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Introduction

» Covariance matrices are central to statistical modeling and UQ

e Example: Gaussian processes/random fields

» Many covariance functions of interest are not compactly supported

Exponential (A large): C(r;A) = exp(—=r/})
Matérn (v small or X large):  C(r;v,\) = W;”*l ( i"') K. (L{W)
Rational quadratic: C(ria,\) = (1 + ﬁ)_

» Costs of common operations with dense covariance matrices

y = Ax O(N?)
x=(A+a2)"b O(N?
A= BBT O(N
A =logdet A O(N3
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e Example: Gaussian processes/random fields

» Many covariance functions of interest are not compactly supported

Exponential (A large): C(r;A) = exp(—=r/})
Matérn (v small or X large):  C(r;v,\) = W;”*l ( i"') K. (@)
Rational quadratic: C(ria, ) = (1 + ﬁ)_a

» Costs of common operations with dense covariance matrices

y = Ax O(N?)  — O(N)
x=(A+o2N)"1b O(N3) — O(N)
A= BBT O(N3)  — O(N)
A = logdet A O(N3)  — O(N)

> Our goal is to accelerate these to linear complexity



Main observation

Covariance matrix is dense but structured
Far field is smooth = low-rank off-diagonal blocks
Decompose and compress hierarchically

vV v v Vv

Similar in flavor to fast multipole methods and treecodes
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Overview

Problem setting:
» Matrix can be low-rank but best if rank is not too small
e Otherwise just use low-rank techniques (random sampling)
» Low ambient dimensionality: think time or space
> Fixed-domain asymptotics (N — oo with A fixed)

Results:
> Generalized Cholesky factorization via recursive skeletonization
e Originally developed for solving integral equations for elliptic PDEs

e Martinsson, Rokhlin (2005); Gillman, Young, Martinsson (2012);
Ho, Greengard (2012); Ho, Ying (2013)

> Optimal O(N) complexity with small constants
» Kernel-independent: depends weakly on specific covariance function

» Reformulation of previous methods in terms of sparsification
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Tools: block elimination, interpolative decomposition, skeletonization



Block elimination

Let A be SPD with

App Apg
A= 1Ap Ag Aa
Arq Arr

(think of A as a sparse matrix) and define

I —A Ay, App
S, = / = SJAS,= * ;}qr

» DOFs p have been eliminated

> Interactions involving r are unchanged




Interpolative decomposition

If A. 4 is numerically low-rank, then there exist

> skeleton (§) and redundant (g) columns partitioning g = §U §

> an interpolation matrix T,
such that

Ag~AsT, 0® _o0°

] ©

> Essentially a pivoted QR written slightly differently:

R R
Ay = Q] [ 1 le ~ Qi [Ru R

= Ay~ Q1R = Q1Rix (RﬂlRlz)
—_———

» Can be computed adaptively to any specified precision

» Fast randomized algorithms are available

A T,



Skeletonization

» Efficient elimination of redundant DOFs from dense matrices

v

Let A= {App qu] with Agp = qu low-rank
ap  Aaqq

> Apply ID to Agp: Agp = Agp T
App App  Apg /
> Reorder A= |App App Apq|, define Qo= |—-T, |
Agp Agp  Agq /
* *
> Sparsify via ID: QJAQ, ~ |+ Az Apg
Aqﬁ Aqq
*
> Block eliminate: 5] QJAQ,S, ~ % Apg
Aqf’ Aqq



Algorithm: recursive skeletonization

Build tree.
for each level £ =0,1,2,...,L from finest to coarsest do
Let C; be the set of all cells on level /.
for each cell c € C; do
Skeletonize remaining DOFs in c.
end for
end for



Algorithm: recursive skeletonization

Build tree.
for each level £ =0,1,2,...,L from finest to coarsest do
Let C; be the set of all cells on level /.
for each cell c € C; do
Skeletonize remaining DOFs in c.
end for
end for

Example. Matérn (v = 3/2) on the unit square:

C(r;\) = <1+ \/fr> exp <\/fr> , A= %

Approximate to relative precision € = 107%: N = 16384 — 543.



