Hierarchical interpolative factorization

Kenneth L. Ho (Stanford)

Joint work with Lexing Ying
Darve Group Meeting, Jan 2014

Introduction

Elliptic PDEs in differential or integral form:

$$
\begin{aligned}
-\nabla \cdot(a(x) \nabla u(x))+v(x) u(x) & =f(x) \\
a(x) u(x)+\int_{\Omega} K(x, y) u(y) d \Omega(y) & =f(x)
\end{aligned}
$$

- Fundamental to physics and engineering
- Interested in 2D/3D, complex geometry
- Discretize \rightarrow structured linear system $A x=b$

Goal: fast and accurate algorithms for the discrete operators

- Fast matrix-vector multiplication
- Fast solver, good preconditioner
- Linear or nearly linear complexity, high practical efficiency

Previous work

Fast matrix-vector multiplication

- Trivial for differential operators (sparse)
- Achieved for integral operators by FMM, treecode, \mathcal{H}-matrices, etc.

However, fast solvers have been much harder to come by

- Iterative methods
- Number of iterations can be large
- Inefficient for multiple right-hand sides
- Nested dissection/multifrontal, HSS matrices/recursive skeletonization
- Small constants, optimal in quasi-1D
- Rank growth in higher dimensions yields superlinear cost
- \mathcal{H}-matrices
- Optimal complexity but large prefactor
- MF/RS with structured matrix algebra
- Improved prefactor, complex geometry can be difficult

Many contributors; apologies for not listing names

Hierarchical interpolative factorization

- MF/RS + recursive dimensional reduction
- Same idea as with using structured algebra but in a new matrix framework
- Explicit sparsification, generalized LU decomposition
- Extends to 3D, complex geometry, etc.

Tools: Schur complement, interpolative decomposition, skeletonization

Schur complement

Let

$$
A=\left[\begin{array}{ccc}
A_{p p} & A_{p q} & \\
A_{q p} & A_{q q} & A_{q r} \\
& A_{r q} & A_{r r}
\end{array}\right] .
$$

(Think of A as a sparse matrix.) If $A_{p p}$ is nonsingular, define

$$
R_{p}^{*}=\left[\begin{array}{ccc}
I & & \\
-A_{q p} A_{p p}^{-1} & & \\
& & I
\end{array}\right], \quad S_{p}=\left[\begin{array}{ccc}
I & -A_{p p}^{-1} A_{p q} & \\
& I & \\
& & I
\end{array}\right]
$$

so that

$$
R_{p}^{*} A S_{p}=\left[\begin{array}{ccc}
A_{p p} & & \\
& * & A_{q r} \\
& A_{r q} & A_{r r}
\end{array}\right] .
$$

- DOFs p have been eliminated
- Interactions involving r are unchanged

If $A_{:, q}$ is numerically low-rank, then there exist

- redundant (\check{q}) and skeleton (\hat{q}) columns partitioning $q=\check{q} \cup \hat{q}$
- an interpolation matrix T_{q} with $\left\|T_{q}\right\|$ small
such that

$$
A_{:, \check{q}} \approx A_{:, \hat{q}} T_{q} .
$$

- Essentially an RRQR written slightly differently
- Can be computed adaptively to any specified precision
- Fast randomized algorithms are available

Interactions between separated regions are low-rank.

