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Introduction

v

Structure-function relationship is central to biochemistry

» “Theorem": structure — function

v

Examples: ligand-receptor binding, DNA replication

v

Corollary: function design reduces to structure design
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Images from RCSB PDB Molecule of the Month.



Protein design and structure prediction

v

Protein defined by a sequence of amino acid residues

v

Protein design: find a sequence folding to the desired stable structure

> Protein structure prediction: given a sequence, find the most stable fold

v

Design is the inverse problem associated with the forward problem of prediction

> In principle, can do design if prediction is fast; focus on prediction

v

Structural stability measured by energy via Boltzmann distribution
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Problem formulation

v

Assume protein has a fixed backbone with flexible residue sidechains

v

Each sidechain can be one of several rotamers r; € R;

v

Energy E(r) depends on the joint rotamer configuration r
Goal: find r such that E(r) is minimized

v

» NP-hard [Pierce/Winfree] but various strategies are available
» Essential to any scheme is an efficient way to compute E(r)

> One of many related formulations



Energy function

E= Ebonded + Evdw + Eelec

» Bonded interactions are local/sparse

» Van der Waals interactions are short-ranged
> Electrostatic interactions are long-ranged
e Very expensive to compute

Image from Wikipedia.

In this talk, we focus on electrostatics.



Molecular electrostatics

Qo

Molecule:
p o Qo:
Q1:
3

discrete collection of charged atoms
solvent
(solvent-excluded) molecular volume

molecular surface

» Poisson/linearized Poisson-Boltzmann system for the electrostatic potential ¢:

—(A—r)p=0
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—Dp=— qid(x—
v= Er_q(x
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» Uniform dielectric &; in Q;, inverse Debye length x(2o), charge strength ¢; at x;

. 1
» Electrostatic energy: Eelec = 5 > qip(xi)



Features of an ideal electrostatics solver for protein design

» Accurate: well-conditioned, controlled numerical error

v

Adaptive: complex geometries

» Fast: linear or quasilinear computational complexity

v

Updatable: reuse for local geometric perturbations

Other applications with similar requirements:

» Docking, pK, calculations, structure refinement, charge optimization, etc.

Image from Wikipedia.



Approach

Boundary integral equations
> Well-conditioned, exact interface conditions, dimensional reduction
» Contrast with finite differences or finite elements: ill-conditioning
» Formulation for LPBE [Juffer/Botta/van Keulen/van der Ploeg/Berendsen]

Fast direct solvers
> Directly compute compressed inverse or factorization
> Very fast solves, rapid updates
» Contrast with iterative methods: information reuse can be difficult
> Accelerate with fast-multipole—type ideas

» Main thrust of my work; many other contributors [Ambikasaran, Bebendorf, Bérm,
Bremer, Chandrasekaran, Chen, Corona, Darve, Gillman, Greengard, Gu,
Hackbusch, Li, Martinsson, Rokhlin, Xia, Ying, Zorin]



Potential theory

v

v

v

v

) e~ klIx—yl
Green's function: Gi(x,y) =

4rix —yl
Single-layer potential:  S[o](x) = / Gi(x,y)o(y) dxy in Q;
b3

Double-layer potential:  Di[p](x / o (x,y)uly) T,  in Qi

Jump relations as x -y € ¥:

SLo](x) — :F%a(y) + Stlo1(y) 2

Dulil(x) = 3 u(y) + Delil(y)
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Boundary integral Poisson-Boltzmann system

—(A—K)p=0 in Qo
1 .
A=Y gdk-x)  in g }ﬂ
9]
[(P] = |:Eaif:| =0 on X (o)

> Integral representation of solution:

S« D, in Q
= o+ Dupt !n 0 a:EO, ws(x) = Zq,Goxx)
Soo + aDop + s in Q3 €1

> Interface conditions give equation for (o, 1) on X (second-kind Fredholm):

1
5(L+a)u+ (S = S0)o + (D — aDo)u = s,

1 _ Ops
—5(1—|—a)0—|—(a5 — S0)o + oD}, — Dg)p oy

[Juffer/Botta/van Keulen/van der Ploeg/Berendsen]



Properties of integral equation matrices

Dense integral equation matrix A € CV*V
» Cost of applying A: O(N?)
» Cost of inverting A: O(N?)
Basic idea for acceleration:
» Low-rank off-diagonal blocks, exploit rank structure hierarchically
» FMM: matrix-vector multiplication in O(N) work [Greengard/Rokhlin]

Fast direct solvers

» H-matrices, HSS matrices, recursive skeletonization, etc.




