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Introduction

Elliptic PDEs in differential or integral form:
=V - (a(x)Vu(x)) + b(x)u(x) = f(x)
a()u) + [ K(x.y)u(y) d9Uy) = £(x)

» Fundamental to science and engineering
> Interested in 2D/3D, complex geometry

» Discretize — structured linear system Au = f

Goal: fast, accurate, and robust algorithms to compute u = AL



Introduction

How to solve? Let A € CNV*N,

» If N is small, use direct methods (Gaussian elimination, matrix factorization)
o Stable, robust, rapid updates

o O(N3) complexity, infeasible for N > 10*
> If N is large, use iterative methods (CG, GMRES, multigrid)

e Can be accelerated to O(njter/N) complexity, highly scalable
o Extremely successful, workhorse of modern scientific computing
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» If N is small, use direct methods (Gaussian elimination, matrix factorization)

e Stable, robust, rapid updates
o O(N3) complexity, infeasible for N > 10*

> If N is large, use iterative methods (CG, GMRES, multigrid)

e Can be accelerated to O(njter/N) complexity, highly scalable
o Extremely successful, workhorse of modern scientific computing

But ...
» What if nier is large (high contrasts, geometric singularities)?

» What if there are many RHS’s (time stepping, inverse problems)?

In certain important environments, there is a need for fast direct solvers.



Example: protein pK, calculations

[AIH] _ B \c»
[AH] In 10AGAH~>A+H

pKs = —logyg

AGKH—>A+H = AG\/§‘H—>A+H + AG,Z_W - AGZ:p
= AGaysatn + AGaan — AGE_

experiment electrostatic only

> lonization behavior is important for enzymatic and structural properties



Example: protein pK, calculations

v

Linearized Poisson-Boltzmann equation
Discretize: A(X)u = f(q)

e Y : molecular geometry

e q: atomic partial charges

v

» Fixed matrix, one solve for each of ny, titrating sites

v

Conformational flexibility: O((nitnrot)?) perturbed solves

Potential for massive acceleration using fast direct methods.

Related problems:
» Protein structure prediction, protein-protein docking, protein design

> Inverse scattering, time stepping, materials design



Previous work

» PDEs: exploit sparsity (multifrontal), reduce to IE-like systems

> |Es: exploit FMM-type hierarchical low-rank structure

» H-matrices: O(N log® N) but with a large constant

» HSS matrices/recursive skeletonization: O(N) in 1D, O(N*2) in 2D, O(N?) in 3D
» HSS/RS/MF with structured matrix algebra: O(N) in 2D, O(N*/3) in 3D

[Ambikasaran, Bebendorf, Bérm, Bremer, Chandrasekaran, Chen, Corona, Darve, Gillman, Greengard, Gu, Hackbusch, Ho, Li,

Martinsson, Rokhlin, Schmitz, Starr, Xia, Ying, Young, Zorin]



Overview

Hierarchical interpolative factorization
» RS/MF + recursive dimensional reduction
» Same idea as using structured algebra but much simpler
» Explicit matrix sparsification, generalized LU decomposition
> Linear or quasilinear complexity, small constants
Unified formalism for IEs and PDEs
Works for 2D /3D, adaptive and complex geometry

v

v

Tools: sparse elimination, interpolative decomposition, skeletonization



Sparse elimination

Let
App Apg !
A= |Ap Aw Aal. @\q
Arq Arr

(Think of A as a sparse matrix.) If App is nonsingular, define

I I —A Asg
Ry = |—ApAy | , S = !
I !
so that
App
RyAS, = x Ag
Arq Arr

» DOFs p have been eliminated

» Interactions involving r are unchanged



Interpolative decomposition

If A. g is numerically low-rank, then there exist
> skeleton (§) and redundant (§) columns partitioning g = §U §

> an interpolation matrix T,

such that eecocoe o ° °
®o0oo0oo0oo0e

Ag~AgT, N
Hq »q91q- @ecoooe

@cocooe /1\

(NN XN N o ° °

> Essentially a pivoted QR written slightly differently

» Rank-revealing to any specified precison € > 0

Interactions between separated regions are low-rank.

[Cheng/Gimbutas/Martinsson/Rokhlin, Gu/Eisenstat]



Skeletonization

> Let A= [App qu} with A,q and Agp low-rank
Awp  Agq
A Agp Agp Ap ~ ApT,
>App|y|Dto{§p}: [Zp} [ZP}T = ap ap P
Apq Abaq Pa 7 Apq = Ty Apg
Ass App Apg /
> Reorder A= |App  App  Apq|, define Qo= |—T, [
Aqb Aqb Aqq /
. -
> Sparsify via ID:  Q AQ, ~ |+ A Apg
L Aqﬁ Aqq_
- -
» Eliminate: Ry Q,AQ,Sp ~ *  Apg
Aqﬁ Aqq_

