Fast direct methods for structured matrices

Kenneth L. Ho (Stanford)

Math Colloquium, CMU, Oct. 2014

Introduction

Matrix problems are ubiquitous:

- $y=A x$
- $x=A^{-1} b$
- $A=U V^{*}$
- $\Delta=\operatorname{det} A$

Introduction

Matrix problems are ubiquitous. However, they can be very expensive. For $A \in \mathbb{C}^{N \times N}$:

- $y=A x$
- $x=A^{-1} b$
- $A=U V^{*}$
- $\Delta=\operatorname{det} A$
$O\left(N^{2}\right)$
$O\left(N^{3}\right)$
$O\left(N^{3}\right)$
$O\left(N^{3}\right)$

Classical methods are infeasible beyond $N \sim 10^{4}$.

Introduction

Matrix problems are ubiquitous. However, they can be very expensive. For $A \in \mathbb{C}^{N \times N}$:

- $y=A x$
- $x=A^{-1} b$
- $A=U V^{*}$
- $\Delta=\operatorname{det} A$
$O\left(N^{3}\right)$
$O\left(N^{3}\right)$
$O\left(N^{3}\right)$

Classical methods are infeasible beyond $N \sim 10^{4}$.

- Fortunately, many matrices in practice are structured
- Example: sparse or low-rank matrices
- Exploiting such structure can yield very efficient algorithms

Introduction

- Hierarchical matrices: low-rank submatrices at a hierarchy of scales
- Canonical example: N-body problem
- Particle locations: $x_{i}, i=1, \ldots, N$
- Interaction kernel: $K(x, y)=1 /\|x-y\|$
- Forces: $\quad f_{i}=\sum_{j=1}^{N} K\left(x_{i}, x_{j}\right) m_{j}$
- Matrix $A_{i j}=K\left(x_{i}, x_{j}\right)$ can be applied in $O(N)$ time using FMM [Greengard/Rokhlin]

- Applications in elliptic PDEs, integral equations, data analysis, etc.

Introduction

Many hierarchical matrix problems can be solved efficiently using FMM.

- Example: $A x=b$ using FMM + CG/GMRES
- Highly scalable, $O\left(n_{\text {iter }} N\right)$ complexity
- Very successful; industrial applications in electromagnetics, acoustics, etc.

Introduction

Many hierarchical matrix problems can be solved efficiently using FMM.

- Example: $A x=b$ using FMM + CG/GMRES
- Highly scalable, $O\left(n_{\text {iter }} N\right)$ complexity
- Very successful; industrial applications in electromagnetics, acoustics, etc.

But ...

- What if $n_{\text {iter }}$ is large (high contrasts, geometric singularities)?
- What if there are many RHS's (time stepping, inverse problems)?

Compare with direct solvers: no convergence issues, efficient information reuse.

Introduction

Many hierarchical matrix problems can be solved efficiently using FMM.

- Example: $A x=b$ using FMM + CG/GMRES
- Highly scalable, $O\left(n_{\text {iter }} N\right)$ complexity
- Very successful; industrial applications in electromagnetics, acoustics, etc.

But ...

- What if $n_{\text {iter }}$ is large (high contrasts, geometric singularities)?
- What if there are many RHS's (time stepping, inverse problems)?

Compare with direct solvers: no convergence issues, efficient information reuse.

In certain important environments, there is a need for fast direct methods.

Example: wave scattering

- Time-harmonic scattering: Helmholtz equation
- PDE/IE: $A(\Omega) x=b(\theta)$
- Ω : scatterer geometry/properties
- θ : angle of incident wave
- Need to analyze response for n_{θ} incident angles
- Cost: $n_{\theta} \sim 100-1000$ solves with a fixed matrix

- Extensions: multiple scattering, materials design

Example: protein $\mathrm{p} K_{\mathrm{a}}$ calculations

- Electrostatics: linearized Poisson-Boltzmann equation
- PDE/IE: $A(\Omega) x=b(q)$
- Ω : molecular geometry/properties
- q : atomic partial charges
- Cost: $n_{\text {titr }}$ solves, one for each site to be charged on/off

- Conformational flexibility: $\Omega=\Omega(q)$
- Need local updates, $O\left(\left(n_{\text {titr }} n_{\text {rot }}\right)^{p}\right)$ perturbed solves