Interpolative decomposition

If A. 4 is numerically low-rank, then there exist

» skeleton (§) and redundant (§) columns partitioning g = §U §

> an interpolation matrix T4

such that eseeee o o o
ecoo0oe
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» Essentially a pivoted QR written slightly differently:

Rll R12

A g = [Ql Qz] { Ro

} ~ Qi [Ru  Ru]

= Ay~ QiRi2 = GiRu <R1_11R12)
A g ‘_\f_’T
q
» Rank-revealing to any specified precison ¢ > 0

[Cheng/Gimbutas/Martinsson/Rokhlin, Gu/Eisenstat]



Skeletonization

> Let A= [App qu} with Apg and Agp low-rank
Awp A

A Agp Agp App ~ A T,
» Apply ID to { i’p}: [ Zp} = [ ZP} T, — Pw woP
Apq Apq pal " Apg = T Apq
Aps App Apg /
» Reorder A= [App  App  Apg|, define Qp = [T, [/
A Agp Agqq /
* % . *
> Sparsify via ID: Q,AQp =~ [* App  Apq <lm, *  Apg
Aqi) Aqq Aqir Aqq

> Reduces to a subsystem involving skeletons only

[Ho/Ying, Xia/Xi/Gu]



Recursive skeletonization factorization

> Skeletonize cells hierarchically up a tree

» Analogous to nested dissection multifrontal method [Duff/Reid, George]

[Gillman/Young/Martinsson, Ho/Greengard, Ho/Ying, Martinsson/Rokhlin]



RSF for molecular electrostatics

» Computational complexities
02 e Factorization: O(N3/2)

e Solve: O(N log N)
Suboptimal but hopefully fast like MF
DNA system with N = 19752, e = 1073

e FMM/GMRES: 30s
e RSF factorization: 10 min
e RSF solve: 0.1s

» Break-even point: 20 solves

-0.000710

v

-0.000959

v

-0.00146

-0.00170

-0.00195

» Effective for small molecules

-0.00220

» Does not scale well to macromolecules
(N z 10°%)

[Ho/Greengard]



Accelerating RSF

» RSF: O(N) in 1D, O(N*?) in 2D, O(N?) in 3D

» Superlinear cost in 2D /3D due to skeleton growth

> Skeletons cluster near cell interfaces by Green's theorem

» Exploit skeleton geometry by further skeletonizing along interfaces

» Recursive dimensional reduction [Corona/Martinsson/Zorin,
Xia/Chandrasekaran/Gu/Li]
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Hierarchical interpolative factorization in 2D

> Skeletonize cells (2D), then edges (1D) hierarchically up a tree
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[Ho/Ying]



Hierarchical interpolative factorization in 3D

> Skeletonize cells (3D), then faces (2D), then edges (1D) hierarchically up a tree

[Ho/Ying]



Numerical results for HIF

Second-kind equation for interior Dirichlet Laplace on the sphere at e = 1073:
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matrix size (V)

> rskelf3 (white), hifie3 (gray), hifie3x (black)
» Factorization time (o), solve time (OJ), memory (o)
> Reference scalings (gray dashes):

e Left: O(N) and O(N3/2)
e Right: O(N) and O(Nlog N)

[Ho/Ying]



Remarks on HIF

» Efficient factorization of structured operators in 2D /3D

» Empirical linear complexity but no proof yet
» Constructs approximate generalized LU decomposition

e Fast matrix-vector multiplication (generalized FMM)
e Fast direct solver at high accuracy, preconditioner otherwise

» Extensions: A2, logdet A, diag A™*

» Modification for sparse PDEs based on MF

» Highly parallelizable [with A. Benson, Y. Li, J. Poulson, L. Ying]

» MATLAB codes freely available at https://github.com/klho/FLAM/


https://github.com/klho/FLAM/

Updating

Matrix augmentation [Greengard/Gueyffier/Martinsson/Rokhlin]:
> Local geometric perturbations as low-rank updates of an augmented base matrix
» Sherman-Morrison-Woodbury: rank k = O(Nk) cost

Full updating [with A. Damle, V. Minden, L. Ying]:
» Use Green's theorem to localize effect of perturbation
» Redo computation up only one branch of the tree: O(log V) cost
» Can accumulate updates

Update time (constant number of points)

ol-e-N

meme =107

“*me=107°

g -8~z =107"

10° - -+-log N

Time (s)




Summary

» Problem: electrostatics in protein design

» Goal: accurate, adaptive, fast, updatable methods

> Achieved using boundary integral equations and fast direct solvers
» To do: test HIF on real macromolecular geometries

> Remaining issue of how to locally remesh after perturbation

> Pieces slowly coming together, future looks promising

» Aim to incorporate into structural biology software
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