
Fast direct methods for structured matrices

Kenneth L. Ho (Stanford)

Math Colloquium, CMU, Oct. 2014

Introduction

Matrix problems are ubiquitous:

I y = Ax

O(N2)

I x = A−1b

O(N3)

I A = UV ∗

O(N3)

I ∆ = det A

O(N3)

Classical methods are infeasible beyond N ∼ 104.

I Fortunately, many matrices in practice are structured

I Example: sparse or low-rank matrices

I Exploiting such structure can yield very efficient algorithms

=

Introduction

Matrix problems are ubiquitous. However, they can be very expensive. For A ∈ CN×N :

I y = Ax

O(N2)

I x = A−1b

O(N3)

I A = UV ∗

O(N3)

I ∆ = det A

O(N3)

Classical methods are infeasible beyond N ∼ 104.

I Fortunately, many matrices in practice are structured

I Example: sparse or low-rank matrices

I Exploiting such structure can yield very efficient algorithms

=

Introduction

Matrix problems are ubiquitous. However, they can be very expensive. For A ∈ CN×N :

I y = Ax

O(N2)

I x = A−1b

O(N3)

I A = UV ∗

O(N3)

I ∆ = det A

O(N3)

Classical methods are infeasible beyond N ∼ 104.

I Fortunately, many matrices in practice are structured

I Example: sparse or low-rank matrices

I Exploiting such structure can yield very efficient algorithms

=

Introduction

I Hierarchical matrices: low-rank submatrices at a hierarchy of scales
I Canonical example: N-body problem

• Particle locations: xi , i = 1, . . . ,N
• Interaction kernel: K(x , y) = 1/‖x − y‖
• Forces: fi =

∑N
j=1 K(xi , xj)mj

I Matrix Aij = K(xi , xj) can be applied in O(N) time using FMM [Greengard/Rokhlin]

I Applications in elliptic PDEs, integral equations, data analysis, etc.

Introduction

Many hierarchical matrix problems can be solved efficiently using FMM.

I Example: Ax = b using FMM + CG/GMRES

I Highly scalable, O(niterN) complexity

I Very successful; industrial applications in electromagnetics, acoustics, etc.

But . . .

I What if niter is large (high contrasts, geometric singularities)?

I What if there are many RHS’s (time stepping, inverse problems)?

Compare with direct solvers: no convergence issues, efficient information reuse.

In certain important environments, there is a need for fast direct methods.

Introduction

Many hierarchical matrix problems can be solved efficiently using FMM.

I Example: Ax = b using FMM + CG/GMRES

I Highly scalable, O(niterN) complexity

I Very successful; industrial applications in electromagnetics, acoustics, etc.

But . . .

I What if niter is large (high contrasts, geometric singularities)?

I What if there are many RHS’s (time stepping, inverse problems)?

Compare with direct solvers: no convergence issues, efficient information reuse.

In certain important environments, there is a need for fast direct methods.

Introduction

Many hierarchical matrix problems can be solved efficiently using FMM.

I Example: Ax = b using FMM + CG/GMRES

I Highly scalable, O(niterN) complexity

I Very successful; industrial applications in electromagnetics, acoustics, etc.

But . . .

I What if niter is large (high contrasts, geometric singularities)?

I What if there are many RHS’s (time stepping, inverse problems)?

Compare with direct solvers: no convergence issues, efficient information reuse.

In certain important environments, there is a need for fast direct methods.

Example: wave scattering

I Time-harmonic scattering: Helmholtz equation
I PDE/IE: A(Ω)x = b(θ)

• Ω: scatterer geometry/properties
• θ: angle of incident wave

I Need to analyze response for nθ incident angles

I Cost: nθ ∼ 100–1000 solves with a fixed matrix

I Extensions: multiple scattering, materials design

Example: protein pKa calculations

I Electrostatics: linearized Poisson-Boltzmann equation
I PDE/IE: A(Ω)x = b(q)

• Ω: molecular geometry/properties
• q: atomic partial charges

I Cost: ntitr solves, one for each site to be charged on/off

−−⇀↽−−

I Conformational flexibility: Ω = Ω(q)

I Need local updates, O((ntitrnrot)
p) perturbed solves

Example: uncertainty quantification

I Gaussian process regression

I Observations: (x0, y0)

I K : prior covariance kernel
I Posterior prediction: (x , y)

• y ∼ N (µ,Σ)
• µ = K(x , x0) (K0 + σ2I)−1y0
• Σ = Kx − K(x , x0) (K0 + σ2I)−1K(x0, x)