Skeletonization

- Use ID + Schur complement to eliminate redundant DOFs
- Let $A=\left[\begin{array}{ll}A_{p p} & A_{p q} \\ A_{q p} & A_{q q}\end{array}\right]$ with $A_{p q}$ and $A_{q p}$ low-rank
- Apply ID to $\left[\begin{array}{c}A_{q p} \\ A_{p q}^{*}\end{array}\right]:\left[\begin{array}{c}A_{q \check{p}} \\ A_{\hat{p} q}^{*}\end{array}\right] \approx\left[\begin{array}{c}A_{q \hat{p}} \\ A_{\hat{p} q}^{*}\end{array}\right] T_{p} \Longrightarrow \begin{gathered}A_{q \check{p}} \approx A_{q \hat{p}} T_{p} \\ A_{\check{p} q} \approx T_{p}^{*} A_{\hat{p} q}\end{gathered}$
- Reorder $A=\left[\begin{array}{lll}A_{\check{\rho} \check{\rho}} & A_{\breve{\rho} \hat{\rho}} & A_{\check{\rho} q} \\ A_{\hat{\rho} \check{\rho}} & A_{\hat{\rho} \hat{\rho}} & A_{\hat{\rho} q} \\ A_{q \check{\rho}} & A_{q \hat{\rho}} & A_{q q}\end{array}\right]$, define $Q_{p}=\left[\begin{array}{ccc}1 & & \\ -T_{p} & 1 & \\ & & I\end{array}\right]$
- Sparsify via ID: $Q_{p}^{*} A Q_{p} \approx\left[\begin{array}{ccc}* & * & \\ * & A_{\hat{\rho} \hat{p}} & A_{\hat{\rho} q} \\ & A_{q \hat{p}} & A_{q q}\end{array}\right]$
- Schur complement: $R_{p}^{*} Q_{p}^{*} A Q_{p} S_{p} \approx\left[\begin{array}{cccc}* & & \\ & * & A_{\hat{p} q} \\ & A_{q \hat{p}} & A_{q q}\end{array}\right]$

Differential equations

Algorithm: multifrontal

Build quadtree/octree.
for each level $\ell=0,1,2, \ldots, L$ from finest to coarsest do
Let C_{ℓ} be the set of all cells on level ℓ.
for each cell $c \in C_{\ell}$ do
Schur complement remaining interior DOFs in c. end for end for

MF in 2D: level 0

domain

MF in 2D: level 1

MF in 2D: level 2

MF in 2D: level 3

matrix

MF in 3D: level 0

MF in 3D: level 1

domain

MF in 3D: level 2

domain

MF analysis

- Schur complement operator (assume SPD):

$$
W_{\ell}=\prod_{c \in C_{\ell}} S_{c}
$$

- Block diagonalization:

$$
D \approx W_{L-1}^{*} \cdots W_{0}^{*} A W_{0} \cdots W_{L-1}
$$

- LU decomposition:

$$
\begin{aligned}
A & \approx W_{0}^{-*} \cdots W_{L-1}^{-*} D W_{L-1}^{-1} \cdots W_{0}^{-1} \\
A^{-1} & \approx W_{0} \cdots W_{L-1} D^{-1} W_{L}^{*} \cdots W_{0}^{*}
\end{aligned}
$$

- Numerically exact: fast direct solver

MF analysis

The cost is determined by the separator/front size.

	1 D	2 D	3 D
Front size	$\mathcal{O}(1)$	$\mathcal{O}\left(N^{1 / 2}\right)$	$\mathcal{O}\left(N^{2 / 3}\right)$
Factorization cost	$\mathcal{O}(N)$	$\mathcal{O}\left(N^{3 / 2}\right)$	$\mathcal{O}\left(N^{2}\right)$
Solve cost	$\mathcal{O}(N)$	$\mathcal{O}(N \log N)$	$\mathcal{O}\left(N^{4 / 3}\right)$

Question: How to reduce the front size in 2D and 3D?

- Frontal matrices are dense but rank-structured
- Exploit separator geometry by skeletonizing along edges
- Dimensional reduction

Algorithm: hierarchical interpolative factorization in 2D

Build quadtree.
for each level $\ell=0,1,2, \ldots, L$ from finest to coarsest do
Let C_{ℓ} be the set of all cells on level ℓ.
for each cell $c \in C_{\ell}$ do
Schur complement remaining interior DOFs in c.
end for
Let $C_{\ell+1 / 2}$ be the set of all edges on level ℓ.
for each cell $c \in C_{\ell+1 / 2}$ do
Skeletonize remaining interior DOFs in c.
end for
end for

HIF-DE in 2D: level 0

domain

HIF-DE in 2D: level 1/2

HIF-DE in 2D: level 1

matrix

HIF-DE in 2D: level 3/2

HIF-DE in 2D: level 2

domain
matrix

HIF-DE in 2D: level 5/2

domain
matrix

HIF-DE in 2D: level 3

domain
matrix

MF vs. HIF-DE in 2D

MF vs. HIF-DE in 2D

MF

HIF-DE

Algorithm: hierarchical interpolative factorization in 3D

Build octree.
for each level $\ell=0,1,2, \ldots, L$ from finest to coarsest do
Let C_{ℓ} be the set of all cells on level ℓ.
for each cell $c \in C_{\ell}$ do
Schur complement remaining interior DOFs in c.
end for
Let $C_{\ell+1 / 2}$ be the set of all faces on level ℓ.
for each cell $c \in C_{\ell+1 / 2}$ do
Skeletonize remaining interior DOFs in c.
end for
end for

