
Linear-time factorization of covariance matrices

Kenneth L. Ho

Stanford University

SIAM UQ 2014



Introduction

I Covariance matrices are central to statistical modeling and UQ
• Example: Gaussian processes/random fields

I Many covariance functions of interest are not compactly supported

Exponential (λ large): C(r ;λ) = exp(−r/λ)

Matérn (ν small or λ large): C(r ; ν, λ) = 1
Γ(ν)2ν−1

(√
2νr
λ

)ν
Kν

(√
2νr
λ

)
Rational quadratic: C(r ;α, λ) =

(
1 + r2

2αλ2

)−α
I Costs of common operations with dense covariance matrices

y = Ax O(N2)

→ O(N)

x = (A + σ2I )−1b O(N3)

→ O(N)

A = BBT O(N3)

→ O(N)

∆ = log det A O(N3)

→ O(N)

I Our goal is to accelerate these to linear complexity



Introduction

I Covariance matrices are central to statistical modeling and UQ
• Example: Gaussian processes/random fields

I Many covariance functions of interest are not compactly supported

Exponential (λ large): C(r ;λ) = exp(−r/λ)

Matérn (ν small or λ large): C(r ; ν, λ) = 1
Γ(ν)2ν−1

(√
2νr
λ

)ν
Kν

(√
2νr
λ

)
Rational quadratic: C(r ;α, λ) =

(
1 + r2

2αλ2

)−α
I Costs of common operations with dense covariance matrices

y = Ax O(N2) → O(N)
x = (A + σ2I )−1b O(N3) → O(N)
A = BBT O(N3) → O(N)
∆ = log det A O(N3) → O(N)

I Our goal is to accelerate these to linear complexity



Main observation

I Covariance matrix is dense but structured

I Far field is smooth =⇒ low-rank off-diagonal blocks

I Decompose and compress hierarchically

I Similar in flavor to fast multipole methods and treecodes



Overview

Problem setting:

I Matrix can be low-rank but best if rank is not too small
• Otherwise just use low-rank techniques (random sampling)

I Low ambient dimensionality: think time or space

I Fixed-domain asymptotics (N →∞ with λ fixed)

Results:

I Generalized Cholesky factorization via recursive skeletonization
• Originally developed for solving integral equations for elliptic PDEs

• Martinsson, Rokhlin (2005); Gillman, Young, Martinsson (2012);

Ho, Greengard (2012); Ho, Ying (2013)

I Optimal O(N) complexity with small constants

I Kernel-independent: depends weakly on specific covariance function

I Reformulation of previous methods in terms of sparsification

Tools: block elimination, interpolative decomposition, skeletonization



Overview

Problem setting:

I Matrix can be low-rank but best if rank is not too small
• Otherwise just use low-rank techniques (random sampling)

I Low ambient dimensionality: think time or space

I Fixed-domain asymptotics (N →∞ with λ fixed)

Results:

I Generalized Cholesky factorization via recursive skeletonization
• Originally developed for solving integral equations for elliptic PDEs

• Martinsson, Rokhlin (2005); Gillman, Young, Martinsson (2012);

Ho, Greengard (2012); Ho, Ying (2013)

I Optimal O(N) complexity with small constants

I Kernel-independent: depends weakly on specific covariance function

I Reformulation of previous methods in terms of sparsification

Tools: block elimination, interpolative decomposition, skeletonization



Block elimination

Let A be SPD with

A =

App Apq

Aqp Aqq Aqr

Arq Arr


(think of A as a sparse matrix) and define

Sp =

I −A−1
pp Apq

I
I

 =⇒ ST
p ASp =

App

∗ Aqr

Arq Arr

 .

I DOFs p have been eliminated

I Interactions involving r are unchanged



Interpolative decomposition

If A:,q is numerically low-rank, then there exist

I skeleton (q̂) and redundant (q̌) columns partitioning q = q̂ ∪ q̌

I an interpolation matrix Tq

such that

A:,q̌ ≈ A:,q̂Tq.