I Extension: online regression, adding new observations

I Conditional sampling: ŷ = µ+ Σ1/2z

I Monte Carlo simulation: nsamp RHS’s

Overview

I This talk: our previous and ongoing work on fast direct matrix methods

I System solvers, least squares, matrix factorizations, updating

I Aim: optimal linear or quasilinear complexity

I Many related contributors: Ambikasaran, Bebendorf, Börm, Bremer,
Chandrasekaran, Chen, Corona, Darve, Gillman, Greengard, Gu, Hackbusch,
Li, Martinsson, Rokhlin, Schmitz, Starr, Xia, Ying, Young, Zorin

I Outlook: almost enough technology to make a deep run at some hard problems

Low-rank compression: interpolative decomposition

If A:,q is numerically low-rank, then there exist

I skeleton (q̂) and redundant (q̌) columns partitioning q = q̂ ∪ q̌

I an interpolation matrix Tq

such that

A:,q̌ ≈ A:,q̂Tq A:,(q̂,q̌) ≈ A:,q̂

[
I Tq

]

=

I Essentially a pivoted QR written slightly differently

I Rank-revealing to any specified precison ε > 0

[Cheng/Gimbutas/Martinsson/Rokhlin, Gu/Eisenstat]

Proxy compression

I Algorithms will require IDs of tall-and-skinny matrices of size O(N)

I Nominally requires at least O(N) work

I Observation: if A = UV then an ID of V gives an ID of A

A:,q̌ = UV:,q̌ ≈ UV:,q̂Tq = A:,q̂Tq

I Small V always exists since A is low-rank; how to find V a priori?
I Application-specific:

• Use Green’s theorem/uniqueness of BVP for PDEs
• Use identity theorem for analytic kernels

[Cheng/Gimbutas/Martinsson/Rokhlin, Corona/Martinsson/Zorin, Gillman/Young/Martinsson,

Greengard/Gueyffier/Martinsson/Rokhlin, Ho/Greengard, Ho/Ying, Martinsson/Rokhlin, Ying, Ying/Biros/Zorin]

Algorithms

I System solvers, least squares, matrix factorizations, updating

I Focus primarily on elliptic PDEs/IEs

Matrix compression

I Matrix structure: low-rank off-diagonal blocks at each level of a tree hierarchy

I One-level compression:

I Skeleton “submatrix” has the same structure =⇒ recurse

[Gillman/Young/Martinsson, Ho/Greengard, Martinsson/Rokhlin]

Matrix compression

Multilevel compression: recursive skeletonization

[Gillman/Young/Martinsson, Ho/Greengard, Martinsson/Rokhlin]

Matrix compression

I One-level additive decomposition: A ≈ D + USV ∗

︸ ︷︷ ︸
A

≈

︸ ︷︷ ︸
D

+

︸ ︷︷ ︸
U

︸ ︷︷ ︸
S

︸ ︷︷ ︸
V∗

I Hierarchical: multilevel telescoping representation

A ≈ D0 + U0(D1 + U1(· · ·DL + ULSV ∗L · · ·)V ∗1)V ∗0

[Gillman/Young/Martinsson, Ho/Greengard, Martinsson/Rokhlin]

Matrix inversion

I Extended sparsification: Ax ≈ (D + USV ∗)x = b is equivalent to D U
V ∗ −I

−I S

x
y
z

 =

b
0
0

I Variant of Sherman-Morrison-Woodbury:

︸ ︷︷ ︸
A−1

≈

︸ ︷︷ ︸
D

+

︸ ︷︷ ︸
U

︸ ︷︷ ︸
S−1

︸ ︷︷ ︸
V∗

I Reduces inversion of (large) A to that of (smaller) S

I Hierarchical: recurse!

[Gillman/Young/Martinsson, Ho/Greengard, Martinsson/Rokhlin]

Matrix inversion

I Extended sparsification:

D0 U0

V ∗0 −I
−I D1 U1

V ∗1
. . .

. . .

. . . DL UL

V ∗L −I
−I S

x
y0

z0

...

...
yL
zL

=

b
0
0
...
...
0
0

I Variant of SMW:

A ≈ D0 + U0(D1 + U1(· · · DL + ULS−1V∗L · · ·)V∗1)V∗0

I Fast direct solver or preconditioner depending on accuracy

[Gillman/Young/Martinsson, Ho/Greengard, Martinsson/Rokhlin]

Matrix inversion

Theorem

If the off-diagonal block rank is O(1), then the total cost is O(N).