- Can also do additional skeletonization along edges for true linear complexity
- This algorithm is sufficient for $\mathcal{O}(N \log N)$ and better exploits sparsity

HIF-DE in 3D: level 0

HIF-DE in 3D: level 1/2

domain

HIF-DE in 3D: level 1

domain

HIF-DE in 3D: level 3/2

domain

HIF-DE in 3D: level 2

domain

MF vs. HIF-DE in 3D

MF
HIF-DE

HIF-DE analysis

- Skeletonization operator (assume SPD):

$$
U_{\ell}=\prod_{c \in C_{\ell}} Q_{c} S_{c}
$$

- Generalized LU decomposition:

$$
\begin{aligned}
A & \approx W_{0}^{-*} U_{1 / 2}^{-*} \cdots W_{L-1}^{-*} U_{L-1 / 2}^{-*} D U_{L-1 / 2}^{-1} W_{L-1}^{-1} \cdots U_{1 / 2}^{-1} W_{0}^{-1} \\
A^{-1} & \approx W_{0} U_{1 / 2} \cdots W_{L-1} U_{L-1 / 2} D^{-1} U_{L-1 / 2}^{*} W_{L}^{*} \cdots U_{1 / 2}^{*} W_{0}^{*}
\end{aligned}
$$

- No longer exact, fast direct solver or preconditioner depending on accuracy

	2 D	3 D
Skeleton size	$\mathcal{O}(\log N)$	$\mathcal{O}\left(N^{1 / 3}\right)$
Factorization cost	$\mathcal{O}(N)$	$\mathcal{O}(N \log N)$
Solve cost	$\mathcal{O}(N)$	$\mathcal{O}(N)$

Numerical results in 2D

Finite difference discretization on a square with

$$
a(x)=\prod_{\ell=0}^{L}\left(\frac{3}{8} \sin \left(2 \pi 2^{\ell} x_{1}\right) \sin \left(2 \pi 2^{\ell} x_{2}\right)+\frac{5}{8}\right), \quad v(x) \equiv 0
$$

ϵ	N	$\|\hat{c}\|$	$m_{f}(\mathrm{~GB})$	$t_{f}(\mathrm{~s})$	$t_{a / s}(\mathrm{~s})$	e_{a}	e_{s}	n_{i}
10^{-6}	255^{2}	20	$1.4 \mathrm{e}-1$	$3.6 \mathrm{e}+0$	$1.6 \mathrm{e}-1$	$2.3 \mathrm{e}-08$	$3.2 \mathrm{e}-06$	3
	511^{2}	22	$5.8 \mathrm{e}-1$	$1.7 \mathrm{e}+1$	$6.5 \mathrm{e}-1$	$2.2 \mathrm{e}-08$	$1.1 \mathrm{e}-05$	3
	1023^{2}	23	$2.4 \mathrm{e}+0$	$8.1 \mathrm{e}+1$	$2.4 \mathrm{e}+0$	$2.3 \mathrm{e}-08$	$1.8 \mathrm{e}-05$	3
	255^{2}	31	$1.5 \mathrm{e}-1$	$3.8 \mathrm{e}+0$	$2.1 \mathrm{e}-1$	$9.9 \mathrm{e}-12$	$1.1 \mathrm{e}-09$	2
	511^{2}	35	$6.0 \mathrm{e}-1$	$1.9 \mathrm{e}+1$	$6.3 \mathrm{e}-1$	$1.5 \mathrm{e}-11$	$2.7 \mathrm{e}-09$	2
	1023^{2}	38	$2.4 \mathrm{e}+0$	$8.1 \mathrm{e}+1$	$2.3 \mathrm{e}+0$	$1.6 \mathrm{e}-11$	$2.5 \mathrm{e}-08$	2
	255^{2}	38	$1.5 \mathrm{e}-1$	$3.5 \mathrm{e}+0$	$1.4 \mathrm{e}-1$	$1.4 \mathrm{e}-14$	$9.9 \mathrm{e}-13$	1
	511^{2}	44	$6.0 \mathrm{e}-1$	$1.8 \mathrm{e}+1$	$6.2 \mathrm{e}-1$	$1.5 \mathrm{e}-14$	$6.7 \mathrm{e}-12$	2
	1023^{2}	50	$2.5 \mathrm{e}+0$	$9.2 \mathrm{e}+1$	$2.6 \mathrm{e}+0$	$1.7 \mathrm{e}-14$	$7.4 \mathrm{e}-12$	2

