Efficient operator factorizations for integral and
differential equations

Kenneth L. Ho (Stanford)
Joint work with Lexing Ying

FACM 2014, NJIT

Introduction

Elliptic PDEs in integral or differential form:

A(ulx) + | K(x.y)u(y) d9») = £()
=V - (a(x)Vu(x)) + b(x)u(x) = f(x)
» Fundamental to physics and engineering

> Interested in 2D /3D, complex geometry
» Discretize — structured linear system Au = f

Goal: fast and accurate algorithms for the discrete operators
> Fast matrix-vector multiplication, fast direct solver, good preconditioner
> ldeally, fast matrix factorization

» Linear or nearly linear complexity, high practical efficiency

Direct vs. iterative solvers

> Direct solvers: no iteration (e.g., Gaussian elimination)

» Why direct solvers? Compare with iterative methods

Direct vs. iterative solvers

> Direct solvers: no iteration (e.g., Gaussian elimination)
» Why direct solvers? Compare with iterative methods

Iterative solvers
» GMRES, CG, relaxation methods, multigrid, etc.
» Can achieve linear complexity under certain conditions

» But number of iterations can be large
o |ll-conditioning, high contrasts, geometric singularities
e Need preconditioners or may not converge at all

» Inefficient for multiple right-hand sides
e Time-stepping, inverse problems, optimization, design

Direct vs. iterative solvers

> Direct solvers: no iteration (e.g., Gaussian elimination)
» Why direct solvers? Compare with iterative methods

Iterative solvers
» GMRES, CG, relaxation methods, multigrid, etc.
» Can achieve linear complexity under certain conditions

» But number of iterations can be large
o |ll-conditioning, high contrasts, geometric singularities
o Need preconditioners or may not converge at all

» Inefficient for multiple right-hand sides
e Time-stepping, inverse problems, optimization, design

Direct solvers
» No convergence issues, much more robust
> Typically very fast solves following initial factorization
> However, classical direct methods can be extremely expensive

Application: protein pK, calculations

[AIH] B\
[AH] In10~ "AH=AFH

pKs = —logyg

AGRy iain = DGiuamn + AGP — AGE®

= AGAS\H%A+H + AGX%AH - AGAP—>AH

experiment electrostatic only

» lonization behavior is important for enzymatic and structural properties

Application: protein pK, calculations

v

Linearized Poisson-Boltzmann equation
Discretize: A(X)u = f(q)

0000710 L 3 e Y : molecular geometry

e g: atomic partial charges

One matrix, = 100 right-hand sides

One solve for each of Ny, titrating sites

-0.000462

v

-0.000959

v

-0.00121

v

-0.00146

v

If including comformational flexibility,
-0.00170 then require O(NtitrNrot) solves

-0.00195
Potential for massive acceleration using
fast direct solvers.

-0.00220

Previous fast direct solvers

v

HSS matrices/recursive skeletonization/multifrontal
e O(N) in 1D, O(N*?) in 2D, O(N?) in 3D
H-matrices: O(N log™ N) but with a large constant
HSS/RS/MF with structured matrix algebra
e O(N) in 2D, O(N*3) in 3D
All based on FMM-type hierarchical low-rank compression

v

v

v

Overview

Hierarchical interpolative factorization

v

RS/MF + recursive dimensional reduction

Same idea as using structured algebra but much simpler

New matrix sparsification framework, generalized LU decomposition
Linear or nearly linear complexity, small constants

Works for IEs and PDEs in 2D and 3D

Handles adaptivity and complex geometry

vV vV v v Y

Tools: block elimination, interpolative decomposition, skeletonization

Focus on IEs in this talk; consider PDEs as a special case.

Block elimination

Let
App Apg
A= |Ap Ay Agl- P =~gq
Arq Arr

(Think of A as a sparse matrix.) If App is nonsingular, define

Rf=]-A IA*1 / S, = : _A;71qu
p = ap”pp) p =
so that
App
R;ASP = * Aqr
Arq Arr

» DOFs p have been eliminated

» Interactions involving r are unchanged

Interpolative decomposition

If A. 4 is numerically low-rank, then there exist
> skeleton (§) and redundant (g) columns partitioning g = §U §
> an interpolation matrix T,

such that
ec0cooe o o o
eco0oo0e
A AT cetees NI/
Lq ,q9'q- eoo0o0o0e@
eco0o0o0e
ececocoe ° ° °

» Essentially a pivoted QR written slightly differently:

R R
Ay =@ Q] [1 R;j ~ QR R
= Ay~ QiR = QiRu1 (R;'Ri2)
A T,

Interactions between separated regions are low-rank.