> Reduces to a subsystem involving skeletons only

[Ho/Ying, Xia/Xi/Gu]



Integral equations

» Old algorithm (RS) in new factorization form
» New algorithm: HIF-IE



Algorithm: recursive skeletonization factorization

Build quadtree/octree.
for each level £ =0,1,2,..., L from finest to coarsest do
Let C; be the set of all cells on level £.
for each cell c € C; do
Skeletonize remaining DOFs in c.
end for
end for



level O

RSF in 2D
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RSF in 2D: level 1

domain matrix



level 2

RSF in 2D
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RSF in 2D: level 3

domain matrix
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RSF in 3D: level 2
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RSF analysis

v

Skeletonization operators:

UZ = H QCRC7 VZ = H QCSC

ceCy ceCy

I *
Qc = |* / 3 Rmsc - I
I

v

Block diagonalization:

DUy - Ui AVy--- Vi_y

v

Generalized LU decomposition:
Ax Uy U DV - vyt
Al Voo VDTS- U

» Fast direct solver or preconditioner



RSF analysis

The cost is determined by the skeleton size.

1D 2D 3D
Skeleton size O(log N)  O(NY?)  O(N?*3)
Factorization cost O(N) O(N®/?) O(N?)
Solve cost O(N) O(Nlog N)  O(N*3)

Question: How to reduce the skeleton size in 2D and 3D?



RSF analysis

P
N L
A

Question: How to reduce the skeleton size in 2D and 3D?
» Skeletons cluster near cell interfaces (Green's theorem)
> Exploit skeleton geometry by further skeletonizing along interfaces

» Dimensional reduction



Algorithm: hierarchical interpolative factorization for IEs in 2D

Build quadtree.
for each level £ =0,1,2,...,L from finest to coarsest do
Let C; be the set of all cells on level 4.
for each cell c € G, do
Skeletonize remaining DOFs in c.
end for
Let Cyi1/2 be the set of all edges on level £.
for each cell c € Cpy1/> do
Skeletonize remaining DOFs in c.
end for
end for



level 0

HIF-IE in 2D
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HIF-IE in 2D: level 1/2

domain matrix



level 1

HIF-IE in 2D:
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HIF-IE in 2D: level 3/2
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HIF-IE in 2D: level 2
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HIF-IE in 2D: level 5/2
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HIF-IE in 2D: level 3
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RSF vs. HIF-IE in 2D
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RSF vs. HIF-IE in 2D

RSF HIF-1E



Algorithm: hierarchical interpolative factorization for IEs in 3D

Build octree.
for each level ¢ =0,1,2,..., L from finest to coarsest do
Let C; be the set of all cells on level 4.
for each cell c € C; do
Skeletonize remaining DOFs in c.
end for
Let Cp11/3 be the set of all faces on level £.
for each cell c € Cpy1/3 do
Skeletonize remaining DOFs in c.
end for
Let Cyi2/3 be the set of all edges on level £.
for each cell c € Cpy5/3 do
Skeletonize remaining DOFs in c.
end for
end for
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HIF-IE in 3D: level 1/3
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level 1

HIF-IE in 3D:
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level 2

HIF-IE in 3D:
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RSF vs. HIF-IE in 3D




HIF-IE analysis

— % —1
» 2D: AUy U U pDV o
Al VoVisp--- VL—1/2D_1UZ—1/2"'

» 3D: A Uo_*U1_/§U2 L— 1/3DVL_ 1/3°

AT R VoVisVays o VieysD MU s

Conjecture: Skeleton size: O(log N)
Factorization cost: O(N)
Solve cost: O(N)

ViV !
Ui/ Us
V2/3 V1/3 Vo
Us/3U53U5



HIF-IE analysis

—x —1 —1,,-1
> 2D: A~ Uy " U1/2 U 21DV 2o Vi Vo
A VoV VL—1/2D_1UZ—1/2"' Uiy Us

» 3D: A= UO_*UI_/;UZ L— 1/3DVL_ 1/3° V2/3 V1/3 VO
AT R VoVisVays - ViersDHUE s+ UsjsUs s U

Conjecture: Skeleton size: O(log N)
Factorization cost: O(N)
Solve cost: O(N)

Actually slightly more complicated . ..



