
Hierarchical interpolative factorization

Kenneth L. Ho (Stanford)

Joint work with Lexing Ying

CNA Seminar, CMU, Oct. 2014



Introduction

Elliptic PDEs in differential or integral form:

−∇ · (a(x)∇u(x)) + b(x)u(x) = f (x)

a(x)u(x) +

∫
Ω

K(x , y)u(y) dΩ(y) = f (x)

I Fundamental to science and engineering

I Interested in 2D/3D, complex geometry

I Discretize → structured linear system Au = f

Goal: fast, accurate, and robust algorithms to compute u = A−1f



Introduction

How to solve? Let A ∈ CN×N .

I If N is small, use direct methods (Gaussian elimination, matrix factorization)
• Stable, robust, rapid updates
• O(N3) complexity, infeasible for N & 104

I If N is large, use iterative methods (CG, GMRES, multigrid)
• Can be accelerated to O(niterN) complexity, highly scalable
• Extremely successful, workhorse of modern scientific computing

But . . .

I What if niter is large (high contrasts, geometric singularities)?

I What if there are many RHS’s (time stepping, inverse problems)?

In certain important environments, there is a need for fast direct solvers.



Introduction

How to solve? Let A ∈ CN×N .

I If N is small, use direct methods (Gaussian elimination, matrix factorization)
• Stable, robust, rapid updates
• O(N3) complexity, infeasible for N & 104

I If N is large, use iterative methods (CG, GMRES, multigrid)
• Can be accelerated to O(niterN) complexity, highly scalable
• Extremely successful, workhorse of modern scientific computing

But . . .

I What if niter is large (high contrasts, geometric singularities)?

I What if there are many RHS’s (time stepping, inverse problems)?

In certain important environments, there is a need for fast direct solvers.



Introduction

How to solve? Let A ∈ CN×N .

I If N is small, use direct methods (Gaussian elimination, matrix factorization)
• Stable, robust, rapid updates
• O(N3) complexity, infeasible for N & 104

I If N is large, use iterative methods (CG, GMRES, multigrid)
• Can be accelerated to O(niterN) complexity, highly scalable
• Extremely successful, workhorse of modern scientific computing

But . . .

I What if niter is large (high contrasts, geometric singularities)?

I What if there are many RHS’s (time stepping, inverse problems)?

In certain important environments, there is a need for fast direct solvers.



Example: protein pKa calculations

−−⇀↽−−

pKa ≡ − log10

[A] [H]

[AH]
=

β

ln 10
∆G p

AH→A+H

∆G p
AH→A+H = ∆G s

AH→A+H + ∆G s→p
A −∆G s→p

AH

= ∆G s
AH→A+H︸ ︷︷ ︸

experiment

+ ∆G s
A→AH −∆G p

A→AH︸ ︷︷ ︸
electrostatic only

I Ionization behavior is important for enzymatic and structural properties



Example: protein pKa calculations

I Linearized Poisson-Boltzmann equation
I Discretize: A(Σ)u = f (q)

• Σ: molecular geometry
• q: atomic partial charges

I Fixed matrix, one solve for each of ntitr titrating sites

I Conformational flexibility: O((ntitrnrot)
p) perturbed solves

Potential for massive acceleration using fast direct methods.

Related problems:

I Protein structure prediction, protein-protein docking, protein design

I Inverse scattering, time stepping, materials design



Previous work

I PDEs: exploit sparsity (multifrontal), reduce to IE-like systems

I IEs: exploit FMM-type hierarchical low-rank structure

I H-matrices: O(N logα N) but with a large constant

I HSS matrices/recursive skeletonization: O(N) in 1D, O(N3/2) in 2D, O(N2) in 3D

I HSS/RS/MF with structured matrix algebra: O(N) in 2D, O(N4/3) in 3D

[Ambikasaran, Bebendorf, Börm, Bremer, Chandrasekaran, Chen, Corona, Darve, Gillman, Greengard, Gu, Hackbusch, Ho, Li,