Skeletonization

» Efficient elimination of redundant DOFs from dense matrices

> Let A= {App qu] with Apq and Agp low-rank
qap qq
A Ags Ags Ags =~ Ags T,
>App|y|Dto[2p}: [i’p}%[z"}T = WP
Abq Abq Aqu P Apg = T5Apq
App App Apq I
> Reorder A= |Aps App Apq|, define Qo= |—-T, |
Aqﬁ Aqﬁ Aqq /
* *
» Sparsify via ID: Q;AQP ~ [x App Apg
Aqﬁ' Aqq
*
» Block eliminate: R; Q;AQPSP ~ ¥ Apg
Aqﬁ Aqq

Algorithm: recursive skeletonization factorization

Build quadtree/octree.
for each level £ =0,1,2,..., L from finest to coarsest do
Let C; be the set of all cells on level /.
for each cell c € C, do
Skeletonize remaining DOFs in c.
end for
end for

» Old algorithm in new factorization form

» Successive elimination of DOFs

RSF in 2D: level 0

matrix

RSF in 2D: level 1

matrix

RSF in 2D: level 2

matrix

RSF in 2D: level 3

matrix

RSF in 3D: level 0

RSF in 3D: level 1

RSF in 3D: level 2

RSF analysis

» Skeletonization operators:

Ur=[] QRe, Ve=]] Q5.

ceCy ceCy
Qc =[x |) Rca Sc - /

» Block diagonalization:
D~U; ;- UiAY--- Vi,
» Generalized LU decomposition:

Ax Uy*--- U5 DV vt
A= VoV DTS U

» Fast direct solver or preconditioner

RSF analysis

The cost is determined by the skeleton size.

D 2D 3D
Skeleton size O(logN) O(NY2) O(N?/3)
Factorization cost | O(N) O(N3/?) O(N?)
Solve cost O(N) O(NlogN) O(N*/3)

Question: How to reduce the skeleton size in 2D and 3D?
> Skeletons cluster near cell interfaces (Green's theorem)
» Exploit skeleton geometry by further skeletonizing along interfaces

» Dimensional reduction

Algorithm: hierarchical interpolative factorization for IEs in 2D

Build quadtree.
for each level £ =0,1,2,...,L from finest to coarsest do
Let C; be the set of all cells on level /.
for each cell c € C, do
Skeletonize remaining DOFs in c.
end for
Let Cry1/2 be the set of all edges on level /.
for each cell c € Gy 1/ do
Skeletonize remaining DOFs in c.
end for
end for

HIF-1E in 2D: level 0

matrix

HIF-1E in 2D: level 1/2

matrix

HIF-1E in 2D: level 1

°

sl el ol ol ol
i oo
ooty °**§@° “%’88%& °
- 38%8%"%8” “%88" "*g%
ol

ol

°

3

ooggggqop%qoogggq

C}

8°

C} °
0000 O0OO00 OOOO 0OOOO 0OOOCO 0OOCO 000O0O

o°

)

(]
C}
o

et
s
oéwéémémé&

o

&
-]

©0000 0000 0000 000 0000 0000 00000

i
Ao

o
8

o

o
00000 0000 0000 6%00 0000 0000 00000 O

o

domain matrix

HIF-1E in 2D: level 3/2

o o o000 o o (-] o o 0 0 00 o o o
o : :
& 3 8
8o ssssss%%&% sssssw%"of’sssss 0%3%"0"338833 o8
° o o o °

T D
o
o o °
8o ssssss°o°s§ss° 83808°:°3558°038088 o%sgwssssss ®°
o o o
SR IR R R
o o, o

o
©o ooo

domain matrix

HIF-1E in 2D: level 2

o o o000 o o (-] o o o0 o o o o
o
°° o° o
o ° ° o
%) o?
o o
o o o 0 o o o o
o) o =) (=) 8 =) o o
o o
o % o o
o o
o o °)
% ° o
8oo° 00 o % o % 0 ° o 0 ° o° °
o o
o o) o
o °0 Oo °° °
o o
o o,) o
o o
° o _o o o, o o, o o o
o o) 8 o o 8) o o
o o
o o o o
)
o o
o o
o ° o
[o o
° o o
o o o o o o oo o oo o o o o

domain matrix

HIF-1E in 2D: level 5/2

o o (-] o o
°0
o
o,
o °°
o ° o
8 000 0o % ovsgso%w BB ® o O
o o
o o
° o
o,
% -]
o
o
o
o
o
o o 0 00 o o

domain matrix

HIF-1E in 2D: level 3

o o o o o
o
o
o
o °°
o o
o°o°8§8°°o°o °°
o
o o
o o °
o
o ©
o o o o o o

domain matrix

RSF vs.

