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Introduction

Matrix problems are ubiquitous. However, they can be very expensive. For A € CV*V:
> y = Ax » x=A"'b » A= UV~ > A =detA
O(N?) O(N?) O(N?) O(N?)

Classical methods are infeasible beyond N ~ 10*.
» Fortunately, many matrices in practice are structured
» Example: sparse or low-rank matrices

» Exploiting such structure can yield very efficient algorithms




Introduction

» Hierarchical matrices: low-rank submatrices at a hierarchy of scales

» Canonical example: N-body problem
e Particle locations: x;, i=1,..., N
o Interaction kernel: K(x,y) = l/HX -yl
e Forces: fi = ijl K(xi, x;) mj
» Matrix Aj = K(x;,x;) can be applied in O(N) time using FMM [Greengard /Rokhlin]
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> Applications in elliptic PDEs, integral equations, data analysis, etc.
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Introduction

Many hierarchical matrix problems can be solved efficiently using FMM.
» Example: Ax = b using FMM + CG/GMRES
> Highly scalable, O(niterN) complexity
» Very successful; industrial applications in electromagnetics, acoustics, etc.

But ...
» What if niwr is large (high contrasts, geometric singularities)?
» What if there are many RHS's (time stepping, inverse problems)?

Compare with direct solvers: no convergence issues, efficient information reuse.

In certain important environments, there is a need for fast direct methods.



Example: wave scattering

v

Time-harmonic scattering: Helmholtz equation
PDE/IE: A(2)x = b(0)

e Q: scatterer geometry/properties

e 0: angle of incident wave

\4

v

Need to analyze response for ng incident angles

» Cost: ng ~ 100-1000 solves with a fixed matrix

» Extensions: multiple scattering, materials design



Example: protein pK, calculations

» Electrostatics: linearized Poisson-Boltzmann equation
» PDE/IE: A(Q2)x = b(q)

e Q: molecular geometry/properties

e g: atomic partial charges

> Cost: it solves, one for each site to be charged on/off

» Conformational flexibility: Q = Q(q)

> Need local updates, O((nitrnrot)?) perturbed solves



Example: uncertainty quantification

v

Gaussian process regression

v

Observations: (xo, yo)

v

K prior covariance kernel

\{

Posterior prediction: (x,y)

v o y~N(pX)

* p=K(x,0) (Ko+0%) "1y

o ¥ =Ky — K(x,x0) (Ko + a21) "t K(x0, x)

» Extension: online regression, adding new observations
» Conditional sampling: ¥y =+ Y122

» Monte Carlo simulation: nsmp RHS's



Overview

v

This talk: our previous and ongoing work on fast direct matrix methods

v

System solvers, least squares, matrix factorizations, updating
» Aim: optimal linear or quasilinear complexity

» Many related contributors: Ambikasaran, Bebendorf, Bérm, Bremer,
Chandrasekaran, Chen, Corona, Darve, Gillman, Greengard, Gu, Hackbusch,
Li, Martinsson, Rokhlin, Schmitz, Starr, Xia, Ying, Young, Zorin

v

Outlook: almost enough technology to make a deep run at some hard problems



Low-rank compression: interpolative decomposition

If A. 4 is numerically low-rank, then there exist
> skeleton (§) and redundant (§) columns partitioning g = §U §

> an interpolation matrix T,

such that
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> Essentially a pivoted QR written slightly differently

» Rank-revealing to any specified precison € > 0

[Cheng/Gimbutas/Martinsson/Rokhlin, Gu/Eisenstat]



Proxy compression

» Algorithms will require IDs of tall-and-skinny matrices of size O(N)
» Nominally requires at least O(N) work
» Observation: if A= UV then an ID of V gives an ID of A

Ag=UV 3= UV 3 Tqg=A,;3Tq

v

Small V always exists since A is low-rank; how to find V a priori?
Application-specific:

e Use Green's theorem/uniqueness of BVP for PDEs

e Use identity theorem for analytic kernels

v

[Cheng/Gimbutas/Martinsson/Rokhlin, Corona/Martinsson/Zorin, Gillman/Young/Martinsson,
Greengard/Gueyffier/Martinsson /Rokhlin, Ho/Greengard, Ho/Ying, Martinsson/Rokhlin, Ying, Ying/Biros/Zorin]



Algorithms

> System solvers, least squares, matrix factorizations, updating

» Focus primarily on elliptic PDEs/IEs



Matrix compression

» Matrix structure: low-rank ofF—diagonal blocks at each level of a tree hierarchy
column

l:l- I:III

W [] full rank
-DI II.

