Linear-time factorization of covariance matrices

Kenneth L. Ho
Stanford University
SIAM UQ 2014

Introduction

- Covariance matrices are central to statistical modeling and UQ
- Example: Gaussian processes/random fields
- Many covariance functions of interest are not compactly supported

$$
\begin{array}{ll}
\text { Exponential (} \lambda \text { large }): & C(r ; \lambda)=\exp (-r / \lambda) \\
\text { Matérn }(\nu \text { small or } \lambda \text { large }): & C(r ; \nu, \lambda)=\frac{1}{r(\nu)^{\nu-1}}\left(\frac{\sqrt{2 \nu} r}{\lambda}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2 \nu} r}{\lambda}\right) \\
\text { Rational quadratic: } & C(r ; \alpha, \lambda)=\left(1+\frac{r^{2}}{2 \alpha \lambda^{2}}\right)^{-\alpha}
\end{array}
$$

- Costs of common operations with dense covariance matrices

$$
\begin{array}{ll}
y=A x & \mathcal{O}\left(N^{2}\right) \\
x=\left(A+\sigma^{2} I\right)^{-1} b & \mathcal{O}\left(N^{3}\right) \\
A=B B^{\top} & \mathcal{O}\left(N^{3}\right) \\
\Delta=\log \operatorname{det} A & \mathcal{O}\left(N^{3}\right)
\end{array}
$$

Introduction

- Covariance matrices are central to statistical modeling and UQ
- Example: Gaussian processes/random fields
- Many covariance functions of interest are not compactly supported

$$
\begin{array}{ll}
\text { Exponential (} \lambda \text { large }): & C(r ; \lambda)=\exp (-r / \lambda) \\
\text { Matérn }(\nu \text { small or } \lambda \text { large }): & C(r ; \nu, \lambda)=\frac{1}{\Gamma(\nu)^{\nu-1}}\left(\frac{\sqrt{2 \nu} r}{\lambda}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2 \nu} r}{\lambda}\right) \\
\text { Rational quadratic: } & C(r ; \alpha, \lambda)=\left(1+\frac{r^{2}}{2 \alpha \lambda^{2}}\right)^{-\alpha}
\end{array}
$$

- Costs of common operations with dense covariance matrices

$$
\begin{array}{lll}
y=A x & \mathcal{O}\left(N^{2}\right) & \rightarrow \mathcal{O}(N) \\
x=\left(A+\sigma^{2} I\right)^{-1} b & \mathcal{O}\left(N^{3}\right) & \rightarrow \mathcal{O}(N) \\
A=B B^{\top} & \mathcal{O}\left(N^{3}\right) & \rightarrow \mathcal{O}(N) \\
\Delta=\log \operatorname{det} A & \mathcal{O}\left(N^{3}\right) & \rightarrow \mathcal{O}(N)
\end{array}
$$

- Our goal is to accelerate these to linear complexity

Main observation

- Covariance matrix is dense but structured
- Far field is smooth \Longrightarrow low-rank off-diagonal blocks
- Decompose and compress hierarchically
- Similar in flavor to fast multipole methods and treecodes

Overview

Problem setting:

- Matrix can be low-rank but best if rank is not too small
- Otherwise just use low-rank techniques (random sampling)
- Low ambient dimensionality: think time or space
- Fixed-domain asymptotics ($N \rightarrow \infty$ with λ fixed)

Results:

- Generalized Cholesky factorization via recursive skeletonization
- Originally developed for solving integral equations for elliptic PDEs
- Martinsson, Rokhlin (2005); Gillman, Young, Martinsson (2012); Ho, Greengard (2012); Ho, Ying (2013)
- Optimal $\mathcal{O}(N)$ complexity with small constants
- Kernel-independent: depends weakly on specific covariance function
- Reformulation of previous methods in terms of sparsification

Overview

Problem setting:

- Matrix can be low-rank but best if rank is not too small
- Otherwise just use low-rank techniques (random sampling)
- Low ambient dimensionality: think time or space
- Fixed-domain asymptotics $(N \rightarrow \infty$ with λ fixed)

Results:

- Generalized Cholesky factorization via recursive skeletonization
- Originally developed for solving integral equations for elliptic PDEs
- Martinsson, Rokhlin (2005); Gillman, Young, Martinsson (2012); Ho, Greengard (2012); Ho, Ying (2013)
- Optimal $\mathcal{O}(N)$ complexity with small constants
- Kernel-independent: depends weakly on specific covariance function
- Reformulation of previous methods in terms of sparsification

