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Introduction

Elliptic PDEs in integral or differential form:

a(x)u(x) +

∫
Ω

K (x , y)u(y) dΩ(y) = f (x)

−∇ · (a(x)∇u(x)) + b(x)u(x) = f (x)

I Fundamental to physics and engineering

I Interested in 2D/3D, complex geometry

I Discretize → structured linear system Au = f

Goal: fast and accurate algorithms for the discrete operators

I Fast matrix-vector multiplication, fast direct solver, good preconditioner

I Ideally, fast matrix factorization

I Linear or nearly linear complexity, high practical efficiency



Direct vs. iterative solvers

I Direct solvers: no iteration (e.g., Gaussian elimination)

I Why direct solvers? Compare with iterative methods

Iterative solvers

I GMRES, CG, relaxation methods, multigrid, etc.

I Can achieve linear complexity under certain conditions

I But number of iterations can be large
• Ill-conditioning, high contrasts, geometric singularities
• Need preconditioners or may not converge at all

I Inefficient for multiple right-hand sides
• Time-stepping, inverse problems, optimization, design

Direct solvers

I No convergence issues, much more robust

I Typically very fast solves following initial factorization

I However, classical direct methods can be extremely expensive
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Previous work for IEs

Fast matrix-vector multiplication

I O(N) or O(N logN) using FMM, treecode, H/H2-matrices

Fast direct solver

I HSS matrices/recursive skeletonization
• O(N) in 1D, O(N3/2) in 2D, O(N2) in 3D

I H-matrices: O(N logα N) but with a large constant

I HSS/RS with structured matrix algebra: O(N) in 2D
• Corona, Martinsson, Zorin (2013)



Previous work for PDEs

Fast matrix-vector multiplication: trivial

I Exploit sparsity, O(N) work

Fast direct solver:

I Nested dissection/multifrontal
• O(N3/2) in 2D, O(N2) in 3D; very small constants

I H-matrices: O(N logα N) but with a large constant

I MF with H-matrix algebra: O(N) with an improved constant

I MF with HSS/RS algebra: O(N) in 2D, O(N4/3) in 3D
• Xia, Chandrasekaran, Gu, Li (2009); Gillman, Martinsson (2013)



Overview

Hierarchical interpolative factorization

I RS/MF + recursive dimensional reduction

I Same idea as using structured algebra but much simpler

I New matrix sparsification framework, generalized LU decomposition

I Linear or nearly linear complexity, small constants

I Works for IEs and PDEs in 2D and 3D

I Handles adaptivity and complex geometry

Tools: block elimination, interpolative decomposition, skeletonization



Block elimination

Let

A =

App Apq

Aqp Aqq Aqr

Arq Arr

 .
(Think of A as a sparse matrix.) If App is nonsingular, define

R∗p =

 I
−AqpA

−1
pp I

I

 , Sp =

I −A−1
pp Apq

I
I


so that

R∗pASp =

App

∗ Aqr

Arq Arr

 .
I DOFs p have been eliminated

I Interactions involving r are unchanged



Interpolative decomposition

If A:,q is numerically low-rank, then there exist

I skeleton (q̂) and redundant (q̌) columns partitioning q = q̂ ∪ q̌

I an interpolation matrix Tq

such that

A:,q̌ ≈ A:,q̂Tq.

I Essentially a pivoted QR written slightly differently:

A:,(q̂,q̌) =
[
Q1 Q2

] [R11 R12

R22

]
≈ Q1

[
R11 R12

]
=⇒ A:,q̌ ≈ Q1R12 = Q1R11︸ ︷︷ ︸

A:,q̂

(
R−1

11 R12

)︸ ︷︷ ︸
Tq

Interactions between separated regions are low-rank.



Skeletonization

I Efficient elimination of redundant DOFs from dense matrices

I Let A =

[
App Apq

Aqp Aqq

]
with Apq and Aqp low-rank

I Apply ID to

[
Aqp

A∗pq

]
:

[
Aqp̌

A∗p̌q

]
≈
[
Aqp̂

A∗p̂q

]
Tp =⇒ Aqp̌ ≈ Aqp̂Tp

Ap̌q ≈ T ∗p Ap̂q

I Reorder A =

Ap̌p̌ Ap̌p̂ Ap̌q

Ap̂p̌ Ap̂p̂ Ap̂q

Aqp̌ Aqp̂ Aqq

, define Qp =

 I
−Tp I

I



I Sparsify via ID: Q∗pAQp ≈

∗ ∗
∗ Ap̂p̂ Ap̂q

Aqp̂ Aqq



I Block eliminate: R∗pQ
∗
pAQpSp ≈

∗ ∗ Ap̂q

Aqp̂ Aqq





Integral equations

I Old algorithm (RS) in new factorization form

I New algorithm: HIF-IE



Algorithm: recursive skeletonization factorization

Build quadtree/octree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c .
end for

end for



RSF in 2D: level 0

domain matrix



RSF in 2D: level 1

domain matrix



RSF in 2D: level 2

domain matrix



RSF in 2D: level 3

domain matrix



RSF in 3D: level 0

domain



RSF in 3D: level 1

domain



RSF in 3D: level 2

domain



RSF analysis

I Skeletonization operators:

