
Progress toward fast algorithms for protein design

Kenneth L. Ho

Stanford University

MBI Young Researchers Workshop 2014



Introduction

I Structure-function relationship is central to biochemistry

I “Theorem”: structure =⇒ function

I Examples: ligand-receptor binding, DNA replication

I Corollary: function design reduces to structure design

Images from RCSB PDB Molecule of the Month.



Protein design and structure prediction

I Protein defined by a sequence of amino acid residues

I Protein design: find a sequence folding to the desired stable structure

I Protein structure prediction: given a sequence, find the most stable fold

I Design is the inverse problem associated with the forward problem of prediction

I In principle, can do design if prediction is fast; focus on prediction

I Structural stability measured by energy via Boltzmann distribution

Image from Wikipedia.



Problem formulation

I Assume protein has a fixed backbone with flexible residue sidechains

I Each sidechain can be one of several rotamers ri ∈ Ri

I Energy E(r) depends on the joint rotamer configuration r

I Goal: find r such that E(r) is minimized

I NP-hard [Pierce/Winfree] but various strategies are available

I Essential to any scheme is an efficient way to compute E(r)

I One of many related formulations



Energy function

E = Ebonded + Evdw + Eelec

I Bonded interactions are local/sparse

I Van der Waals interactions are short-ranged
I Electrostatic interactions are long-ranged

• Very expensive to compute

Image from Wikipedia.

In this talk, we focus on electrostatics.



Molecular electrostatics

Molecule: discrete collection of charged atoms

Ω0: solvent

Ω1: (solvent-excluded) molecular volume

Σ: molecular surface

I Poisson/linearized Poisson-Boltzmann system for the electrostatic potential ϕ:

−(∆− κ2)ϕ = 0 in Ω0

−∆ϕ =
1

ε1

∑
i

qiδ(x− xi ) in Ω1

[ϕ] =

[
ε
∂ϕ

∂ν

]
= 0 on Σ

I Uniform dielectric εi in Ωi , inverse Debye length κ(ε0), charge strength qi at xi

I Electrostatic energy: Eelec =
1

2

∑
i qiϕ(xi )



Features of an ideal electrostatics solver for protein design

I Accurate: well-conditioned, controlled numerical error

I Adaptive: complex geometries

I Fast: linear or quasilinear computational complexity

I Updatable: reuse for local geometric perturbations

Other applications with similar requirements:

I Docking, pKa calculations, structure refinement, charge optimization, etc.

Image from Wikipedia.
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Approach

Boundary integral equations

I Well-conditioned, exact interface conditions, dimensional reduction

I Contrast with finite differences or finite elements: ill-conditioning

I Formulation for LPBE [Juffer/Botta/van Keulen/van der Ploeg/Berendsen]

Fast direct solvers

I Directly compute compressed inverse or factorization

I Very fast solves, rapid updates

I Contrast with iterative methods: information reuse can be difficult

I Accelerate with fast-multipole–type ideas

I Main thrust of my work; many other contributors [Ambikasaran, Bebendorf, Börm,
Bremer, Chandrasekaran, Chen, Corona, Darve, Gillman, Greengard, Gu,
Hackbusch, Li, Martinsson, Rokhlin, Xia, Ying, Zorin]



Potential theory

I Green’s function: Gk(x, y) =
e−k|x−y|

4π|x− y|

I Single-layer potential: Sk [σ](x) =

∫
Σ

Gk(x, y)σ(y) dΣy in Ωi

I Double-layer potential: Dk [µ](x) =

∫
Σ

∂Gk

∂νy
(x, y)µ(y) dΣy in Ωi

I Jump relations as x→ y ∈ Σ:

S ′k [σ](x)→ ∓1

2
σ(y) + S ′k [σ](y)

Dk [µ](x)→ ±1

2
µ(y) + Dk [µ](y)



Boundary integral Poisson-Boltzmann system

−(∆− κ2)ϕ = 0 in Ω0

−∆ϕ =
1

ε1

∑
i

qiδ(x− xi ) in Ω1

[ϕ] =

[
ε
∂ϕ

∂ν

]
= 0 on Σ

I Integral representation of solution:

ϕ ≡

{
Sκσ + Dκµ in Ω0

S0σ + αD0µ+ ϕs in Ω1

α =
ε0

ε1
, ϕs(x) =

1

ε1

∑
i

qiG0(x, xi )

I Interface conditions give equation for (σ, µ) on Σ (second-kind Fredholm):

1

2
(1 + α)µ+ (Sκ − S0)σ + (Dκ − αD0)µ = ϕs ,

−1

2
(1 + α)σ + (αS ′κ − S ′0)σ + α(D ′κ − D ′0)µ =

∂ϕs

∂ν

[Juffer/Botta/van Keulen/van der Ploeg/Berendsen]



Properties of integral equation matrices

Dense integral equation matrix A ∈ CN×N

I Cost of applying A: O(N2)

I Cost of inverting A: O(N3)

Basic idea for acceleration:

I Low-rank off-diagonal blocks, exploit rank structure hierarchically

I FMM: matrix-vector multiplication in O(N) work [Greengard/Rokhlin]

Fast direct solvers

I H-matrices, HSS matrices, recursive skeletonization, etc.