Example: uncertainty quantification

- Gaussian process regression
- Observations: $\left(x_{0}, y_{0}\right)$
- K: prior covariance kernel
- Posterior prediction: (x, y)
- $y \sim \mathcal{N}(\mu, \Sigma)$
- $\mu=K\left(x, x_{0}\right)\left(K_{0}+\sigma^{2} I\right)^{-1} y_{0}$
- $\Sigma=K_{x}-K\left(x, x_{0}\right)\left(K_{0}+\sigma^{2} I\right)^{-1} K\left(x_{0}, x\right)$
- Extension: online regression, adding new observations
- Conditional sampling: $\hat{y}=\mu+\Sigma^{1 / 2} z$
- Monte Carlo simulation: $n_{\text {samp }}$ RHS's
- This talk: our previous and ongoing work on fast direct matrix methods
- System solvers, least squares, matrix factorizations, updating
- Aim: optimal linear or quasilinear complexity
- Many related contributors: Ambikasaran, Bebendorf, Börm, Bremer, Chandrasekaran, Chen, Corona, Darve, Gillman, Greengard, Gu, Hackbusch, Li, Martinsson, Rokhlin, Schmitz, Starr, Xia, Ying, Young, Zorin
- Outlook: almost enough technology to make a deep run at some hard problems

Low-rank compression: interpolative decomposition

If $A_{:, q}$ is numerically low-rank, then there exist

- skeleton (\hat{q}) and redundant (\check{q}) columns partitioning $q=\hat{q} \cup \check{q}$
- an interpolation matrix T_{q}
such that

$$
A_{:, \check{q}} \approx A_{:, \hat{q}} T_{q}
$$

$$
A_{:,(\hat{q}, \breve{q})} \approx A_{:, \hat{q}}\left[\begin{array}{ll}
I & T_{q}
\end{array}\right]
$$

- Essentially a pivoted QR written slightly differently
- Rank-revealing to any specified precison $\epsilon>0$

Proxy compression

- Algorithms will require IDs of tall-and-skinny matrices of size $O(N)$
- Nominally requires at least $O(N)$ work
- Observation: if $A=U V$ then an ID of V gives an ID of A

$$
A_{:, \check{q}}=U V_{:, \check{q}} \approx U V_{:, \hat{q}} T_{q}=A_{:, \hat{q}} T_{q}
$$

- Small V always exists since A is low-rank; how to find V a priori?
- Application-specific:
- Use Green's theorem/uniqueness of BVP for PDEs
- Use identity theorem for analytic kernels

[Cheng/Gimbutas/Martinsson/Rokhlin, Corona/Martinsson/Zorin, Gillman/Young/Martinsson,
Greengard/Gueyffier/Martinsson/Rokhlin, Ho/Greengard, Ho/Ying, Martinsson/Rokhlin, Ying, Ying/Biros/Zorin]

Algorithms

- System solvers, least squares, matrix factorizations, updating
- Focus primarily on elliptic PDEs/IEs

Matrix compression

- Matrix structure: low-rank off-diagonal blocks at each level of a tree hierarchy
 column

low rank
- One-level compression:

- Skeleton "submatrix" has the same structure \Longrightarrow recurse

Multilevel compression: recursive skeletonization

- One-level additive decomposition: $A \approx D+U S V^{*}$

- Hierarchical: multilevel telescoping representation

$$
A \approx D_{0}+U_{0}\left(D_{1}+U_{1}\left(\cdots D_{L}+U_{L} S V_{L}^{*} \cdots\right) V_{1}^{*}\right) V_{0}^{*}
$$

- Extended sparsification: $A x \approx\left(D+U S V^{*}\right) x=b$ is equivalent to

$$
\left[\begin{array}{ccc}
D & U & \\
V^{*} & & -I \\
& -I & S
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
b \\
0 \\
0
\end{array}\right]
$$

- Variant of Sherman-Morrison-Woodbury:

- Reduces inversion of (large) A to that of (smaller) S
- Hierarchical: recurse!