U` =
∏
c∈C`

QcRc , V` =
∏
c∈C`

QcSc

Qc =

I∗ I
I

 , Rc ,Sc =

I ∗
I

I


I Block diagonalization:

D ≈ U∗L−1 · · ·U∗0AV0 · · ·VL−1

I Generalized LU decomposition:

A ≈ U−∗0 · · ·U−∗L−1DV
−1
L−1 · · ·V

−1
0

A−1 ≈ V0 · · ·VL−1D
−1U∗L · · ·U∗0

I Fast direct solver or preconditioner



RSF analysis

The cost is determined by the skeleton size.

1D 2D 3D

Skeleton size O(logN) O(N1/2) O(N2/3)
Factorization cost O(N) O(N3/2) O(N2)
Solve cost O(N) O(N logN) O(N4/3)

Question: How to reduce the skeleton size in 2D and 3D?

I Skeletons cluster near cell interfaces (Green’s theorem)

I Exploit skeleton geometry by further skeletonizing along interfaces

I Dimensional reduction



Algorithm: hierarchical interpolative factorization for IEs in 2D

Build quadtree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c .
end for
Let C`+1/2 be the set of all edges on level `.
for each cell c ∈ C`+1/2 do

Skeletonize remaining DOFs in c .
end for

end for



HIF-IE in 2D: level 0

domain matrix



HIF-IE in 2D: level 1/2

domain matrix



HIF-IE in 2D: level 1

domain matrix



HIF-IE in 2D: level 3/2

domain matrix



HIF-IE in 2D: level 2

domain matrix



HIF-IE in 2D: level 5/2

domain matrix



HIF-IE in 2D: level 3

domain matrix



RSF vs. HIF-IE in 2D

RSF HIF-IE



RSF vs. HIF-IE in 2D

RSF HIF-IE



Algorithm: hierarchical interpolative factorization for IEs in 3D

Build octree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c .
end for
Let C`+1/3 be the set of all faces on level `.
for each cell c ∈ C`+1/3 do

Skeletonize remaining DOFs in c .
end for
Let C`+2/3 be the set of all edges on level `.
for each cell c ∈ C`+2/3 do

Skeletonize remaining DOFs in c .
end for

end for



HIF-IE in 3D: level 0

domain



HIF-IE in 3D: level 1/3

domain



HIF-IE in 3D: level 2/3

domain



HIF-IE in 3D: level 1

domain



HIF-IE in 3D: level 4/3

domain



HIF-IE in 3D: level 5/3

domain



HIF-IE in 3D: level 2

domain



RSF vs. HIF-IE in 3D

RSF HIF-IE



HIF-IE analysis

I 2D: A ≈ U−∗0 U−∗1/2 · · ·U
−∗
L−1/2DV

−1
L−1/2 · · ·V

−1
1/2V

−1
0

A−1 ≈ V0V1/2 · · ·VL−1/2D
−1U∗L−1/2 · · ·U

∗
1/2U

∗
0

I 3D: A ≈ U−∗0 U−∗1/3U
−∗
2/3 · · ·U

−∗
L−1/3DV

−1
L−1/3 · · ·V

−1
2/3V

−1
1/3V

−1
0

A−1 ≈ V0V1/3V2/3 · · ·VL−1/3D
−1U∗L−1/3 · · ·U

∗
2/3U

∗
1/3U

∗
0

Conjecture: Skeleton size: O(logN)
Factorization cost: O(N)
Solve cost: O(N)



Numerical results in 2D

First-kind volume IE on the unit square with

a(x) ≡ 0, K (x , y) = − 1

2π
log ‖x − y‖.

I rskelf2 (white), hifie2 (black)

I Factorization time (◦), solve time (�), memory (�)
I Precision ε = 10−6



Numerical results in 3D

Second-kind boundary IE on the unit sphere with

a(x) ≡ −1

2
, K (x , y) =

∂

∂ν(y)

1

4π‖x − y‖
.

I rskelf3 (white), hifie3 (gray), hifie3x (black)

I Factorization time (◦), solve time (�), memory (�)
I Precision ε = 10−3



Numerical results in 3D

First-kind volume IE on the unit cube with

a(x) ≡ 0, K (x , y) =
1

4π‖x − y‖
.

I rskelf3 (white), hifie3 (black)

I Factorization time (◦), solve time (�), memory (�)
I Precision ε = 10−3



Differential equations

I Old algorithm (MF)

I New algorithm: HIF-DE

I Specialize to exploit sparsity wherever possible



Algorithm: multifrontal

Build quadtree/octree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Eliminate remaining interior DOFs in c .
end for

end for



MF in 2D: level 0

domain matrix



MF in 2D: level 1

domain matrix



MF in 2D: level 2

domain matrix



MF in 2D: level 3

domain matrix



MF in 3D: level 0

domain



MF in 3D: level 1

domain



MF in 3D: level 2

domain



MF analysis

I Elimination operator (assume A is Hermitian):

W` =
∏
c∈C`

Sc , Sc =

I ∗
I

I


I Block diagonalization:

D = W ∗L−1 · · ·W ∗0 AW0 · · ·WL−1

I LU decomposition:

A = W−∗0 · · ·W−∗L−1DW
−1
L−1 · · ·W

−1
0

A−1 = W0 · · ·WL−1D
−1W ∗L · · ·W ∗0

I Numerically exact: fast direct solver



MF analysis

The cost is determined by the separator/front size.