Interpolative decomposition

If A:,q is numerically low-rank, then there exist

I skeleton (q̂) and redundant (q̌) columns partitioning q = q̂ ∪ q̌

I an interpolation matrix Tq

such that

A:,q̌ ≈ A:,q̂Tq.

I Essentially a pivoted QR written slightly differently:

A:,(q̂,q̌) =
[
Q1 Q2

] [R11 R12

R22

]
≈ Q1

[
R11 R12

]
=⇒ A:,q̌ ≈ Q1R12 = Q1R11︸ ︷︷ ︸

A:,q̂

(
R−1

11 R12

)
︸ ︷︷ ︸

Tq

I Rank-revealing to any specified precison ε > 0

[Cheng/Gimbutas/Martinsson/Rokhlin, Gu/Eisenstat]



Skeletonization

I Let A =

[
App Apq

Aqp Aqq

]
with Apq and Aqp low-rank

I Apply ID to

[
Aqp

A∗pq

]
:

[
Aqp̌

A∗p̌q

]
≈
[
Aqp̂

A∗p̂q

]
Tp =⇒ Aqp̌ ≈ Aqp̂Tp

Ap̌q ≈ T ∗p Ap̂q

I Reorder A =

Ap̌p̌ Ap̌p̂ Ap̌q

Ap̂p̌ Ap̂p̂ Ap̂q

Aqp̌ Aqp̂ Aqq

, define Qp =

 I
−Tp I

I



I Sparsify via ID: Q∗pAQp ≈

∗ ∗
∗ Ap̂p̂ Ap̂q

Aqp̂ Aqq

 elim−−→

∗ ∗ Ap̂q

Aqp̂ Aqq


I Reduces to a subsystem involving skeletons only

[Ho/Ying, Xia/Xi/Gu]



Recursive skeletonization factorization

I Skeletonize cells hierarchically up a tree

I Analogous to nested dissection multifrontal method [Duff/Reid, George]

[Gillman/Young/Martinsson, Ho/Greengard, Ho/Ying, Martinsson/Rokhlin]



RSF for molecular electrostatics

I Computational complexities

• Factorization: O(N3/2)
• Solve: O(N log N)

I Suboptimal but hopefully fast like MF

I DNA system with N = 19752, ε = 10−3

• FMM/GMRES: 30 s
• RSF factorization: 10 min
• RSF solve: 0.1 s

I Break-even point: 20 solves

I Effective for small molecules

I Does not scale well to macromolecules
(N & 106)

[Ho/Greengard]



Accelerating RSF

I RSF: O(N) in 1D, O(N3/2) in 2D, O(N2) in 3D

I Superlinear cost in 2D/3D due to skeleton growth

I Skeletons cluster near cell interfaces by Green’s theorem

I Exploit skeleton geometry by further skeletonizing along interfaces

I Recursive dimensional reduction [Corona/Martinsson/Zorin,
Xia/Chandrasekaran/Gu/Li]



Hierarchical interpolative factorization in 2D

I Skeletonize cells (2D), then edges (1D) hierarchically up a tree

[Ho/Ying]



Hierarchical interpolative factorization in 3D

I Skeletonize cells (3D), then faces (2D), then edges (1D) hierarchically up a tree

[Ho/Ying]



Numerical results for HIF

Second-kind equation for interior Dirichlet Laplace on the sphere at ε = 10−3:

I rskelf3 (white), hifie3 (gray), hifie3x (black)

I Factorization time (◦), solve time (�), memory (�)
I Reference scalings (gray dashes):

• Left: O(N) and O(N3/2)
• Right: O(N) and O(N log N)

[Ho/Ying]



Remarks on HIF

I Efficient factorization of structured operators in 2D/3D

I Empirical linear complexity but no proof yet
I Constructs approximate generalized LU decomposition

• Fast matrix-vector multiplication (generalized FMM)
• Fast direct solver at high accuracy, preconditioner otherwise

I Extensions: A1/2, log detA, diagA−1

I Modification for sparse PDEs based on MF

I Highly parallelizable [with A. Benson, Y. Li, J. Poulson, L. Ying]

I MATLAB codes freely available at https://github.com/klho/FLAM/

https://github.com/klho/FLAM/


Updating

Matrix augmentation [Greengard/Gueyffier/Martinsson/Rokhlin]:

I Local geometric perturbations as low-rank updates of an augmented base matrix

I Sherman-Morrison-Woodbury: rank k =⇒ O(Nk) cost

Full updating [with A. Damle, V. Minden, L. Ying]:

I Use Green’s theorem to localize effect of perturbation

I Redo computation up only one branch of the tree: O(logN) cost

I Can accumulate updates

105 106 107
10−2

10−1

100

101

N

T
im

e
(s

)

Update t ime (constant number of points)

N

ε = 10−9

ε = 10−6

ε = 10−3

log N



Summary

I Problem: electrostatics in protein design

I Goal: accurate, adaptive, fast, updatable methods

I Achieved using boundary integral equations and fast direct solvers

I To do: test HIF on real macromolecular geometries

I Remaining issue of how to locally remesh after perturbation

I Pieces slowly coming together, future looks promising

I Aim to incorporate into structural biology software
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