Numerical results in 3D

Finite difference discretization on a cube with

$$
a(x)=\prod_{\ell=0}^{L}\left(\frac{3}{8} \sin \left(2 \pi 2^{\ell} x_{1}\right) \sin \left(2 \pi 2^{\ell} x_{2}\right) \sin \left(2 \pi 2^{\ell} x_{3}\right)+\frac{5}{8}\right), \quad v(x) \equiv 0
$$

ϵ	N	$\|\hat{c}\|$	$m_{f}(\mathrm{~GB})$	$t_{f}(\mathrm{~s})$	$t_{a / s}(\mathrm{~s})$	e_{a}	e_{s}	n_{i}
	31^{3}	83	$1.9 \mathrm{e}-1$	$6.5 \mathrm{e}+0$	$7.4 \mathrm{e}-2$	$4.4 \mathrm{e}-05$	$5.8 \mathrm{e}-04$	6
10^{-3}	63^{3}	189	$2.1 \mathrm{e}+0$	$1.3 \mathrm{e}+2$	$8.3 \mathrm{e}-1$	$5.1 \mathrm{e}-05$	$1.1 \mathrm{e}-03$	7
	127^{3}	388	$2.2 \mathrm{e}+1$	$2.0 \mathrm{e}+3$	$8.7 \mathrm{e}+0$	$6.4 \mathrm{e}-05$	$3.2 \mathrm{e}-03$	11
	31^{3}	152	$2.4 \mathrm{e}-1$	$8.1 \mathrm{e}+0$	$8.5 \mathrm{e}-2$	$2.5 \mathrm{e}-08$	$1.3 \mathrm{e}-07$	2
10^{-6}	63^{3}	367	$3.1 \mathrm{e}+0$	$2.0 \mathrm{e}+2$	$1.1 \mathrm{e}+0$	$3.1 \mathrm{e}-08$	$3.2 \mathrm{e}-07$	3
	127^{3}	802	$3.6 \mathrm{e}+1$	$4.1 \mathrm{e}+3$	$1.1 \mathrm{e}+1$	$4.2 \mathrm{e}-08$	$1.3 \mathrm{e}-06$	3
	31^{3}	197	$2.7 \mathrm{e}-1$	$8.8 \mathrm{e}+0$	$7.9 \mathrm{e}-2$	$1.9 \mathrm{e}-11$	$6.6 \mathrm{e}-11$	2
10^{-9}	63^{3}	531	$3.7 \mathrm{e}+0$	$2.4 \mathrm{e}+2$	$1.0 \mathrm{e}+0$	$1.8 \mathrm{e}-11$	$1.2 \mathrm{e}-10$	2
	127^{3}	1225	$4.6 \mathrm{e}+1$	$6.2 \mathrm{e}+3$	$1.3 \mathrm{e}+1$	$2.7 \mathrm{e}-11$	$4.6 \mathrm{e}-10$	2

Integral equations

Algorithm: recursive skeletonization

Build quadtree/octree.
for each level $\ell=0,1,2, \ldots, L$ from finest to coarsest do
Let C_{ℓ} be the set of all cells on level ℓ.
for each cell $c \in C_{\ell}$ do
Skeletonize remaining DOFs in c.

end for

end for

RS in 2D: level 0

domain

matrix

RS in 2D: level 1

domain
matrix

RS in 2D: level 2

RS in 2D: level 3

RS in 3D: level 0

RS in 3D: level 1

domain

RS in 3D: level 2

domain

RS analysis

- Skeletonization operators:

$$
U_{\ell}=\prod_{c \in C_{\ell}} Q_{c} R_{c}, \quad V_{\ell}=\prod_{c \in C_{\ell}} Q_{c} S_{c}
$$

- Block diagonalization:

$$
D \approx U_{L-1}^{*} \cdots U_{0}^{*} A V_{0} \cdots V_{L-1}
$$

- Generalized LU decomposition:

$$
\begin{aligned}
A & \approx U_{0}^{-*} \cdots U_{L-1}^{-*} D V_{L-1}^{-1} \cdots V_{0}^{-1} \\
A^{-1} & \approx V_{0} \cdots V_{L-1} D^{-1} U_{L}^{*} \cdots U_{0}^{*}
\end{aligned}
$$

- Fast direct solver or preconditioner

RS analysis

The cost is determined by the skeleton size.