I Essentially a pivoted QR written slightly differently:

A:,(q̂,q̌) =
[
Q1 Q2

] [R11 R12

R22

]
≈ Q1

[
R11 R12

]
=⇒ A:,q̌ ≈ Q1R12 = Q1R11︸ ︷︷ ︸

A:,q̂

(
R−1

11 R12

)︸ ︷︷ ︸
Tq

I Can be computed adaptively to any specified precision

I Fast randomized algorithms are available



Skeletonization

I Efficient elimination of redundant DOFs from dense matrices

I Let A =

[
App Apq

Aqp Aqq

]
with Aqp = AT

pq low-rank

I Apply ID to Aqp: Aqp̌ ≈ Aqp̂Tp

I Reorder A =

Ap̌p̌ Ap̌p̂ Ap̌q

Ap̂p̌ Ap̂p̂ Ap̂q

Aqp̌ Aqp̂ Aqq

, define Qp =

 I
−Tp I

I



I Sparsify via ID: QT
p AQp ≈

∗ ∗
∗ Ap̂p̂ Ap̂q

Aqp̂ Aqq



I Block eliminate: ST
p QT

p AQpSp ≈

∗ ∗ Ap̂q

Aqp̂ Aqq





Algorithm: recursive skeletonization

Build tree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c .
end for

end for

Example. Matérn (ν = 3/2) on the unit square:

C (r ;λ) =

(
1 +

√
3r

λ

)
exp

(
−
√

3r

λ

)
, λ =

1

4
.

Approximate to relative precision ε = 10−6: N = 16384→ 543.



Algorithm: recursive skeletonization

Build tree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c .
end for

end for

Example. Matérn (ν = 3/2) on the unit square:

C (r ;λ) =

(
1 +

√
3r

λ

)
exp

(
−
√

3r

λ

)
, λ =

1

4
.

Approximate to relative precision ε = 10−6: N = 16384→ 543.



RS in 2D: level 0

domain matrix



RS in 2D: level 1

domain matrix



RS in 2D: level 2

domain matrix



RS in 2D: level 3

domain matrix



RS in 2D: level 4

domain matrix



Matrix factorization

I Skeletonization operators:

U` =
∏
c∈C`

QcSc , Qp =

I
∗ I

I

 , Sp =

I ∗
I

I

 ,
I Symmetric block diagonalization:

D ≈ UT
L−1 · · ·UT

0 AU0 · · ·UL−1

I Generalized Cholesky/LDLT decomposition:

A ≈ U−T
0 · · ·U−T

L−1DU−1
L−1 · · ·U

−1
0

A−1 ≈ U0 · · ·UL−1D−1UT
L · · ·UT

0

I Cholesky square root: take half the factorization

I Determinant: det A = det D

I All operations are very cheap once the factorization has been constructed



Accelerated compression

I Main cost of algorithm is computing IDs

I Each ID requires a tall-and-skinny QR (on ApC,p)

I Naive compression is global and therefore at least O(N2)

I Idea from elliptic PDEs: use Green’s theorem
• Capture well-separated interactions via a local proxy surface
• Keep neighbors explicitly

I In our case, no Green’s theorem but should still be able to sample sparsely

I Use a few concentric rings of radius 1, 2, 4, 8, etc.

I Not rigorous but works well in many cases



Accelerated compression

I Main cost of algorithm is computing IDs

I Each ID requires a tall-and-skinny QR (on ApC,p)

I Naive compression is global and therefore at least O(N2)

I Idea from elliptic PDEs: use Green’s theorem
• Capture well-separated interactions via a local proxy surface
• Keep neighbors explicitly

I In our case, no Green’s theorem but should still be able to sample sparsely

I Use a few concentric rings of radius 1, 2, 4, 8, etc.

I Not rigorous but works well in many cases



Accelerated compression

I Main cost of algorithm is computing IDs

I Each ID requires a tall-and-skinny QR (on ApC,p)

I Naive compression is global and therefore at least O(N2)

I Idea from elliptic PDEs: use Green’s theorem
• Capture well-separated interactions via a local proxy surface
• Keep neighbors explicitly

I In our case, no Green’s theorem but should still be able to sample sparsely

I Use a few concentric rings of radius 1, 2, 4, 8, etc.

I Not rigorous but works well in many cases



Complexity analysis

Theorem
If the off-diagonal block rank is bounded, then constructing the approximate
factorization requires O(N) operations.

I For fixed-domain asymptotics, interaction length scale is independent of N

I Therefore, number of “distinct” interactions is bounded

I Rank is bounded =⇒ linear complexity

I Note: constant has the form O(2d)

What about increasing-domain asymptotics?

I Number of interactions grows as 1/λ ∼ N1/d

I Cost becomes O
(
N3(1−1/d)

)
I Must do additional work to recover linear complexity

• Hierarchical interpolative factorization: Ho, Ying (2013)



Complexity analysis

Theorem
If the off-diagonal block rank is bounded, then constructing the approximate
factorization requires O(N) operations.