Numerical results in 2D

First-kind volume IE on the unit square with

1
a(x)=0, K(x,y)=—=—log|x—y|-
2w
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> rskelf2 (white), hifie2 (black)
» Factorization time (o), solve time (), memory (¢) at precision ¢ = 107°
> Reference scalings (gray dashes):

e Left: O(N) and O(N3/2)
e Right: O(N) and O(N log N)



Numerical results in 3D

Second-kind boundary IE on the unit sphere with
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» rskelf3 (white), hifie3 (gray), hifie3x (black)
» Factorization time (o), solve time ((J), memory () at precision ¢ = 1073
> Reference scalings (gray dashes):

e Left: O(N) and O(N3/2)
e Right: O(N) and O(N log N)



Numerical results in 3D

First-kind volume IE on the unit cube with

a(x) =0,

108 T

time (ty, ta/s) [8]

> rskelf3 (white), hifie3 (black)
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» Factorization time (o), solve time (), memory (¢) at precision ¢ = 1073

> Reference scalings (gray dashes):
o Left: O(N) and O(N?)
e Right: O(N) and O(N*/3)



Differential equations

» Old algorithm (MF)
> New algorithm: HIF-DE

» Exploit sparsity: trivial “skeletonization”, thin separators



Algorithm: multifrontal

Build quadtree/octree.
for each level £ =0,1,2,..., L from finest to coarsest do
Let C; be the set of all cells on level 4.
for each cell c € C; do
Eliminate remaining interior DOFs in c.
end for
end for
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MF in 3D: level 0
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Algorithm: hierarchical interpolative factorization for PDEs in 2D

Build quadtree.
for each level £ =0,1,2,...,L from finest to coarsest do
Let C; be the set of all cells on level 4.
for each cell c € G, do
Eliminate remaining interior DOFs in c.
end for
Let Cyi1/2 be the set of all edges on level £.
for each cell c € Cpy1/> do
Skeletonize remaining DOFs in c.
end for
end for



HIF-DE in 2D: level 0
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HIF-DE in 2D: level 3/2
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HIF-DE in 2D: level 5/2

domain matrix



HIF-DE in 2D: level 3
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MF vs. HIF-DE in 2D

MF
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MF vs. HIF-DE in 2D

MF HIF-DE



Algorithm: hierarchical interpolative factorization for PDEs in 3D

Build octree.
for each level ¢ =0,1,2,..., L from finest to coarsest do
Let C; be the set of all cells on level 4.
for each cell c € C; do
Eliminate remaining interior DOFs in c.
end for
Let Cp11/3 be the set of all faces on level £.
for each cell c € Cpy1/3 do
Skeletonize remaining DOFs in c.
end for
Let Cyi2/3 be the set of all edges on level £.
for each cell c € Cy15/3 do
Skeletonize remaining DOFs in c.
end for
end for



HIF-DE in 3D: level 0

A

CLTLT ST




HIF-DE in 3D: level 1/
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level 2

HIF-DE in 3D:
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Numerical results in 2D

Five-point stencil on the unit square with
a(x)=1, b(x)=0.
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» mf2 (white), hifde2 (black)
» Factorization time (o), solve time (), memory (o) at precision ¢ = 10~°
> Reference scalings (gray dashes):

e Left: O(N) and O(N3/2)
e Right: O(N) and O(N log )



Numerical results in 2D

Five-point stencil on the unit square with a(x) a
quantized high-contrast random field, b(x) = 0.
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» mf2 (white), hifde2 (black)
» Factorization time (o), solve time (), memory (o) at precision ¢ = 10~°
> Reference scalings (gray dashes):

e Left: O(N) and O(N3/2)
e Right: O(N) and O(N log )



Numerical results in 3D

Seven-point stencil discretization on the unit cube with

a(x)=1, b(x)=0.
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» mf3 (white), hifde3 (gray), hifde3x (black)
» Factorization time (o), solve time (), memory (o) at precision ¢ = 107°
> Reference scalings (gray dashes):

o Left: O(N) and O(N?)

e Right: O(N) and O(N*/3)



Conclusions

v

Efficient factorization of structured operators in 2D and 3D

e Fast matrix-vector multiplication
o Fast direct solver at high accuracy, preconditioner otherwise
e Empirical linear complexity but no proof yet

Sparsification and elimination (skeletonization) via the 1D
Dimensional reduction by alternating between cells, faces, and edges
Can be viewed as adaptive numerical coarsening

Extensions: A2, logdet A, diag A~}

Naturally parallelizable, block-sweep structure

Perspective: structured dense matrices can be sparsified very efficiently
Can borrow directly from sparse algorithms, e.g., RSF = MF

What other features of sparse matrices can be exploited?

MATLAB codes available at https://github.com/klho/FLAM/.


https://github.com/klho/FLAM/

Additional slides



Proxy compression

» Main cost of algorithm is computing IDs of tall-and-skinny matrices

» Global operation can be reduced to local operation using Green's theorem
> Suffices to compress against neighbors plus “proxy” surface
» Crucial for beating O(N?) complexity




Second-kind |Es

v

IEs of the form u(x) + /Q K(x,y)u(y) dQ(y) = f(x)

» High contrast in diagonal vs. off-diagonal entries

v

Mixing of cell, face, edge in HIF-IE leads to error

v

Need to use effective precision O(e/N)

» Quasilinear complexity estimates:

\ 2D 3D

Factorization cost O(Nlog N) O(Nlog® N)
Solve cost O(Nloglog N)  O(N log? N)