Martinsson, Rokhlin, Schmitz, Starr, Xia, Ying, Young, Zorin]



Overview

Hierarchical interpolative factorization

I RS/MF + recursive dimensional reduction

I Same idea as using structured algebra but much simpler

I Explicit matrix sparsification, generalized LU decomposition

I Linear or quasilinear complexity, small constants

I Unified formalism for IEs and PDEs

I Works for 2D/3D, adaptive and complex geometry

Tools: sparse elimination, interpolative decomposition, skeletonization



Sparse elimination

Let

A =

App Apq

Aqp Aqq Aqr

Arq Arr

 .
(Think of A as a sparse matrix.) If App is nonsingular, define

R∗p =

 I
−AqpA

−1
pp I

I

 , Sp =

I −A−1
pp Apq

I
I


so that

R∗pASp =

App

∗ Aqr

Arq Arr

 .
I DOFs p have been eliminated

I Interactions involving r are unchanged



Interpolative decomposition

If A:,q is numerically low-rank, then there exist

I skeleton (q̂) and redundant (q̌) columns partitioning q = q̂ ∪ q̌

I an interpolation matrix Tq

such that

A:,q̌ ≈ A:,q̂Tq.

I Essentially a pivoted QR written slightly differently

I Rank-revealing to any specified precison ε > 0

Interactions between separated regions are low-rank.

[Cheng/Gimbutas/Martinsson/Rokhlin, Gu/Eisenstat]



Skeletonization

I Let A =

[
App Apq

Aqp Aqq

]
with Apq and Aqp low-rank

I Apply ID to

[
Aqp

A∗pq

]
:

[
Aqp̌

A∗p̌q

]
≈
[
Aqp̂

A∗p̂q

]
Tp =⇒ Aqp̌ ≈ Aqp̂Tp

Ap̌q ≈ T ∗p Ap̂q

I Reorder A =

Ap̌p̌ Ap̌p̂ Ap̌q

Ap̂p̌ Ap̂p̂ Ap̂q

Aqp̌ Aqp̂ Aqq

, define Qp =

 I
−Tp I

I



I Sparsify via ID: Q∗pAQp ≈

∗ ∗
∗ Ap̂p̂ Ap̂q

Aqp̂ Aqq



I Eliminate: R∗p̌Q
∗
pAQpSp̌ ≈

∗ ∗ Ap̂q

Aqp̂ Aqq


I Reduces to a subsystem involving skeletons only

[Ho/Ying, Xia/Xi/Gu]



Integral equations

I Old algorithm (RS) in new factorization form

I New algorithm: HIF-IE



Algorithm: recursive skeletonization factorization

Build quadtree/octree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c.
end for

end for



RSF in 2D: level 0

domain matrix



RSF in 2D: level 1

domain matrix



RSF in 2D: level 2

domain matrix



RSF in 2D: level 3

domain matrix



RSF in 3D: level 0

domain



RSF in 3D: level 1

domain



RSF in 3D: level 2

domain



RSF analysis

I Skeletonization operators:

U` =
∏
c∈C`

QcRc , V` =
∏
c∈C`

QcSc

Qc =

I∗ I
I

 , Rc , Sc =

I ∗
I

I


I Block diagonalization:

D ≈ U∗L−1 · · ·U∗0 AV0 · · ·VL−1

I Generalized LU decomposition:

A ≈ U−∗0 · · ·U−∗L−1DV
−1
L−1 · · ·V

−1
0

A−1 ≈ V0 · · ·VL−1D
−1U∗L · · ·U∗0

I Fast direct solver or preconditioner



RSF analysis

The cost is determined by the skeleton size.

1D 2D 3D

Skeleton size O(logN) O(N1/2) O(N2/3)

Factorization cost O(N) O(N3/2) O(N2)

Solve cost O(N) O(N logN) O(N4/3)

Question: How to reduce the skeleton size in 2D and 3D?