Matrix inversion

- Extended sparsification:
$\left[\begin{array}{ccccccc}D_{0} & U_{0} & & & & & \\ V_{0}^{*} & & -I & & & & \\ & -I & D_{1} & U_{1} & & & \\ & & V_{1}^{*} & \ddots & \ddots & & \\ & & & \ddots & D_{L} & U_{L} & \\ & & & & V_{L}^{*} & & -I \\ & & & & & -I & S\end{array}\right]\left[\begin{array}{c}x \\ y_{0} \\ z_{0} \\ \vdots \\ \vdots \\ y_{L} \\ z_{L}\end{array}\right]=\left[\begin{array}{c}b \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0\end{array}\right]$
- Variant of SMW:

$$
\mathcal{A} \approx \mathcal{D}_{0}+\mathcal{U}_{0}\left(\mathcal{D}_{1}+\mathcal{U}_{1}\left(\cdots \mathcal{D}_{L}+\mathcal{U}_{L} \mathcal{S}^{-1} \mathcal{V}_{L}^{*} \cdots\right) \mathcal{V}_{1}^{*}\right) \mathcal{V}_{0}^{*}
$$

- Fast direct solver or preconditioner depending on accuracy

Matrix inversion

Theorem

If the off-diagonal block rank is $O(1)$, then the total cost is $O(N)$.

- Optimal for IEs in 1D, PDEs in 2D (after reduction to separators)
- Method of choice due to robustness and efficiency
- Applies also to various covariance matrices, other common kernels

What about IEs in higher dimensions? Multifrontal-like:

	1 D	2 D	3 D
Rank	$O(\log N)$	$O\left(N^{1 / 2}\right)$	$O\left(N^{2 / 3}\right)$
Precomp	$O(N)$	$O\left(N^{3 / 2}\right)$	$O\left(N^{2}\right)$
Solve	$O(N)$	$O(N \log N)$	$O\left(N^{4 / 3}\right)$

Recursive skeletonization

- Analogous to nested dissection/multifrontal [Duff/Reid, George]

[Ho/Greengard, Ho/Ying]
- Computational complexities
- Precomp: $O\left(N^{3 / 2}\right)$
- Solve: $O(N \log N)$
- Suboptimal but hopefully fast like MF
- DNA system with $N=20,000, \epsilon=10^{-3}$
- FMM/GMRES: 30 s
- RS precomp: 10 min
- RS solve: 0.1 s
- Break-even point: 20 solves
- Effective for small molecules
- Does not scale well to macromolecules $\left(N \gtrsim 10^{6}\right)$
- Computational complexities
- Precomp: $O\left(N^{3 / 2}\right)$
- Solve: $O(N \log N)$
- Suboptimal but hopefully fast like MF
- DNA system with $N=20,000, \epsilon=10^{-3}$
- FMM/GMRES: 30 s
- RS precomp: 10 min
- RS solve: 0.1 s
- Break-even point: 20 solves
- Effective for small molecules
- Does not scale well to macromolecules $\left(N \gtrsim 10^{6}\right)$

How to accelerate to linear complexity?

Least squares

- Now suppose that $A \in \mathbb{C}^{M \times N}$ with $M>N$, want to do least squares
- Recall the square case:

$$
\left[\begin{array}{ccc}
D & U & \\
V^{*} & & -I \\
& -I & S
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
b \\
0 \\
0
\end{array}\right]
$$

- Variable identities remain, only first row to be interpreted in least squares sense
- Dense LS problem $\min _{x}\|A x-b\|$ equivalent to sparse LSE problem

$$
\begin{gathered}
\min _{x}\|\mathbf{A x}-b\| \\
\mathbf{s . t .} \quad \mathbf{C x}=0 \\
\mathbf{A}=\left[\begin{array}{lll}
D & U & 0
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{ccc}
V^{*} & -l \\
& -I & S
\end{array}\right]
\end{gathered}
$$

- Extended constraints in multilevel setting

Least squares

- Solve LSE by weighting + deferred correction (iterative refinement)

$$
\min _{x}\|\mathbf{A} \mathbf{x}-b\| \quad \text { s.t. } \quad \mathbf{C} \mathbf{x}=\mathbf{d}
$$

At each iteration, solve

$$
\min _{\mathbf{x}_{k}}\left\|\left[\begin{array}{c}
\mathbf{A} \\
\tau \mathbf{C}
\end{array}\right] \mathbf{x}_{k}-\left[\begin{array}{c}
\mathbf{f}_{k} \\
\tau \mathbf{g}_{k}
\end{array}\right]\right\|
$$

- Fixed matrix, can precompute sparse QR factors
- Semi-direct method, $O(M+N)$ complexity if rank is bounded