	1 D	2 D	3 D
Skeleton size	$\mathcal{O}(\log N)$	$\mathcal{O}\left(N^{1 / 2}\right)$	$\mathcal{O}\left(N^{2 / 3}\right)$
Factorization cost	$\mathcal{O}(N)$	$\mathcal{O}\left(N^{3 / 2}\right)$	$\mathcal{O}\left(N^{2}\right)$
Solve cost	$\mathcal{O}(N)$	$\mathcal{O}(N \log N)$	$\mathcal{O}\left(N^{4 / 3}\right)$

Question: How to reduce the skeleton size in 2D and 3D?

- Skeletons cluster near cell interfaces
- Exploit skeleton geometry by skeletonizing along interfaces
- Dimensional reduction

Algorithm: hierarchical interpolative factorization in 2D

Build quadtree.
for each level $\ell=0,1,2, \ldots, L$ from finest to coarsest do
Let C_{ℓ} be the set of all cells on level ℓ.
for each cell $c \in C_{\ell}$ do
Skeletonize remaining DOFs in c.
end for
Let $C_{\ell+1 / 2}$ be the set of all edges on level ℓ.
for each cell $c \in C_{\ell+1 / 2}$ do
Skeletonize remaining DOFs in c.
end for
end for

HIF-IE in 2D: level 0

domain

HIF-IE in 2D: level $1 / 2$

domain
matrix

HIF-IE in 2D: level 1

domain
matrix

HIF-IE in 2D: level $3 / 2$

HIF-IE in 2D: level 2

HIF-IE in 2D: level $5 / 2$

HIF-IE in 2D: level 3

0 00
0

0
0000
domain
0
0
-

\qquad

matrix

RS vs. HIF-IE in 2D

RS vs. HIF-IE in 2D

Algorithm: hierarchical interpolative factorization in 3D

Build octree.
for each level $\ell=0,1,2, \ldots, L$ from finest to coarsest do
Let C_{ℓ} be the set of all cells on level ℓ.
for each cell $c \in C_{\ell}$ do
Skeletonize remaining DOFs in c.
end for
Let $C_{\ell+1 / 3}$ be the set of all faces on level ℓ.
for each cell $c \in C_{\ell+1 / 3}$ do
Skeletonize remaining DOFs in c.
end for
Let $C_{\ell+2 / 3}$ be the set of all edges on level ℓ.
for each cell $c \in C_{\ell+2 / 3}$ do
Skeletonize remaining DOFs in c.
end for
end for

HIF-IE in 3D: level 0

HIF-IE in 3D: level $1 / 3$

HIF-IE in 3D: level $2 / 3$

domain

HIF-IE in 3D: level 1

domain

HIF-IE in 3D: level $4 / 3$

domain

HIF-IE in 3D: level $5 / 3$

domain

HIF-IE in 3D: level 2

domain

RS vs. HIF-IE in 3D

RS

HIF-IE

HIF-IE analysis

- 2D:

$$
\begin{aligned}
A & \approx U_{0}^{-*} U_{1 / 2}^{-*} \cdots U_{L-1 / 2}^{-*} D V_{L-1 / 2}^{-1} \cdots V_{1 / 2}^{-1} V_{0}^{-1} \\
A^{-1} & \approx V_{0} V_{1 / 2} \cdots V_{L-1 / 2} D^{-1} U_{L-1 / 2}^{*} \cdots U_{1 / 2}^{*} U_{0}^{*}
\end{aligned}
$$