HIF-IE in 2D

o o °
°
°

°

°
°

000
°
°
°
s ©

RSF vs. HIF-IE in 2D

RSF HIF-IE

Algorithm: hierarchical interpolative factorization for |Es in 3D

Build octree.
for each level £ =0,1,2,...,L from finest to coarsest do
Let C; be the set of all cells on level /.
for each cell c € C; do
Skeletonize remaining DOFs in c.
end for
Let Cpy1/3 be the set of all faces on level £.
for each cell c € Cpy1/3 do
Skeletonize remaining DOFs in c.
end for
Let Cpyo/3 be the set of all edges on level /.
for each cell c € Cy,5/3 do
Skeletonize remaining DOFs in c.
end for
end for

HIF-1E in 3D: level 0

HIF-1E in 3D: level 1/3

HIF-1E in 3D: level 2/3

0000 000 0O °

°

level 1

HIF-1E in 3D:

00 0 o

o oo

domain

HIF-1E in 3D: level 4/3

0°oo @’
Q%?e

" €800

HIF-1E in 3D: level 5/3

level 2

HIF-1E in 3D:

o o o oo °
o o
o,
o oco °
o0 °
° o ocogo P e °
° o oo ooo8Fro o © °
oo&o% omhoo 0090 © © o o
oo,
IR CE I I S e
° o S oo SogR 0 %®, o © o
o' CAY o
o 88oc® S © P o °
08° "9 ® o ® ® ‘oo
%09 4 o %) ooiw %0 ©
° % 0 %o
Bodo & oo% y ol 280 90 8°
o0% . e Bao o
° s J o &
0§ o5 °
000 30°8
0© Ooo%oo p o0 ° o% °
o o 06 8 ..%%o o 8
%0 o Pp oodfs P oo °
g0 ¥ P @ 0% e
008 08 ° oo o
o 8 0o o@f o8 0@ o o o
o9 o
PN 'S co ®P, ° o
o@&oo &qu &L ° °
IAE o ® 8o °
° ° °© %8, wooW o0 4 °
o 090%% ° oo o o
o o ©° © o % P o
o & o o o
oS o o
° % Fo 00 o
o o
o
0o 7
o o
o
o o oo o

domain

RSF vs. HIF-IE in 3D

HIF-IE analysis

> 2D: Ar Uo_*Ul_/Z T UL_—*1/2DVL_—11/2 o Vl_/; VO_1
ATl m VoV VL71/2D_1UZ71/2 Uil
) ~ —k =% | |—% —% -1 —1y,-1,/,-1
> 3D: AUy Uy 3Uys- - UZy 3DV 2 5 Vo Vi3 Vo
ATt m VoVaysVass - VitysD Uy 5+ Us s Us s Ug
Conjecture: Skeleton size: O(log N)
Factorization cost: O(N)

Solve cost:

Numerical results in 2D

First-kind volume IE on the unit square with

1
a(x)=0, K(x,y)= —5-log Ix =yl

time (t, ta,s) [8]

102

10!

10°

1071

memory (my) [GB]

> rskelf2 (white), hifie2 (black)

10~2
107 10*

matrix size (N)

» Factorization time (o), solve time (O), memory (©)

» Precision ¢ = 1076

107

Numerical results in 3D

Second-kind boundary IE on the unit sphere with

1 1o} 1
a)= -5 Klay)= g
v(y) 4rllx —y||
107 T T T 102
- 10 F i o
= 0k 1S ok
L0t E 1=
= 100 F {1 £ 0
< 02k 1= w0E
= 1 E“‘
o 10t F {1 ©
g 100 B E GE) 107
= 107t E {1 €
10—2 sl ool g gl g 10—2 el ol ol
10% 10* 10° 106 107 103 10* 10° 10°

matrix size (N)

> rskelf3 (white), hifie3 (gray), hifie3x (black)
> Factorization time (o), solve time (CJ), memory (¢)

> Precision e = 1073

Numerical results in 3D

First-kind volume IE on the unit cube with

1
a(x) =0, K(x =
CI=0 KON =gy
104 T T
é : ’é: 102 [
= 1z w0}
E o
.g 15 wf
=]88 -
107 10 10* 10° 10°

matrix size (N)

> rskelf3 (white), hifie3 (black)
> Factorization time (o), solve time (), memory (o)

> Precision ¢ = 1073

Conclusions

v

vV V. vYvY

Efficient factorization of integral operators in 2D and 3D

e Fast matrix-vector multiplication
o Fast direct solver at high accuracy, preconditioner otherwise
e Empirical linear complexity but no proof yet

Sparsification and elimination (skeletonization) via the ID

Dimensional reduction by alternating between cells, faces, and edges
Analogous techniques for differential operators; optimize by exploiting sparsity
Extensions: general structured matrices, Al/2, log det A, diagA’1

» Perspective: structured dense matrices can be sparsified very efficiently

» Can borrow directly from sparse algorithms, e.g., RSF = MF

What other features of sparse matrices can be exploited?

MATLAB codes available at https://github.com/klho/FLAM/.

https://github.com/klho/FLAM/