Matrix factorization

- Sparse matrices can be factorized/eliminated efficiently

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
A_{p p} & A_{p q} & \\
A_{q p} & A_{q q} & A_{q r} \\
& A_{r q} & A_{r r}
\end{array}\right] \\
R_{p}^{*} A S_{p} & =\left[\begin{array}{ccc}
A_{p p} & & \\
& * & A_{q r} \\
& A_{r q} & A_{r r}
\end{array}\right], \quad R_{p}^{*}=\left[\begin{array}{lll}
l & \\
* & I & \\
& & I
\end{array}\right], \quad S_{p}=\left[\begin{array}{lll}
l & * \\
& I & \\
& & I
\end{array}\right]
\end{aligned}
$$

- DOFs p have been eliminated
- Interactions involving r are unchanged

Matrix factorization

- Sparse matrices can be factorized/eliminated efficiently

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
A_{p p} & A_{p q} & \\
A_{q p} & A_{q q} & A_{q r} \\
& A_{r q} & A_{r r}
\end{array}\right] \\
R_{p}^{*} A S_{p} & =\left[\begin{array}{ccc}
A_{p p} & & \\
& * & A_{q r} \\
& A_{r q} & A_{r r}
\end{array}\right], \quad R_{p}^{*}=\left[\begin{array}{lll}
l & & r \\
* & I & \\
& & I
\end{array}\right], \quad S_{p}=\left[\begin{array}{lll}
l & * & \\
& I & \\
& & I
\end{array}\right]
\end{aligned}
$$

- DOFs p have been eliminated
- Interactions involving r are unchanged

How about structured dense matrices?

Matrix factorization

- Let $A=\left[\begin{array}{ll}A_{p p} & A_{p q} \\ A_{q p} & A_{q q}\end{array}\right]$ with $A_{q \check{\rho}} \approx A_{q \hat{p}} T_{p}$ and $A_{\check{\rho} q} \approx T_{p}^{*} A_{\hat{p} q}$
- Reorder $A=\left[\begin{array}{lll}A_{\check{\rho} \check{\rho}} & A_{\check{\rho} \hat{\rho}} & A_{\check{\rho} q} \\ A_{\hat{\rho} \check{\rho}} & A_{\hat{\rho} \hat{\rho}} & A_{\hat{\rho} q} \\ A_{q \check{\rho}} & A_{q \hat{\rho}} & A_{q q}\end{array}\right]$, define $Q_{p}=\left[\begin{array}{ccc}I & & \\ -T_{p} & I & \\ & & I\end{array}\right]$
- Sparsify via ID: $Q_{p}^{*} A Q_{p} \approx\left[\begin{array}{ccc}* & * & \\ * & A_{\hat{p} \hat{\rho}} & A_{\hat{p} q} \\ & A_{q \hat{p}} & A_{q q}\end{array}\right] \xrightarrow{\text { elim }}\left[\begin{array}{cccc}* & & \\ & * & A_{\hat{p} q} \\ & A_{q \hat{p}} & A_{q q}\end{array}\right]$
- Reduces to a subsystem involving skeletons only

Algorithm: recursive skeletonization factorization

Build tree.
for each level $\ell=0,1,2, \ldots, L$ from finest to coarsest do
Let C_{ℓ} be the set of all cells on level ℓ.
for each cell $c \in C_{\ell}$ do
Skeletonize remaining DOFs in c.
end for
end for

- Block diagonalization:

$$
D \approx U_{L-1}^{*} \cdots U_{0}^{*} A V_{0} \cdots V_{L-1}
$$

- Generalized LU decomposition:

$$
\begin{aligned}
A & \approx U_{0}^{-*} \cdots U_{L-1}^{-*} D V_{L-1}^{-1} \cdots V_{0}^{-1} \\
A^{-1} & \approx V_{0} \cdots V_{L-1} D^{-1} U_{L}^{*} \cdots U_{0}^{*}
\end{aligned}
$$

Accelerating RS for IEs

- RS: $O(N)$ in $1 \mathrm{D}, O\left(N^{3 / 2}\right)$ in 2D, $O\left(N^{2}\right)$ in 3 D
- Superlinear cost in 2D/3D due to skeleton growth
- Skeletons cluster near cell interfaces by Green's theorem
- Exploit skeleton geometry by further skeletonizing along interfaces
- Recursive dimensional reduction