I For fixed-domain asymptotics, interaction length scale is independent of N

I Therefore, number of “distinct” interactions is bounded

I Rank is bounded =⇒ linear complexity

I Note: constant has the form O(2d)

What about increasing-domain asymptotics?

I Number of interactions grows as 1/λ ∼ N1/d

I Cost becomes O
(
N3(1−1/d)

)
I Must do additional work to recover linear complexity

• Hierarchical interpolative factorization: Ho, Ying (2013)



Complexity analysis

Theorem
If the off-diagonal block rank is bounded, then constructing the approximate
factorization requires O(N) operations.

I For fixed-domain asymptotics, interaction length scale is independent of N

I Therefore, number of “distinct” interactions is bounded

I Rank is bounded =⇒ linear complexity

I Note: constant has the form O(2d)

What about increasing-domain asymptotics?

I Number of interactions grows as 1/λ ∼ N1/d

I Cost becomes O
(
N3(1−1/d)

)
I Must do additional work to recover linear complexity

• Hierarchical interpolative factorization: Ho, Ying (2013)



Numerical benchmarks

Matérn (ν = 3/2, λ = 1/8) with nugget effect of σ2 = 0.01

I Point distributions: unit line (1D) or square (2D)

d ε N r tf (s) ta/s (s) td (s) ea ed

1D 10−08
262144 4 1.8e+1 4.8e−1 9.8e−2 1.1e−08 1.2e−9
524288 4 3.5e+1 1.1e+0 2.0e−1 4.3e−07 1.8e−7

1048576 4 7.0e+1 2.0e+0 3.9e−1 4.7e−07 1.1e−7

1D 10−12
262144 4 1.8e+1 4.7e−1 9.9e−2 2.1e−13 —
524288 4 3.5e+1 9.3e−1 2.0e−1 2.8e−13 —

1048576 4 7.0e+1 1.9e+0 4.0e−1 3.0e−13 —

2D 10−06
2562 214 7.4e+0 1.2e−1 1.8e−2 5.8e−07 2.6e−6
5122 219 2.8e+1 4.1e−1 7.3e−2 1.8e−06 4.1e−6

10242 220 1.1e+2 1.6e+0 2.9e−1 1.7e−06 8.0e−6

2D 10−09
2562 1081 3.2e+1 2.1e−1 1.8e−2 5.4e−10 —
5122 1227 6.7e+1 5.9e−1 7.4e−2 1.1e−09 —

10242 1301 1.7e+2 1.9e+0 3.0e−1 4.0e−09 —



Example: GP regression and conditional sampling

I Unknown function f (x) on [0, 1]

I Prior: zero mean, Matérn covariance C (x , x ′) with ν = 3/2 and λ = 1/8

I Measurements y1 = f (x1) + ε, ε ∼ N (0, σ2), at N uniform random points

I Estimate values of y2 = f (x2) at N equispaced points:

[
y1

y2

]
∼ N

([
0
0

]
,

[
A11 A12

A21 A22

])
,

A11 = C (x1, x1) + σ2I
A21 = C (x2, x1)
A22 = C (x2, x2)

=⇒ y2 | y1 ∼ N (µpost,Apost),
µpost = A21A−1

11 y1

Apost = A22 − A21A−1
11 A12

I N ∼ 106, σ2 = 0.01: 273 s to compute µpost to precision 10−5

I Generate conditional samples via ŷ2 = z2 − A21A−1
11 z1, where z ∼ N (0,A)

I Estimate posterior variance to precision 10−2 by sampling: ∼ 30 min



Summary

I Efficient factorization of covariance matrices
• Apply, solve, square root, determinant, etc.
• Extends to general structured matrices with low-rank off-diagonal blocks

I Linear complexity under fixed-domain asymptotics
• Can extend to increasing domain asymptotics with some work

I Key idea: sparsification and elimination (skeletonization) via the ID

I Naturally parallelizable: independent for-loops up a tree

I However, effective only in low dimensions (great for time course data!)
• High-dimensional setting will require new ideas

Thanks!



Summary

I Efficient factorization of covariance matrices
• Apply, solve, square root, determinant, etc.
• Extends to general structured matrices with low-rank off-diagonal blocks

I Linear complexity under fixed-domain asymptotics
• Can extend to increasing domain asymptotics with some work

I Key idea: sparsification and elimination (skeletonization) via the ID

I Naturally parallelizable: independent for-loops up a tree

I However, effective only in low dimensions (great for time course data!)
• High-dimensional setting will require new ideas

Thanks!


