Progress toward fast algorithms for protein design

Kenneth L. Ho

Stanford University

MBI Young Researchers Workshop 2014

- Structure-function relationship is central to biochemistry
- "Theorem": structure \Longrightarrow function
- Examples: ligand-receptor binding, DNA replication
- Corollary: function design reduces to structure design

Images from RCSB PDB Molecule of the Month.

Protein design and structure prediction

- Protein defined by a sequence of amino acid residues
- Protein design: find a sequence folding to the desired stable structure
- Protein structure prediction: given a sequence, find the most stable fold
- Design is the inverse problem associated with the forward problem of prediction
- In principle, can do design if prediction is fast; focus on prediction
- Structural stability measured by energy via Boltzmann distribution

Image from Wikipedia.

Problem formulation

- Assume protein has a fixed backbone with flexible residue sidechains
- Each sidechain can be one of several rotamers $r_{i} \in R_{i}$
- Energy $E(\mathbf{r})$ depends on the joint rotamer configuration \mathbf{r}
- Goal: find \mathbf{r} such that $E(\mathbf{r})$ is minimized

- NP-hard [Pierce/Winfree] but various strategies are available
- Essential to any scheme is an efficient way to compute $E(\mathbf{r})$
- One of many related formulations

Energy function

$$
E=E_{\text {bonded }}+E_{\mathrm{vdw}}+E_{\text {elec }}
$$

- Bonded interactions are local/sparse
- Van der Waals interactions are short-ranged
- Electrostatic interactions are long-ranged
- Very expensive to compute

In this talk, we focus on electrostatics.

Molecular electrostatics

Molecule: discrete collection of charged atoms
Ω_{0} : solvent
Ω_{1} : (solvent-excluded) molecular volume
Σ : molecular surface

- Poisson/linearized Poisson-Boltzmann system for the electrostatic potential φ :

$$
\begin{aligned}
-\left(\Delta-\kappa^{2}\right) \varphi & =0 & & \text { in } \Omega_{0} \\
-\Delta \varphi & =\frac{1}{\varepsilon_{1}} \sum_{i} q_{i} \delta\left(\mathbf{x}-\mathbf{x}_{i}\right) & & \text { in } \Omega_{1} \\
{[\varphi] } & =\left[\varepsilon \frac{\partial \varphi}{\partial \nu}\right]=0 & & \text { on } \Sigma
\end{aligned}
$$

- Uniform dielectric ε_{i} in Ω_{i}, inverse Debye length $\kappa\left(\varepsilon_{0}\right)$, charge strength q_{i} at \mathbf{x}_{i}
- Electrostatic energy: $E_{\text {elec }}=\frac{1}{2} \sum_{i} q_{i} \varphi\left(\mathbf{x}_{i}\right)$

Features of an ideal electrostatics solver for protein design

- Accurate: well-conditioned, controlled numerical error
- Adaptive: complex geometries
- Fast: linear or quasilinear computational complexity
- Updatable: reuse for local geometric perturbations

Other applications with similar requirements:

- Docking, $\mathrm{p} K_{\mathrm{a}}$ calculations, structure refinement, charge optimization, etc.

Image from Wikipedia.

Boundary integral equations

- Well-conditioned, exact interface conditions, dimensional reduction
- Contrast with finite differences or finite elements: ill-conditioning
- Formulation for LPBE [Juffer/Botta/van Keulen/van der Ploeg/Berendsen]

Fast direct solvers

- Directly compute compressed inverse or factorization
- Very fast solves, rapid updates
- Contrast with iterative methods: information reuse can be difficult
- Accelerate with fast-multipole-type ideas
- Main thrust of my work; many other contributors [Ambikasaran, Bebendorf, Börm, Bremer, Chandrasekaran, Chen, Corona, Darve, Gillman, Greengard, Gu, Hackbusch, Li, Martinsson, Rokhlin, Xia, Ying, Zorin]