- 3D:

$$
\begin{aligned}
A & \approx U_{0}^{-*} U_{1 / 3}^{-*} U_{2 / 3}^{-*} \cdots U_{L-1 / 3}^{-*} D V_{L-1 / 3}^{-1} \cdots V_{2 / 3}^{-1} V_{1 / 3}^{-1} V_{0}^{-1} \\
A^{-1} & \approx V_{0} V_{1 / 3} V_{2 / 3} \cdots V_{L-1 / 3} D^{-1} U_{L-1 / 3}^{*} \cdots U_{2 / 3}^{*} U_{1 / 3}^{*} U_{0}^{*}
\end{aligned}
$$

Skeleton size: $\quad \mathcal{O}(\log N)$
Factorization cost: $\quad \mathcal{O}(N)$
Solve cost: $\quad \mathcal{O}(N)$

Numerical results in 2D

First-kind volume integral equation on a square with

$$
a(x) \equiv 0, \quad K(x, y)=-\frac{1}{2 \pi} \log \|x-y\| .
$$

ϵ	N	\| $\hat{c} \mid$	m_{f} (GB)	$t_{f}(\mathrm{~s})$	$t_{\text {a/s }}(\mathrm{s})$	e_{a}	e_{s}	n_{i}
10^{-3}	$256{ }^{2}$	19	9.8e-2	$1.0 \mathrm{e}+1$	1.6e-1	$1.8 \mathrm{e}-04$	1.1e-2	8
	512^{2}	20	$3.8 \mathrm{e}-1$	$4.3 \mathrm{e}+1$	$6.3 \mathrm{e}-1$	$1.6 \mathrm{e}-04$	$1.6 \mathrm{e}-2$	8
	1024^{2}	20	$1.5 \mathrm{e}+0$	$1.8 \mathrm{e}+2$	$2.6 \mathrm{e}+0$	$2.1 \mathrm{e}-04$	1.4e-2	9
	$2048{ }^{2}$	21	6.1e+0	7.5e+2	1.1e+1	2.2e-04	3.4e-2	9
10^{-6}	$256{ }^{2}$	85	3.0e-1	$2.7 \mathrm{e}+1$	1.2e-1	$2.0 \mathrm{e}-07$	1.6e-5	3
	$512{ }^{2}$	99	$1.3 \mathrm{e}+0$	$1.3 \mathrm{e}+2$	5.0e-1	$1.3 \mathrm{e}-07$	2.3e-5	3
	1024^{2}	115	5.4e+0	$5.9 \mathrm{e}+2$	2.1e+0	$2.5 \mathrm{e}-07$	3.4e-5	3
10^{-9}	$256{ }^{2}$	132	4.4e-1	$4.5 \mathrm{e}+1$	1.2e-1	$7.8 \mathrm{e}-11$	1.3e-8	2
	$512{ }^{2}$	155	$1.8 \mathrm{e}+0$	$2.1 \mathrm{e}+2$	$4.9 \mathrm{e}-1$	$1.1 \mathrm{e}-10$	1.6e-8	2
	$1024{ }^{2}$	181	$7.5 \mathrm{e}+0$	$9.7 \mathrm{e}+2$	$2.0 \mathrm{e}+0$	$1.8 \mathrm{e}-10$	3.1e-8	2

Numerical results in 3D

Second-kind boundary integral equation on a sphere with

$$
a(x) \equiv 1, \quad K(x, y)=\frac{1}{4 \pi\|x-y\|} .
$$

κ	N	$\|\hat{c}\|$	$m_{f}(\mathrm{~GB})$	$t_{f}(\mathrm{~s})$	$t_{a / s}(\mathrm{~s})$	e_{a}	e_{s}
	20480	201	$1.4 \mathrm{e}-1$	$9.8 \mathrm{e}+0$	$3.8 \mathrm{e}-2$	$7.2 \mathrm{e}-4$	$7.1 \mathrm{e}-4$
10^{-3}	81920	307	$5.6 \mathrm{e}-1$	$5.0 \mathrm{e}+1$	$1.8 \mathrm{e}-1$	$1.8 \mathrm{e}-3$	$1.8 \mathrm{e}-3$
	327680	373	$2.1 \mathrm{e}+0$	$2.2 \mathrm{e}+2$	$7.5 \mathrm{e}-1$	$3.8 \mathrm{e}-3$	$3.7 \mathrm{e}-3$
	1310720	440	$8.1 \mathrm{e}+0$	$8.9 \mathrm{e}+2$	$3.2 \mathrm{e}+0$	$9.7 \mathrm{e}-3$	$9.5 \mathrm{e}-3$
	20480	497	$5.2 \mathrm{e}-1$	$6.3 \mathrm{e}+1$	$5.3 \mathrm{e}-2$	$1.1 \mathrm{e}-7$	$1.1 \mathrm{e}-7$
10^{-6}	81920	841	$2.1 \mathrm{e}+0$	$4.1 \mathrm{e}+2$	$2.4 \mathrm{e}-1$	$2.3 \mathrm{e}-7$	$2.3 \mathrm{e}-7$
	327680	1236	$8.2 \mathrm{e}+0$	$2.3 \mathrm{e}+3$	$1.0 \mathrm{e}+0$	$1.2 \mathrm{e}-6$	$1.2 \mathrm{e}-6$