[Corona/Martinsson/Zorin, Ho/Ying, Xia/Chandrasekaran/Gu/Li]

Build quadtree.
for each level $\ell=0,1,2, \ldots, L$ from finest to coarsest do Let C_{ℓ} be the set of all cells on level ℓ. for each cell $c \in C_{\ell}$ do

Skeletonize remaining DOFs in c. end for
Let $C_{\ell+1 / 2}$ be the set of all edges on level ℓ. for each cell $c \in C_{\ell+1 / 2}$ do

Skeletonize remaining DOFs in c.
end for
end for

```
Build octree.
for each level \(\ell=0,1,2, \ldots, L\) from finest to coarsest do
    Let \(C_{\ell}\) be the set of all cells on level \(\ell\).
    for each cell \(c \in C_{\ell}\) do
    Skeletonize remaining DOFs in \(c\).
    end for
    Let \(C_{\ell+1 / 3}\) be the set of all faces on level \(\ell\).
    for each cell \(c \in C_{\ell+1 / 3}\) do
    Skeletonize remaining DOFs in \(c\).
    end for
    Let \(C_{\ell+2 / 3}\) be the set of all edges on level \(\ell\).
    for each cell \(c \in C_{\ell+2 / 3}\) do
    Skeletonize remaining DOFs in \(c\).
    end for
end for
```

HIF-IE in 2D

- Skeletonize cells (2D), then edges (1D) hierarchically up a tree

HIF-IE in 3D

- Skeletonize cells (3D), then faces (2D), then edges (1D) hierarchically up a tree

HIF-IE results

Second-kind boundary IE for interior Dirichlet Laplace on the unit sphere:

- rskelf3 (white), hifie3 (gray), hifie3x (black)
- Factorization time (○), solve time (\square), memory (\diamond) at precision $\epsilon=10^{-3}$
- Reference scalings (gray dashes):
- Left: $O(N)$ and $O\left(N^{3 / 2}\right)$
- Right: $O(N)$ and $O(N \log N)$

HIF-IE remarks

- Empirical linear complexity for IEs but no proof yet
- Matrix factorization as generalized LU decomposition
- Fast matrix-vector multiplication (generalized FMM)
- Fast direct solver at high accuracy, preconditioner otherwise
- Extensions: $A^{1 / 2}, \log \operatorname{det} A, \operatorname{diag} A^{-1}$
- Modification for sparse PDEs based on MF (HIF-DE)
- Highly parallelizable [with A. Benson, Y. Li, J. Poulson, L. Ying]
- MATLAB codes freely available at https://github.com/klho/FLAM/

Updating

- Direct methods: very efficient for a fixed matrix with multiple RHS's
- Can accommodate local perturbations using augmented system approach

$$
A x=b \quad \rightarrow\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

- Reuse factorization via SMW or A^{-1} as preconditioner
- Cost: $O(k N)$, where k is perturbation rank or iterations required
- Direct methods: very efficient for a fixed matrix with multiple RHS's
- Can accommodate local perturbations using augmented system approach

$$
A x=b \quad \rightarrow\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

- Reuse factorization via SMW or A^{-1} as preconditioner
- Cost: $O(k N)$, where k is perturbation rank or iterations required

What about a sequence of local updates?

- Works only if all perturbed systems are "close" to a base system
- Cannot accumulate in a global way

Updating

Another idea: directly update factorization [with A. Damle, V. Minden, L. Ying]

- Use Green's theorem to localize effect of perturbation
- Redo computation up only one branch of the tree: $O(\log N)$ cost

What we know how to do:

- $O(N)$ factorizations/solvers for IEs and PDEs
- $O(\log N)$ local updates
- Semi-direct least squares

What we don't know how to do (fully):

- How to make small global updates?
- How to form spectral decompositions?
- How to compute matrix functions?

References

- K.L. Ho, L. Greengard. A fast direct solver for structured linear systems by recursive skeletonization. SIAM J. Sci. Comput. 34 (5): A2507-A2532, 2012.
- K.L. Ho, L. Greengard. A fast semidirect least squares algorithm for hierarchically block separable matrices. SIAM J. Matrix Anal. Appl. 35 (2): 725-748, 2014.
- K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: differential equations. Preprint, arXiv:1307.2895 [math.NA], 2013.
- K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: integral equations. Preprint, arXiv:1307.2666 [math.NA], 2013.