Potential theory

- Green's function: $\quad G_{k}(\mathbf{x}, \mathbf{y})=\frac{e^{-k|\mathbf{x}-\mathbf{y}|}}{4 \pi|\mathbf{x}-\mathbf{y}|}$
- Single-layer potential: $\quad S_{k}[\sigma](\mathbf{x})=\int_{\Sigma} G_{k}(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) d \Sigma_{\mathbf{y}} \quad$ in Ω_{i}
- Double-layer potential: $\quad D_{k}[\mu](\mathbf{x})=\int_{\Sigma} \frac{\partial G_{k}}{\partial \nu_{\mathbf{y}}}(\mathbf{x}, \mathbf{y}) \mu(\mathbf{y}) d \Sigma_{\mathbf{y}} \quad$ in Ω_{i}
- Jump relations as $\mathbf{x} \rightarrow \mathbf{y} \in \Sigma$:

$$
\begin{aligned}
S_{k}^{\prime}[\sigma](\mathbf{x}) & \rightarrow \mp \frac{1}{2} \sigma(\mathbf{y})+S_{k}^{\prime}[\sigma](\mathbf{y}) \\
D_{k}[\mu](\mathbf{x}) & \rightarrow \pm \frac{1}{2} \mu(\mathbf{y})+D_{k}[\mu](\mathbf{y})
\end{aligned}
$$

Boundary integral Poisson-Boltzmann system

$$
\begin{aligned}
-\left(\Delta-\kappa^{2}\right) \varphi & =0 & & \text { in } \Omega_{0} \\
-\Delta \varphi & =\frac{1}{\varepsilon_{1}} \sum_{i} q_{i} \delta\left(\mathbf{x}-\mathbf{x}_{i}\right) & & \text { in } \Omega_{1} \\
{[\varphi] } & =\left[\varepsilon \frac{\partial \varphi}{\partial \nu}\right]=0 & & \text { on } \Sigma
\end{aligned}
$$

- Integral representation of solution:

$$
\varphi \equiv\left\{\begin{array}{ll}
S_{\kappa} \sigma+D_{\kappa} \mu & \text { in } \Omega_{0} \\
S_{0} \sigma+\alpha D_{0} \mu+\varphi_{s} & \text { in } \Omega_{1}
\end{array} \quad \alpha=\frac{\varepsilon_{0}}{\varepsilon_{1}}, \quad \varphi_{s}(\mathbf{x})=\frac{1}{\varepsilon_{1}} \sum_{i} q_{i} G_{0}\left(\mathbf{x}, \mathbf{x}_{i}\right)\right.
$$

- Interface conditions give equation for (σ, μ) on Σ (second-kind Fredholm):

$$
\begin{aligned}
\frac{1}{2}(1+\alpha) \mu+\left(S_{\kappa}-S_{0}\right) \sigma+\left(D_{\kappa}-\alpha D_{0}\right) \mu & =\varphi_{s}, \\
-\frac{1}{2}(1+\alpha) \sigma+\left(\alpha S_{\kappa}^{\prime}-S_{0}^{\prime}\right) \sigma+\alpha\left(D_{\kappa}^{\prime}-D_{0}^{\prime}\right) \mu & =\frac{\partial \varphi_{s}}{\partial \nu}
\end{aligned}
$$

Properties of integral equation matrices

Dense integral equation matrix $A \in \mathbb{C}^{N \times N}$

- Cost of applying $A: O\left(N^{2}\right)$
- Cost of inverting $A: O\left(N^{3}\right)$

Basic idea for acceleration:

- Low-rank off-diagonal blocks, exploit rank structure hierarchically
- FMM: matrix-vector multiplication in $O(N)$ work [Greengard/Rokhlin]

Fast direct solvers

- \mathcal{H}-matrices, HSS matrices, recursive skeletonization, etc.