RS in 2D: level 0

domain matrix



RS in 2D: level 1

domain matrix



RS in 2D: level 2

matrix



RS in 2D: level 3

matrix



RS in 2D: level 4

matrix



Matrix factorization

> Skeletonization operators:
/
Uy = Hcho Qp: x| s Sp: / s
ceCy / /
» Symmetric block diagonalization:

DRﬂUE,l---U(-)rAUo-HULfl

v

Generalized Cholesky/LDLT decomposition:

A~ Uy T U DU - Ut
A1~ Uo-~-UL71D71ULT"'U0T

v

Cholesky square root: take half the factorization
Determinant: det A = det D

All operations are very cheap once the factorization has been constructed

v

v



Accelerated compression

» Main cost of algorithm is computing IDs
» Each ID requires a tall-and-skinny QR (on A ,)

» Naive compression is global and therefore at least O(N?)
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» ldea from elliptic PDEs: use Green's theorem

o Capture well-separated interactions via a local proxy surface
o Keep neighbors explicitly

. neighbor
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1 ! well-separated

D proxy




Accelerated compression

» Main cost of algorithm is computing IDs

» Each ID requires a tall-and-skinny QR (on A ,)

» Naive compression is global and therefore at least O(N?)
» ldea from elliptic PDEs: use Green's theorem

o Capture well-separated interactions via a local proxy surface
o Keep neighbors explicitly

- : . neighbor

/ :'_'_: well-separated

m o

» In our case, no Green's theorem but should still be able to sample sparsely
» Use a few concentric rings of radius 1, 2, 4, 8, etc.
> Not rigorous but works well in many cases



Complexity analysis

If the off-diagonal block rank is bounded, then constructing the approximate
factorization requires O(N) operations.
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If the off-diagonal block rank is bounded, then constructing the approximate
factorization requires O(N) operations.

For fixed-domain asymptotics, interaction length scale is independent of N
Therefore, number of “distinct” interactions is bounded

Rank is bounded = linear complexity

Note: constant has the form O(29)
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vV V. v Vv

What about increasing-domain asymptotics?
» Number of interactions grows as 1/ ~ N/9
» Cost becomes O (N3(1=1/d))
» Must do additional work to recover linear complexity
e Hierarchical interpolative factorization: Ho, Ying (2013)



Numerical benchmarks

Matérn (v = 3/2, A = 1/8) with nugget effect of 2 = 0.01
> Point distributions: unit line (1D) or square (2D)

d € N | tr(s)  tys(s)  ty (s) e eq
262144 4 1.8e+1 4.8e—1 9.8e—2 1.1e—08 1.2e—9

1D 1079 524288 4 35e+1 1.1e+0 2.0e—1 4.3e—07 1.8e—7
1048576 4 7.0e+1 2.0e+0 3.9e—1 4.7e—07 1l.le—7
262144 4 1.8e+1 4.7e—1 9.9e—2 2.1e—13 —

1D 10712 524288 4 35e+1 9.3e—1 2.0e—1 2.8e—13 —

1048576 4 7.0e+1 1.9e+0 4.0e—1 3.0e—13 —

2562 214  7.4e+0 12e—1 1.8e—2 5.8e—07 2.6e—6
2D 1070 5122 219 28e+1 4.1le—1 7.3e—2 1.8e—06 4.le—6
10242 220 1.le+2 1.6e+0 2.9e—1 1.7e—06 8.0e—6

2562 1081 3.2e+1 2.1le—1 1.8e—2 5.4e—10 —
2D 1079 5122 1227 6.7e+1 59e—1 7.4e—2 1.1e—09 —
10242 1301 1.7e+2 1.9e+0 3.0e—1 4.0e—09 —




Example: GP regression and conditional sampling

Unknown function f(x) on [0, 1]
Prior: zero mean, Matérn covariance C(x, x") with v =3/2 and A =1/8

Measurements y; = f(x1) + ¢, € ~ N(0,02), at N uniform random points

vV v v Vv

Estimate values of y, = f(xz) at N equispaced points:

All = C(Xl X1)—|—0'2I
0] (A A ’
AR (5 ) R
Az = C(x2, x2)

fpost = A2 AT Y1

= 2 ‘ Y1~ N(Mposthpost); Apost — A22 _ A21Aﬁ1A12

> N~ 108 02 =0.01: 273 s to compute fipest tO precision 10~3
» Generate conditional samples via > = z, — A21A1_1121, where z ~ N(0, A)
» Estimate posterior variance to precision 10~2 by sampling: ~ 30 min



Summary

Efficient factorization of covariance matrices

v

o Apply, solve, square root, determinant, etc.
e Extends to general structured matrices with low-rank off-diagonal blocks

» Linear complexity under fixed-domain asymptotics
e Can extend to increasing domain asymptotics with some work

v

Key idea: sparsification and elimination (skeletonization) via the ID

v

Naturally parallelizable: independent for-loops up a tree

v

However, effective only in low dimensions (great for time course datal)

e High-dimensional setting will require new ideas
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Key idea: sparsification and elimination (skeletonization) via the ID

v

Naturally parallelizable: independent for-loops up a tree

v

However, effective only in low dimensions (great for time course datal)

e High-dimensional setting will require new ideas

Thanks!