Tools: block elimination, interpolative decomposition, skeletonization

Block elimination

Let A be SPD with

$$
A=\left[\begin{array}{lll}
A_{p p} & A_{p q} & \\
A_{q p} & A_{q q} & A_{q r} \\
& A_{r q} & A_{r r}
\end{array}\right]
$$

(think of A as a sparse matrix) and define

$$
S_{p}=\left[\begin{array}{ccc}
I & -A_{p p}^{-1} A_{p q} & \\
& I & \\
& & I
\end{array}\right] \quad \Longrightarrow \quad S_{p}^{\top} A S_{p}=\left[\begin{array}{ccc}
A_{p p} & & \\
& * & A_{q r} \\
& A_{r q} & A_{r r}
\end{array}\right] .
$$

- DOFs p have been eliminated
- Interactions involving r are unchanged

Interpolative decomposition

If $A_{:, q}$ is numerically low-rank, then there exist

- skeleton (\hat{q}) and redundant (\check{q}) columns partitioning $q=\hat{q} \cup \check{q}$
- an interpolation matrix T_{q}
such that

$$
A_{:, \check{q}} \approx A_{:, \hat{q}} T_{q} .
$$

- Essentially a pivoted QR written slightly differently:

$$
\begin{aligned}
A_{:,(\hat{q}, \hat{q})}=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{ll}
R_{11} & R_{12} \\
& R_{22}
\end{array}\right] & \approx Q_{1}\left[\begin{array}{ll}
R_{11} & R_{12}
\end{array}\right] \\
& \Longrightarrow A_{:, \mathfrak{q}} \approx Q_{1} R_{12}=\underbrace{Q_{1} R_{11}}_{A_{i} ; \hat{q}} \underbrace{\left(R_{11}^{-1} R_{12}\right)}_{T_{q}}
\end{aligned}
$$

- Can be computed adaptively to any specified precision
- Fast randomized algorithms are available

Skeletonization

- Efficient elimination of redundant DOFs from dense matrices
- Let $A=\left[\begin{array}{cc}A_{p p} & A_{p q} \\ A_{q p} & A_{q q}\end{array}\right]$ with $A_{q p}=A_{p q}^{\top}$ low-rank
- Apply ID to $A_{q p}: A_{q \check{\rho}} \approx A_{q \hat{\rho}} T_{p}$
- Reorder $A=\left[\begin{array}{lll}A_{\check{\rho} \check{\rho}} & A_{\check{\rho} \hat{\rho}} & A_{\check{\rho} q} \\ A_{\hat{\rho} \check{\rho}} & A_{\hat{\rho} \hat{\rho}} & A_{\hat{\rho} q} \\ A_{q \check{\rho}} & A_{q \hat{\rho}} & A_{q q}\end{array}\right]$, define $Q_{p}=\left[\begin{array}{ccc}1 & & \\ -T_{p} & 1 & \\ & & 1\end{array}\right]$
- Sparsify via ID: $Q_{p}^{\top} A Q_{p} \approx\left[\begin{array}{ccc}* & * & \\ * & A_{\hat{p} \hat{p}} & A_{\hat{p} q} \\ & A_{q \hat{p}} & A_{q q}\end{array}\right]$
- Block eliminate: $S_{p}^{\top} Q_{p}^{\top} A Q_{p} S_{p} \approx\left[\begin{array}{ccc}* & & \\ & * & A_{\hat{p} q} \\ & A_{q \hat{p}} & A_{q q}\end{array}\right]$

Algorithm: recursive skeletonization

Build tree.
for each level $\ell=0,1,2, \ldots, L$ from finest to coarsest do
Let C_{ℓ} be the set of all cells on level ℓ.
for each cell $c \in C_{\ell}$ do
Skeletonize remaining DOFs in c.
end for
end for

Algorithm: recursive skeletonization

Build tree.
for each level $\ell=0,1,2, \ldots, L$ from finest to coarsest do Let C_{ℓ} be the set of all cells on level ℓ. for each cell $c \in C_{\ell}$ do

Skeletonize remaining DOFs in c. end for
end for

Example. Matérn $(\nu=3 / 2)$ on the unit square:

$$
C(r ; \lambda)=\left(1+\frac{\sqrt{3} r}{\lambda}\right) \exp \left(-\frac{\sqrt{3} r}{\lambda}\right), \quad \lambda=\frac{1}{4}
$$

Approximate to relative precision $\epsilon=10^{-6}: N=16384 \rightarrow 543$.