Numerical results in 3D

First-kind volume integral equation on a cube with

$$
a(x) \equiv 0, \quad K(x, y)=\frac{1}{4 \pi\|x-y\|} .
$$

ϵ	N	$\|\hat{c}\|$	m_{f}	t_{f}	$t_{\mathrm{a} / \mathrm{s}}$	e_{a}	e_{s}	n_{i}
10^{-2}	16^{3}	32^{3}	59	$1.5 \mathrm{e}-2$	$1.5 \mathrm{e}+0$	$1.5 \mathrm{e}-2$	$6.0 \mathrm{e}-3$	$2.8 \mathrm{e}-2$
	64^{3}	65	$1.7 \mathrm{e}-1$	$2.1 \mathrm{e}+1$	$1.5 \mathrm{e}-1$	$9.0 \mathrm{e}-3$	$5.7 \mathrm{e}-2$	14
	65	$1.7 \mathrm{e}+0$	$2.8 \mathrm{e}+2$	$1.4 \mathrm{e}+0$	$1.3 \mathrm{e}-2$	$1.3 \mathrm{e}-1$	17	
10^{-3}	16^{3}	92	$4.3 \mathrm{e}-2$	$2.7 \mathrm{e}+0$	$9.6 \mathrm{e}-3$	$2.2 \mathrm{e}-4$	$1.0 \mathrm{e}-3$	6
	32^{3}	171	$4.1 \mathrm{e}-1$	$4.8 \mathrm{e}+1$	$5.9 \mathrm{e}-2$	$4.0 \mathrm{e}-4$	$2 . \mathrm{e}-3$	8
	64^{3}	364	$4.2 \mathrm{e}+0$	$8.8 \mathrm{e}+2$	$5.7 \mathrm{e}-1$	$7.1 \mathrm{e}-4$	$2.4 \mathrm{e}-3$	8
10^{-4}	16^{3}	182	$6.1 \mathrm{e}-2$	$3.1 \mathrm{e}+0$	$7.2 \mathrm{e}-3$	$1.2 \mathrm{e}-5$	$1.2 \mathrm{e}-4$	4
	32^{3}	360	$7.7 \mathrm{e}-1$	$1.5 \mathrm{e}+2$	$8.6 \mathrm{e}-2$	$2.8 \mathrm{e}-5$	$2.3 \mathrm{e}-4$	5
	64^{3}	793	$9.1 \mathrm{e}+0$	$3.5 \mathrm{e}+3$	$9.1 \mathrm{e}-1$	$5.7 \mathrm{e}-5$	$3.6 \mathrm{e}-4$	5

Conclusions

- Linear-time algorithm for structured operators in 2D and 3D
- Fast matrix-vector multiplication
- Fast direct solver at high accuracy, preconditioner otherwise
- Main novelties:
- Dimensional reduction by alternating between cells, faces, and edges
- Matrix factorization via new linear algebraic formulation
- Explicit elimination of DOFs, no nested hierarchical operations
- Can be viewed as adaptive numerical upscaling
- Extensions: $A^{1 / 2}, \log \operatorname{det} A, \operatorname{diag} A^{-1}$
- High accuracy for IEs in 3D still challenging, may require new ideas
- Perspective: structured dense matrices can be sparsified very efficiently
- Can borrow directly from sparse algorithms, e.g., RS = MF
- What other features of sparse matrices can be exploited?

