structured operators in 2D and 3D
• Fast matrix-vector multiplication
• Fast direct solver at high accuracy, preconditioner otherwise
• Empirical linear complexity but no proof yet

I Sparsification and elimination (skeletonization) via the ID

I Dimensional reduction by alternating between cells, faces, and edges

I Can be viewed as adaptive numerical upscaling

I Extensions: general structured matrices, A1/2, log detA, diagA−1

I Naturally parallelizable, block-sweep structure

I Perspective: structured dense matrices can be sparsified very efficiently

I Can borrow directly from sparse algorithms, e.g., RSF = MF

I What other features of sparse matrices can be exploited?



References

I E. Corona, P.-G. Martinsson, D. Zorin. An O(N) direct solver for integral equations on the
plane. arXiv:1303.5466, 2013. To appear, Appl. Comput. Harmon. Anal.

I A. Gillman, P.-G. Martinsson. An O(N) algorithm for constructing the solution operator to
2D elliptic boundary value problems in the absence of body loads. arXiv:1302.5995, 2013.
To appear, Adv. Comput. Math.

I K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: differential
equations. arXiv:1307.2895, 2013.

I K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: integral
equations. arXiv:1307.2666, 2013.

I J. Xia, S. Chandrasekaran, M. Gu, X.S. Li. Superfast multifrontal method for large
structured linear systems of equations. SIAM J. Matrix Anal. Appl. 31 (3): 1382–1411,
2009.

MATLAB codes available at https://github.com/klho/FLAM/.

https://github.com/klho/FLAM/