RS in 2D: level 0

domain
matrix

RS in 2D: level 1

\%. \%ix M M 1080 Tiwn in \% \% $0.80 \% 80$ 0808080% 6i 0.80% \% oin 0.80

domain

RS in 2D: level 2

domain
matrix

RS in 2D: level 3

domain

RS in 2D: level 4

Matrix factorization

- Skeletonization operators:

$$
U_{\ell}=\prod_{c \in C_{\ell}} Q_{c} S_{c}, \quad Q_{p}=\left[\begin{array}{lll}
l & & \\
* & 1 & \\
& & I
\end{array}\right], \quad S_{p}=\left[\begin{array}{lll}
1 & * & \\
& 1 & \\
& & I
\end{array}\right],
$$

- Symmetric block diagonalization:

$$
D \approx U_{L-1}^{\top} \cdots U_{0}^{\top} A U_{0} \cdots U_{L-1}
$$

- Generalized Cholesky/LDL ${ }^{\top}$ decomposition:

$$
\begin{aligned}
A & \approx U_{0}^{-\top} \cdots U_{L-1}^{-T} D U_{L-1}^{-1} \cdots U_{0}^{-1} \\
A^{-1} & \approx U_{0} \cdots U_{L-1} D^{-1} U_{L}^{\top} \cdots U_{0}^{\top}
\end{aligned}
$$

- Cholesky square root: take half the factorization
- Determinant: $\operatorname{det} A=\operatorname{det} D$
- All operations are very cheap once the factorization has been constructed

Accelerated compression

- Main cost of algorithm is computing IDs
- Each ID requires a tall-and-skinny QR (on $A_{p c, p}$)
- Naive compression is global and therefore at least $\mathcal{O}\left(N^{2}\right)$

Accelerated compression

- Main cost of algorithm is computing IDs
- Each ID requires a tall-and-skinny QR (on $A_{p c, p}$)
- Naive compression is global and therefore at least $\mathcal{O}\left(N^{2}\right)$
- Idea from elliptic PDEs: use Green's theorem
- Capture well-separated interactions via a local proxy surface
- Keep neighbors explicitly

Accelerated compression

- Main cost of algorithm is computing IDs
- Each ID requires a tall-and-skinny QR (on $A_{p c, p}$)
- Naive compression is global and therefore at least $\mathcal{O}\left(N^{2}\right)$
- Idea from elliptic PDEs: use Green's theorem
- Capture well-separated interactions via a local proxy surface
- Keep neighbors explicitly

- In our case, no Green's theorem but should still be able to sample sparsely
- Use a few concentric rings of radius $1,2,4,8$, etc.
- Not rigorous but works well in many cases

Complexity analysis

Theorem

If the off-diagonal block rank is bounded, then constructing the approximate factorization requires $\mathcal{O}(N)$ operations.

Complexity analysis

Theorem

If the off-diagonal block rank is bounded, then constructing the approximate factorization requires $\mathcal{O}(N)$ operations.

- For fixed-domain asymptotics, interaction length scale is independent of N
- Therefore, number of "distinct" interactions is bounded
- Rank is bounded \Longrightarrow linear complexity
- Note: constant has the form $\mathcal{O}\left(2^{d}\right)$

Complexity analysis

Theorem

If the off-diagonal block rank is bounded, then constructing the approximate factorization requires $\mathcal{O}(N)$ operations.

- For fixed-domain asymptotics, interaction length scale is independent of N
- Therefore, number of "distinct" interactions is bounded
- Rank is bounded \Longrightarrow linear complexity
- Note: constant has the form $\mathcal{O}\left(2^{d}\right)$

What about increasing-domain asymptotics?

- Number of interactions grows as $1 / \lambda \sim N^{1 / d}$
- Cost becomes $\mathcal{O}\left(N^{3(1-1 / d)}\right)$
- Must do additional work to recover linear complexity
- Hierarchical interpolative factorization: Ho, Ying (2013)

Numerical benchmarks

Matérn ($\nu=3 / 2, \lambda=1 / 8$) with nugget effect of $\sigma^{2}=0.01$

- Point distributions: unit line (1D) or square (2D)