I Optimal for IEs in 1D, PDEs in 2D (after reduction to separators)

I Method of choice due to robustness and efficiency

I Applies also to various covariance matrices, other common kernels

What about IEs in higher dimensions? Multifrontal-like:

1D 2D 3D

Rank O(log N) O(N1/2) O(N2/3)

Precomp O(N) O(N3/2) O(N2)

Solve O(N) O(N log N) O(N4/3)

[Ho/Greengard]

Recursive skeletonization

I Analogous to nested dissection/multifrontal [Duff/Reid, George]

[Ho/Greengard, Ho/Ying]

RS for molecular electrostatics

I Computational complexities

• Precomp: O(N3/2)
• Solve: O(N log N)

I Suboptimal but hopefully fast like MF

I DNA system with N = 20,000, ε = 10−3

• FMM/GMRES: 30 s
• RS precomp: 10 min
• RS solve: 0.1 s

I Break-even point: 20 solves

I Effective for small molecules

I Does not scale well to macromolecules (N & 106)

How to accelerate to linear complexity?

[Ho/Greengard]

RS for molecular electrostatics

I Computational complexities

• Precomp: O(N3/2)
• Solve: O(N log N)

I Suboptimal but hopefully fast like MF

I DNA system with N = 20,000, ε = 10−3

• FMM/GMRES: 30 s
• RS precomp: 10 min
• RS solve: 0.1 s

I Break-even point: 20 solves

I Effective for small molecules

I Does not scale well to macromolecules (N & 106)

How to accelerate to linear complexity?

[Ho/Greengard]

Least squares

I Now suppose that A ∈ CM×N with M > N, want to do least squares

I Recall the square case: D U
V ∗ −I

−I S

x
y
z

 =

b
0
0

I Variable identities remain, only first row to be interpreted in least squares sense

I Dense LS problem minx ‖Ax − b‖ equivalent to sparse LSE problem

min
x
‖Ax− b‖ s.t. Cx = 0

A =
[
D U 0

]
, C =

[
V ∗ −I

−I S

]
I Extended constraints in multilevel setting

[Ho/Greengard]

Least squares

I Solve LSE by weighting + deferred correction (iterative refinement)

min
x
‖Ax− b‖ s.t. Cx = d

At each iteration, solve

min
xk

∥∥∥∥[A
τC

]
xk −

[
fk
τgk

]∥∥∥∥
I Fixed matrix, can precompute sparse QR factors

I Semi-direct method, O(M + N) complexity if rank is bounded

[Ho/Greengard]

Matrix factorization

I Sparse matrices can be factorized/eliminated efficiently

A =

App Apq

Aqp Aqq Aqr

Arq Arr

R∗p ASp =

App

∗ Aqr

Arq Arr

 , R∗p =

I
∗ I

I

 , Sp =

I ∗
I

I

I DOFs p have been eliminated

I Interactions involving r are unchanged

How about structured dense matrices?

Matrix factorization

I Sparse matrices can be factorized/eliminated efficiently

A =

App Apq

Aqp Aqq Aqr

Arq Arr

R∗p ASp =

App

∗ Aqr

Arq Arr

 , R∗p =

I
∗ I

I

 , Sp =

I ∗
I

I

I DOFs p have been eliminated

I Interactions involving r are unchanged

How about structured dense matrices?

Matrix factorization

I Let A =

[
App Apq

Aqp Aqq

]
with Aqp̌ ≈ Aqp̂Tp and Ap̌q ≈ T ∗p Ap̂q

I Reorder A =

Ap̌p̌ Ap̌p̂ Ap̌q

Ap̂p̌ Ap̂p̂ Ap̂q

Aqp̌ Aqp̂ Aqq

, define Qp =

 I
−Tp I

I

I Sparsify via ID: Q∗p AQp ≈

∗ ∗
∗ Ap̂p̂ Ap̂q

Aqp̂ Aqq

 elim−−→

∗ ∗ Ap̂q

Aqp̂ Aqq

I Reduces to a subsystem involving skeletons only

[Ho/Ying, Xia/Xi/Gu]

Algorithm: recursive skeletonization factorization

Build tree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c.
end for

end for

I Block diagonalization:

D ≈ U∗L−1 · · ·U∗0 AV0 · · ·VL−1

I Generalized LU decomposition:

A ≈ U−∗0 · · ·U−∗L−1DV−1
L−1 · · ·V

−1
0

A−1 ≈ V0 · · ·VL−1D−1U∗L · · ·U∗0

[Ho/Ying]