2D 3D

Front size O(N1/2) O(N2/3)
Factorization cost O(N3/2) O(N2)
Solve cost O(N logN) O(N4/3)

Question: How to reduce the front size?

I Frontal matrices are dense but rank-structured

I Use IE techniques by skeletonizing along fronts

I Dimensional reduction



Algorithm: hierarchical interpolative factorization for PDEs in 2D

Build quadtree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Eliminate remaining interior DOFs in c .
end for
Let C`+1/2 be the set of all edges on level `.
for each cell c ∈ C`+1/2 do

Skeletonize remaining DOFs in c .
end for

end for



HIF-DE in 2D: level 0

domain matrix



HIF-DE in 2D: level 1/2

domain matrix



HIF-DE in 2D: level 1

domain matrix



HIF-DE in 2D: level 3/2

domain matrix



HIF-DE in 2D: level 2

domain matrix



HIF-DE in 2D: level 5/2

domain matrix



HIF-DE in 2D: level 3

domain matrix



MF vs. HIF-DE in 2D

MF HIF-DE



MF vs. HIF-DE in 2D

MF HIF-DE



Algorithm: hierarchical interpolative factorization for PDEs in 3D

Build octree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Eliminate remaining interior DOFs in c .
end for
Let C`+1/3 be the set of all faces on level `.
for each cell c ∈ C`+1/3 do

Skeletonize remaining DOFs in c .
end for
Let C`+2/3 be the set of all edges on level `.
for each cell c ∈ C`+2/3 do

Skeletonize remaining DOFs in c .
end for

end for



HIF-DE in 3D: level 0

domain



HIF-DE in 3D: level 1/3

domain



HIF-DE in 3D: level 2/3

domain



HIF-DE in 3D: level 2

domain



HIF-DE in 3D: level 4/3

domain



HIF-DE in 3D: level 5/3

domain



HIF-DE in 3D: level 2

domain



MF vs. HIF-DE in 3D

MF HIF-DE



HIF-DE analysis

I 2D: A ≈W−∗0 U−∗1/2 · · ·W
−∗
L−1U

−∗
L−1/2DU

−1
L−1/2W

−1
L−1 · · ·U

−1
1/2W

−1
0

A−1 ≈W0U1/2 · · ·WL−1UL−1/2D
−1U∗L−1/2W

∗
L−1 · · ·U∗1/2W

∗
0

I 3D: A ≈W−∗0 U−∗1/3U
−∗
2/3 · · ·U

−∗
L−1/3DU

−1
L−1/3 · · ·U

−1
2/3U

−1
1/3W

−1
0

A−1 ≈W0U1/3U2/3 · · ·UL−1/3D
−1U∗L−1/3 · · ·U

∗
2/3U

∗
1/3W

∗
0

I No longer exact, fast direct solver or preconditioner depending on accuracy

Conjecture: Skeleton/front size: O(logN)
Factorization cost: O(N)
Solve cost: O(N)



Numerical results in 2D

Five-point stencil on the unit square with

a(x) ≡ 1, b(x) ≡ 0.

I mf2 (white), hifde2 (black)

I Factorization time (◦), solve time (�), memory (�)
I Precision ε = 10−9



Numerical results in 2D

Five-point stencil on the unit square with a(x) a
quantized high-contrast random field, b(x) ≡ 0.

I mf2 (white), hifde2 (black)

I Factorization time (◦), solve time (�), memory (�)
I Precision ε = 10−9; contrast ratio 104



Numerical results in 3D

Seven-point stencil discretization on the unit cube with

a(x) ≡ 1, b(x) ≡ 0.

I mf3 (white), hifde3 (gray), hifde3x (black)

I Factorization time (◦), solve time (�), memory (�)
I Precision ε = 10−6



Conclusions

I Efficient factorization of structured operators in 2D and 3D
• Fast matrix-vector multiplication
• Fast direct solver at high accuracy, preconditioner otherwise
• Empirical linear complexity but no proof yet

I Sparsification and elimination (skeletonization) via the ID

I Dimensional reduction by alternating between cells, faces, and edges

I Can be viewed as adaptive numerical upscaling

I Extensions: general structured matrices, A1/2, log detA, diagA−1

I Naturally parallelizable, block-sweep structure

I Perspective: structured dense matrices can be sparsified very efficiently

I Can borrow directly from sparse algorithms, e.g., RSF = MF

I What other features of sparse matrices can be exploited?
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MATLAB codes available at https://github.com/klho/FLAM/.

https://github.com/klho/FLAM/