d	ϵ	N	r	$t_{f}(\mathrm{~s})$	$t_{\text {a/s }}$ (s)	$t_{d}(\mathrm{~s})$	e_{a}	e_{d}
1D	10^{-08}	262144	4	$1.8 \mathrm{e}+1$	$4.8 \mathrm{e}-1$	9.8e-2	$1.1 \mathrm{e}-08$	1.2e-9
		524288	4	$3.5 \mathrm{e}+1$	$1.1 \mathrm{e}+0$	2.0e-1	$4.3 \mathrm{e}-07$	$1.8 \mathrm{e}-7$
		1048576	4	7.0e+1	$2.0 \mathrm{e}+0$	3.9e-1	$4.7 \mathrm{e}-07$	1.1e-7
1D	10^{-12}	262144	4	$1.8 \mathrm{e}+1$	$4.7 \mathrm{e}-1$	9.9e-2	$2.1 \mathrm{e}-13$	-
		524288	4	$3.5 \mathrm{e}+1$	$9.3 \mathrm{e}-1$	2.0e-1	$2.8 \mathrm{e}-13$	-
		1048576	4	$7.0 \mathrm{e}+1$	$1.9 \mathrm{e}+0$	4.0e-1	$3.0 \mathrm{e}-13$	-
2D	10^{-06}	$256{ }^{2}$	214	$7.4 \mathrm{e}+0$	$1.2 \mathrm{e}-1$	1.8e-2	$5.8 \mathrm{e}-07$	$2.6 \mathrm{e}-6$
		512^{2}	219	$2.8 \mathrm{e}+1$	$4.1 \mathrm{e}-1$	7.3e-2	$1.8 \mathrm{e}-06$	$4.1 \mathrm{e}-6$
		1024^{2}	220	$1.1 \mathrm{e}+2$	$1.6 \mathrm{e}+0$	$2.9 \mathrm{e}-1$	$1.7 \mathrm{e}-06$	8.0e-6
2D	10^{-09}	$256{ }^{2}$	1081	$3.2 \mathrm{e}+1$	$2.1 \mathrm{e}-1$	$1.8 \mathrm{e}-2$	$5.4 \mathrm{e}-10$	-
		512^{2}	1227	$6.7 \mathrm{e}+1$	$5.9 \mathrm{e}-1$	7.4e-2	$1.1 \mathrm{e}-09$	-
		$1024{ }^{2}$	1301	$1.7 \mathrm{e}+2$	$1.9 \mathrm{e}+0$	3.0e-1	$4.0 \mathrm{e}-09$	-

Example: GP regression and conditional sampling

- Unknown function $f(x)$ on $[0,1]$
- Prior: zero mean, Matérn covariance $C\left(x, x^{\prime}\right)$ with $\nu=3 / 2$ and $\lambda=1 / 8$
- Measurements $y_{1}=f\left(x_{1}\right)+\epsilon, \epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$, at N uniform random points
- Estimate values of $y_{2}=f\left(x_{2}\right)$ at N equispaced points:

$$
\begin{aligned}
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\right), \begin{array}{l}
A_{11}=C\left(x_{1}, x_{1}\right)+\sigma^{2} I \\
A_{21}=C\left(x_{2}, x_{1}\right) \\
A_{22}=C\left(x_{2}, x_{2}\right)
\end{array}} \\
& \Longrightarrow y_{2} \mid y_{1} \sim \mathcal{N}\left(\mu_{\text {post }}, A_{\text {post }}\right), \begin{array}{l}
\mu_{\text {post }}=A_{21} A_{11}^{-1} y_{1} \\
A_{\text {post }}=A_{22}-A_{21} A_{11}^{-1} A_{12}
\end{array}
\end{aligned}
$$

- $N \sim 10^{6}, \sigma^{2}=0.01: 273$ s to compute $\mu_{\text {post }}$ to precision 10^{-5}
- Generate conditional samples via $\hat{y}_{2}=z_{2}-A_{21} A_{11}^{-1} z_{1}$, where $z \sim \mathcal{N}(0, A)$
- Estimate posterior variance to precision 10^{-2} by sampling: $\sim 30 \mathrm{~min}$

Summary

- Efficient factorization of covariance matrices
- Apply, solve, square root, determinant, etc.
- Extends to general structured matrices with low-rank off-diagonal blocks
- Linear complexity under fixed-domain asymptotics
- Can extend to increasing domain asymptotics with some work
- Key idea: sparsification and elimination (skeletonization) via the ID
- Naturally parallelizable: independent for-loops up a tree
- However, effective only in low dimensions (great for time course data!)
- High-dimensional setting will require new ideas

Summary

- Efficient factorization of covariance matrices
- Apply, solve, square root, determinant, etc.
- Extends to general structured matrices with low-rank off-diagonal blocks
- Linear complexity under fixed-domain asymptotics
- Can extend to increasing domain asymptotics with some work
- Key idea: sparsification and elimination (skeletonization) via the ID
- Naturally parallelizable: independent for-loops up a tree
- However, effective only in low dimensions (great for time course data!)
- High-dimensional setting will require new ideas

Thanks!