Accelerating RS for IEs

I RS: O(N) in 1D, O(N3/2) in 2D, O(N2) in 3D

I Superlinear cost in 2D/3D due to skeleton growth

I Skeletons cluster near cell interfaces by Green’s theorem

I Exploit skeleton geometry by further skeletonizing along interfaces

I Recursive dimensional reduction

[Corona/Martinsson/Zorin, Ho/Ying, Xia/Chandrasekaran/Gu/Li]

Hierarchical interpolative factorization for IEs in 2D

Build quadtree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c.
end for
Let C`+1/2 be the set of all edges on level `.
for each cell c ∈ C`+1/2 do

Skeletonize remaining DOFs in c.
end for

end for

[Ho/Ying]

Hierarchical interpolative factorization for IEs in 3D

Build octree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c.
end for
Let C`+1/3 be the set of all faces on level `.
for each cell c ∈ C`+1/3 do

Skeletonize remaining DOFs in c.
end for
Let C`+2/3 be the set of all edges on level `.
for each cell c ∈ C`+2/3 do

Skeletonize remaining DOFs in c.
end for

end for

[Ho/Ying]

HIF-IE in 2D

I Skeletonize cells (2D), then edges (1D) hierarchically up a tree

[Ho/Ying]

HIF-IE in 3D

I Skeletonize cells (3D), then faces (2D), then edges (1D) hierarchically up a tree

[Ho/Ying]

HIF-IE results

Second-kind boundary IE for interior Dirichlet Laplace on the unit sphere:

I rskelf3 (white), hifie3 (gray), hifie3x (black)

I Factorization time (◦), solve time (�), memory (�) at precision ε = 10−3

I Reference scalings (gray dashes):

• Left: O(N) and O(N3/2)
• Right: O(N) and O(N log N)

[Ho/Ying]

HIF-IE remarks

I Empirical linear complexity for IEs but no proof yet
I Matrix factorization as generalized LU decomposition

• Fast matrix-vector multiplication (generalized FMM)
• Fast direct solver at high accuracy, preconditioner otherwise

I Extensions: A1/2, log det A, diag A−1

I Modification for sparse PDEs based on MF (HIF-DE)

I Highly parallelizable [with A. Benson, Y. Li, J. Poulson, L. Ying]

I MATLAB codes freely available at https://github.com/klho/FLAM/

https://github.com/klho/FLAM/

Updating

I Direct methods: very efficient for a fixed matrix with multiple RHS’s

I Can accommodate local perturbations using augmented system approach

Ax = b →
[

A B
C D

] [
x
y

]
=

[
f
g

]
I Reuse factorization via SMW or A−1 as preconditioner

I Cost: O(kN), where k is perturbation rank or iterations required

What about a sequence of local updates?

I Works only if all perturbed systems are “close” to a base system

I Cannot accumulate in a global way

[Greengard/Gueyffier/Martinsson/Rokhlin]

Updating

I Direct methods: very efficient for a fixed matrix with multiple RHS’s

I Can accommodate local perturbations using augmented system approach

Ax = b →
[

A B
C D

] [
x
y

]
=

[
f
g

]
I Reuse factorization via SMW or A−1 as preconditioner

I Cost: O(kN), where k is perturbation rank or iterations required

What about a sequence of local updates?

I Works only if all perturbed systems are “close” to a base system

I Cannot accumulate in a global way

[Greengard/Gueyffier/Martinsson/Rokhlin]

Updating

Another idea: directly update factorization [with A. Damle, V. Minden, L. Ying]

I Use Green’s theorem to localize effect of perturbation

I Redo computation up only one branch of the tree: O(log N) cost

105 106 107
10−2

10−1

100

101

N
T

im
e

(s
)

Update t ime (constant number of points)

N

ε = 10−9

ε = 10−6

ε = 10−3

log N

Summary

What we know how to do:

I O(N) factorizations/solvers for IEs and PDEs

I O(log N) local updates

I Semi-direct least squares

What we don’t know how to do (fully):

I How to make small global updates?

I How to form spectral decompositions?

I How to compute matrix functions?

References

I K.L. Ho, L. Greengard. A fast direct solver for structured linear systems by recursive skeletonization.
SIAM J. Sci. Comput. 34 (5): A2507–A2532, 2012.

I K.L. Ho, L. Greengard. A fast semidirect least squares algorithm for hierarchically block separable
matrices. SIAM J. Matrix Anal. Appl. 35 (2): 725–748, 2014.

I K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: differential equations.
Preprint, arXiv:1307.2895 [math.NA], 2013.

I K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: integral equations.
Preprint, arXiv:1307.2666 [math.NA], 2013.