If $A_{:, q}$ is numerically low-rank, then there exist

- skeleton (\hat{q}) and redundant (\check{q}) columns partitioning $q=\hat{q} \cup \check{q}$
- an interpolation matrix T_{q}
such that

$$
A_{:,, \bar{q}} \approx A_{:, \hat{q}} T_{q}
$$

- Essentially a pivoted QR written slightly differently:

$$
\begin{aligned}
& A_{:,(\hat{q}, \breve{q})}=\left[\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{ll}
R_{11} & R_{12} \\
& R_{22}
\end{array}\right] \approx Q_{1}\left[\begin{array}{ll}
R_{11} & R_{12}
\end{array}\right] \\
& \Longrightarrow A_{:, \check{q}} \approx Q_{1} R_{12}=\underbrace{Q_{1} R_{11}}_{A_{:, \hat{q}}} \underbrace{\left(R_{11}^{-1} R_{12}\right)}_{T_{q}}
\end{aligned}
$$

- Rank-revealing to any specified precison $\epsilon>0$

Skeletonization

- Let $A=\left[\begin{array}{ll}A_{p p} & A_{p q} \\ A_{q p} & A_{q q}\end{array}\right]$ with $A_{p q}$ and $A_{q p}$ low-rank
- Apply ID to $\left[\begin{array}{c}A_{q p} \\ A_{p q}^{*}\end{array}\right]:\left[\begin{array}{c}A_{q \check{p}} \\ A_{\check{p} q}^{*}\end{array}\right] \approx\left[\begin{array}{c}A_{q \hat{p}} \\ A_{\hat{p} q}^{*}\end{array}\right] T_{p} \Longrightarrow \begin{gathered}A_{q \check{\rho}} \approx A_{q \hat{p}} T_{p} \\ A_{\check{\rho} q} \approx T_{p}^{*} A_{\hat{\rho} q}\end{gathered}$
- Reorder $A=\left[\begin{array}{lll}A_{\check{\rho} \check{\rho}} & A_{\check{\rho} \hat{\rho}} & A_{\check{\rho} q} \\ A_{\hat{\rho} \check{\rho}} & A_{\hat{\rho} \hat{\rho}} & A_{\hat{\rho} q} \\ A_{q \check{\rho}} & A_{q \hat{\rho}} & A_{q q}\end{array}\right]$, define $Q_{p}=\left[\begin{array}{ccc}I & & \\ -T_{p} & I & \\ & & I\end{array}\right]$
- Sparsify via ID: $Q_{p}^{*} A Q_{p} \approx\left[\begin{array}{ccc}* & * & \\ * & A_{\hat{p} \hat{p}} & A_{\hat{p} q} \\ & A_{q \hat{p}} & A_{q q}\end{array}\right] \xrightarrow{\text { elim }}\left[\begin{array}{ccc}* & & \\ & * & A_{\hat{p} q} \\ & A_{q \hat{p}} & A_{q q}\end{array}\right]$
- Reduces to a subsystem involving skeletons only

Recursive skeletonization factorization

- Skeletonize cells hierarchically up a tree
- Analogous to nested dissection multifrontal method [Duff/Reid, George]

[Gillman/Young/Martinsson, Ho/Greengard, Ho/Ying, Martinsson/Rokhlin]

- Computational complexities
- Factorization: $O\left(N^{3 / 2}\right)$
- Solve: $O(N \log N)$
- Suboptimal but hopefully fast like MF
- DNA system with $N=19752, \epsilon=10^{-3}$
- FMM/GMRES: 30 s
- RSF factorization: 10 min
- RSF solve: 0.1 s
- Break-even point: 20 solves
- Effective for small molecules
- Does not scale well to macromolecules $\left(N \gtrsim 10^{6}\right)$

Accelerating RSF

- RSF: $O(N)$ in $1 \mathrm{D}, O\left(N^{3 / 2}\right)$ in 2D, $O\left(N^{2}\right)$ in 3D
- Superlinear cost in 2D/3D due to skeleton growth
- Skeletons cluster near cell interfaces by Green's theorem
- Exploit skeleton geometry by further skeletonizing along interfaces
- Recursive dimensional reduction [Corona/Martinsson/Zorin, Xia/Chandrasekaran/Gu/Li]

Hierarchical interpolative factorization in 2D

- Skeletonize cells (2D), then edges (1D) hierarchically up a tree

Hierarchical interpolative factorization in 3D

- Skeletonize cells (3D), then faces (2D), then edges (1D) hierarchically up a tree

Numerical results for HIF

Second-kind equation for interior Dirichlet Laplace on the sphere at $\epsilon=10^{-3}$:

- rskelf3 (white), hifie3 (gray), hifie3x (black)
- Factorization time (○), solve time (\square), memory (\diamond)
- Reference scalings (gray dashes):
- Left: $O(N)$ and $O\left(N^{3 / 2}\right)$
- Right: $O(N)$ and $O(N \log N)$

Remarks on HIF

- Efficient factorization of structured operators in 2D/3D
- Empirical linear complexity but no proof yet
- Constructs approximate generalized LU decomposition
- Fast matrix-vector multiplication (generalized FMM)
- Fast direct solver at high accuracy, preconditioner otherwise
- Extensions: $A^{1 / 2}, \log \operatorname{det} A, \operatorname{diag} A^{-1}$
- Modification for sparse PDEs based on MF
- Highly parallelizable [with A. Benson, Y. Li, J. Poulson, L. Ying]
- MATLAB codes freely available at https://github.com/klho/FLAM/

Updating

Matrix augmentation [Greengard/Gueyffier/Martinsson/Rokhlin]:

- Local geometric perturbations as low-rank updates of an augmented base matrix
- Sherman-Morrison-Woodbury: rank $k \Longrightarrow O(N k)$ cost

Full updating [with A. Damle, V. Minden, L. Ying]:

- Use Green's theorem to localize effect of perturbation
- Redo computation up only one branch of the tree: $O(\log N)$ cost
- Can accumulate updates

- Problem: electrostatics in protein design
- Goal: accurate, adaptive, fast, updatable methods
- Achieved using boundary integral equations and fast direct solvers
- To do: test HIF on real macromolecular geometries
- Remaining issue of how to locally remesh after perturbation
- Pieces slowly coming together, future looks promising
- Aim to incorporate into structural biology software

References

- H. Cheng, Z. Gimbutas, P.G. Martinsson, V. Rokhlin. On the compression of low rank matrices. SIAM J. Sci. Comput. 26 (4): 1389-1404, 2005.
- E. Corona, P.-G. Martinsson, D. Zorin. An $O(N)$ direct solver for integral equations on the plane. Preprint, arXiv:1303.5466 [math.NA], 2013. To appear in Appl. Comput. Harmon. Anal.
\rightarrow A. Gillman, P.M. Young, P.-G. Martinsson. A direct solver with $O(N)$ complexity for integral equations on one-dimensional domains. Front. Math. China 7 (2): 217-247, 2012.
L. Greengard, D. Gueyffier, P.-G. Martinsson, V. Rokhlin. Fast direct solvers for integral equations in complex three-dimensional domains. Acta Numer. 18: 243-275, 2009.
- L. Greengard, V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys. 73: 325-348, 1987.
- M. Gu, S.C. Eisenstat. Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J. Sci. Comput. 17 (4): 848-869, 1996.
\rightarrow K.L. Ho, L. Greengard. A fast direct solver for structured linear systems by recursive skeletonization. SIAM J. Sci. Comput. 34 (5): A2507-A2532, 2012.
- K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: differential equations. Preprint, arXiv:1307.2895 [math.NA], 2013.
\rightarrow K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: integral equations. Preprint, arXiv:1307.2666 [math.NA], 2013.
- A.H. Juffer, E.F.F. Botta, B.A.M. van Keulen, A. van der Ploeg, H.J.C. Berendsen. The electric potential of a macromolecule in a solvent: A fundamental approach. J. Comput. Phys. 97: 144-171, 1991.
- P.G. Martinsson, V. Rokhlin. A fast direct solver for boundary integral equations in two dimensions. J. Comput. Phys. 205: 1-23, 2005.
- N.A. Pierce, E. Winfree. Protein design is NP-hard. Protein Eng. 15 (10): 779-782, 2002.
- J. Xia, S. Chandrasekaran, M. Gu, X.S. Li. Superfast multifrontal method for large structured linear systems of equations. SIAM J. Matrix Anal. Appl. 31 (3): 1382-1411, 2009.
\rightarrow J. Xia, Y. Xi, M. Gu. A superfast structured solver for Toeplitz linear systems via randomized sampling. SIAM J. Matrix Anal. Appl. 33 (3): 837-858, 2012.