. low rank

> One-level compression:
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» Skeleton “submatrix” has the same structure — recurse

[Gillman/Young/Martinsson, Ho/Greengard, Martinsson/Rokhlin]



Matrix compression
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Multilevel compression: recursive skeletonization

[Gillman/Young/Martinsson, Ho/Greengard, Martinsson/Rokhlin]



Matrix compression

> One-level additive decomposition: A~ D + USV*

—_——— —
S v*

——
A D U

» Hierarchical: multilevel telescoping representation

A Do+ Ug(Dy+ Ur(--- DL+ ULSV - )V Wy

[Gillman/Young/Martinsson, Ho/Greengard, Martinsson/Rokhlin]



Matrix inversion

» Extended sparsification: Ax ~ (D + USV™)x = b is equivalent to

D U X b
% —1| |yl = |o
) z 0

» Variant of Sherman-Morrison-Woodbury:

V*

——
S—1
——
u

A-1 D

> Reduces inversion of (large) A to that of (smaller) S

» Hierarchical: recurse!

[Gillman/Young/Martinsson, Ho/Greengard, Martinsson/Rokhlin]



Matrix inversion

» Extended sparsification:

Dy U T X7 (b7
vy —1 Yo 0
—1 D1 U1 20 0
Vl* : == :
D U :
v —I| |n 0

L -1 S| [z LO

» Variant of SMW:
A= Do+ U(D1 +Us(- - DL +UST V) - )VHVg

» Fast direct solver or preconditioner depending on accuracy

[Gillman/Young/Martinsson, Ho/Greengard, Martinsson/Rokhlin]



Matrix inversion

If the off-diagonal block rank is O(1), then the total cost is O(N).

» Optimal for IEs in 1D, PDEs in 2D (after reduction to separators)
» Method of choice due to robustness and efficiency

» Applies also to various covariance matrices, other common kernels

What about IEs in higher dimensions? Multifrontal-like:

| 1D 2D 3D
Rank | O(logN)  O(NY?)  O(N*?)
Precomp | O(N) O(N®/?) O(N?)
Solve O(N)  O(NlogN) O(N*?)

[Ho/Greengard]



Recursive skeletonization

» Analogous to nested dissection/multifrontal [Duff/Reid, George]

[Ho/Greengard, Ho/Ying]



RS for molecular electrostatics

» Computational complexities

e Precomp: O(N3/2)
e Solve: O(N log N)

» Suboptimal but hopefully fast like MF

» DNA system with N = 20,000, ¢ = 1073
¢ FMM/GMRES: 30s
e RS precomp: 10 min
e RS solve: 0.1ls

> Break-even point: 20 solves
» Effective for small molecules

» Does not scale well to macromolecules (N > 10°)

[Ho/Greengard]



RS for molecular electrostatics

» Computational complexities

e Precomp: O(N3/2)
e Solve: O(N log N)

» Suboptimal but hopefully fast like MF

» DNA system with N = 20,000, ¢ = 1073

¢ FMM/GMRES: 30s
e RS precomp: 10 min
e RS solve: 0.1ls

> Break-even point: 20 solves
» Effective for small molecules

» Does not scale well to macromolecules (N > 10°)

How to accelerate to linear complexity?

[Ho/Greengard]



Least squares

v

CMXN

Now suppose that A € with M > N, want to do least squares

v

Recall the square case:

D U X b
% —1| |yl = |o
) z 0

v

Variable identities remain, only first row to be interpreted in least squares sense

v

Dense LS problem miny [|Ax — b|| equivalent to sparse LSE problem

min |[Ax — b|| st. Cx=0

A=[D U 0], c:{v* 4 _sl}

v

Extended constraints in multilevel setting

[Ho/Greengard]



Least squares

» Solve LSE by weighting + deferred correction (iterative refinement)

min |[Ax — b|| st. Cx=d

e[l

» Fixed matrix, can precompute sparse QR factors

» Semi-direct method, O(M + N) complexity if rank is bounded

At each iteration, solve

min
X

A Q R
(1] Y NEL
] n A
[T 1] n EA
= "mn HA
EEE n A
n
[T TN N
N—————

[Ho/Greengard]



Matrix factorization

> Sparse matrices can be factorized/eliminated efficiently

App Apg
A= Ap Agw Ag
L Arq Arr
[App
R,AS, = *  Agrl, R, =
L Arq Arr

» DOFs p have been eliminated

» Interactions involving r are unchanged



Matrix factorization

> Sparse matrices can be factorized/eliminated efficiently

App Apg
A= Ap Aw A @ ~~q
L Arq Arr
_App I
R;ASP = * Aar| R,f =[x [ , Sp=
L Ag An I

» DOFs p have been eliminated

» Interactions involving r are unchanged

How about structured dense matrices?



Matrix factorization

> Let A= [App qu} with Agy =~ Ags Tp and Apq ~ T, Apq
qp qq

Aps App Apg I
> Reorder A= [App  App Apg|, define Qp = [T, [/

A Agp Agq /

* * i *
> Sparsify via ID: QFAQ, ~ |+ App  Asg| -2 £ Apg
Agp Agq Agp  Agq

» Reduces to a subsystem involving skeletons only

[Ho/Ying, Xia/Xi/Gu]



Algorithm: recursive skeletonization factorization

Build tree.
for each level £ =0,1,2,...,L from finest to coarsest do
Let C; be the set of all cells on level 4.
for each cell c € C; do
Skeletonize remaining DOFs in c.
end for
end for

» Block diagonalization:
D=Uf_{ - UiAVy--- Vi_q
> Generalized LU decomposition:
Ax U™ U5 DV vt
Al Vo - Vi DTU - U

[Ho/Ying]



Accelerating RS for IEs

v

RS: O(N) in 1D, O(N*?) in 2D, O(N?) in 3D
Superlinear cost in 2D /3D due to skeleton growth

v

v

Skeletons cluster near cell interfaces by Green's theorem

v

Exploit skeleton geometry by further skeletonizing along interfaces

v

Recursive dimensional reduction

- . .
N .
A

[Corona/Martinsson/Zorin, Ho/Ying, Xia/Chandrasekaran/Gu/Li]



Hierarchical interpolative factorization for IEs in 2D

Build quadtree.
for each level ¢ =0,1,2,..., L from finest to coarsest do
Let C; be the set of all cells on level 4.
for each cell c € C; do
Skeletonize remaining DOFs in c.
end for
Let Cp11/2 be the set of all edges on level £.
for each cell c € Cpy1/, do
Skeletonize remaining DOFs in c.
end for
end for

[Ho/Ying]



Hierarchical interpolative factorization for IEs in 3D

Build octree.
for each level ¢ =0,1,2,..., L from finest to coarsest do
Let C; be the set of all cells on level 4.
for each cell c € C; do
Skeletonize remaining DOFs in c.
end for
Let Cp11/3 be the set of all faces on level £.
for each cell c € Cpy1/3 do
Skeletonize remaining DOFs in c.
end for
Let Cyi2/3 be the set of all edges on level £.
for each cell c € Cyy5/3 do
Skeletonize remaining DOFs in c.
end for
end for

[Ho/Ying]



HIF-1E in 2D

> Skeletonize cells (2D), then edges (1D) hierarchically up a tree

i P Por
5-. H ;'v M.‘% oo ! 5] .-%qm ";
;.'. H ;c'a P B8 o°
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[Ho/Ying]



HIF-IE in 3D

> Skeletonize cells (3D), then faces (2D), then edges (1D) hierarchically up a tree

[Ho/Ying]



HIF-IE results

Second-kind boundary IE for interior Dirichlet Laplace on the unit sphere:

107 T T T 103 T T T
- 10° F i o
20 b {6 1w E
< 10t F 1= .
< 10% E {1 & 10°F E
<10 f {1 =
= w0 f 15 ¢ E
Q 0 1S
g w0k 1§50} ]
=107t E i E

10-2 b i 10-2 L R R R BT

108 10* 10° 106 107 103 10* 10° 10° 107

matrix size (N)

> rskelf3 (white), hifie3 (gray), hifie3x (black)
» Factorization time (o), solve time (CJ), memory (o) at precision ¢ = 103
> Reference scalings (gray dashes):

o Left: O(N) and O(N3/?)
e Right: O(N) and O(N log N)

[Ho/Ying]



HIF-IE remarks

» Empirical linear complexity for IEs but no proof yet
> Matrix factorization as generalized LU decomposition

e Fast matrix-vector multiplication (generalized FMM)
o Fast direct solver at high accuracy, preconditioner otherwise

» Extensions: A2, logdet A, diag A™*

» Modification for sparse PDEs based on MF (HIF-DE)

» Highly parallelizable [with A. Benson, Y. Li, J. Poulson, L. Ying]

» MATLAB codes freely available at https://github.com/klho/FLAM/


https://github.com/klho/FLAM/

Updating

v

Direct methods: very efficient for a fixed matrix with multiple RHS's

» Can accommodate local perturbations using augmented system approach

wms o [8 8] -[]

» Reuse factorization via SMW or A™! as preconditioner

v

Cost: O(kN), where k is perturbation rank or iterations required

[Greengard/Gueyffier/Martinsson/Rokhlin]



Updating

v

Direct methods: very efficient for a fixed matrix with multiple RHS's

» Can accommodate local perturbations using augmented system approach

wms o [8 8] -[]

» Reuse factorization via SMW or A™! as preconditioner

v

Cost: O(kN), where k is perturbation rank or iterations required

What about a sequence of local updates?
» Works only if all perturbed systems are “close” to a base system

» Cannot accumulate in a global way

[Greengard/Gueyffier/Martinsson/Rokhlin]



Updating

Another idea: directly update factorization [with A. Damle, V. Minden, L. Ying]

» Use Green's theorem to localize effect of perturbation

» Redo computation up only one branch of the tree: O(log ) cost

Time (s)
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Update time (constant number of points)




Summary

What we know how to do:
» O(N) factorizations/solvers for |Es and PDEs
» O(log N) local updates

» Semi-direct least squares

What we don’t know how to do (fully):
» How to make small global updates?
» How to form spectral decompositions?

» How to compute matrix functions?
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