I Skeletons cluster near cell interfaces (Green’s theorem)

I Exploit skeleton geometry by further skeletonizing along interfaces

I Dimensional reduction



RSF analysis

Question: How to reduce the skeleton size in 2D and 3D?

I Skeletons cluster near cell interfaces (Green’s theorem)

I Exploit skeleton geometry by further skeletonizing along interfaces

I Dimensional reduction



Algorithm: hierarchical interpolative factorization for IEs in 2D

Build quadtree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c.
end for
Let C`+1/2 be the set of all edges on level `.
for each cell c ∈ C`+1/2 do

Skeletonize remaining DOFs in c.
end for

end for



HIF-IE in 2D: level 0

domain matrix



HIF-IE in 2D: level 1/2

domain matrix



HIF-IE in 2D: level 1

domain matrix



HIF-IE in 2D: level 3/2

domain matrix



HIF-IE in 2D: level 2

domain matrix



HIF-IE in 2D: level 5/2

domain matrix



HIF-IE in 2D: level 3

domain matrix



RSF vs. HIF-IE in 2D

RSF HIF-IE



RSF vs. HIF-IE in 2D

RSF HIF-IE



Algorithm: hierarchical interpolative factorization for IEs in 3D

Build octree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c.
end for
Let C`+1/3 be the set of all faces on level `.
for each cell c ∈ C`+1/3 do

Skeletonize remaining DOFs in c.
end for
Let C`+2/3 be the set of all edges on level `.
for each cell c ∈ C`+2/3 do

Skeletonize remaining DOFs in c.
end for

end for



HIF-IE in 3D: level 0

domain



HIF-IE in 3D: level 1/3

domain



HIF-IE in 3D: level 2/3

domain



HIF-IE in 3D: level 1

domain



HIF-IE in 3D: level 4/3

domain



HIF-IE in 3D: level 5/3

domain



HIF-IE in 3D: level 2

domain



RSF vs. HIF-IE in 3D

RSF HIF-IE



HIF-IE analysis

I 2D: A ≈ U−∗0 U−∗1/2 · · ·U
−∗
L−1/2DV

−1
L−1/2 · · ·V

−1
1/2V

−1
0

A−1 ≈ V0V1/2 · · ·VL−1/2D
−1U∗L−1/2 · · ·U∗1/2U

∗
0

I 3D: A ≈ U−∗0 U−∗1/3U
−∗
2/3 · · ·U

−∗
L−1/3DV

−1
L−1/3 · · ·V

−1
2/3V

−1
1/3V

−1
0

A−1 ≈ V0V1/3V2/3 · · ·VL−1/3D
−1U∗L−1/3 · · ·U∗2/3U

∗
1/3U

∗
0

Conjecture: Skeleton size: O(logN)
Factorization cost: O(N)
Solve cost: O(N)

Actually slightly more complicated . . .



HIF-IE analysis

I 2D: A ≈ U−∗0 U−∗1/2 · · ·U
−∗
L−1/2DV

−1
L−1/2 · · ·V

−1
1/2V

−1
0

A−1 ≈ V0V1/2 · · ·VL−1/2D
−1U∗L−1/2 · · ·U∗1/2U

∗
0

I 3D: A ≈ U−∗0 U−∗1/3U
−∗
2/3 · · ·U

−∗
L−1/3DV

−1
L−1/3 · · ·V

−1
2/3V

−1
1/3V

−1
0

A−1 ≈ V0V1/3V2/3 · · ·VL−1/3D
−1U∗L−1/3 · · ·U∗2/3U

∗
1/3U

∗
0

Conjecture: Skeleton size: O(logN)
Factorization cost: O(N)
Solve cost: O(N)

Actually slightly more complicated . . .



Numerical results in 2D

First-kind volume IE on the unit square with

a(x) ≡ 0, K(x , y) = − 1

2π
log ‖x − y‖.

I rskelf2 (white), hifie2 (black)

I Factorization time (◦), solve time (�), memory (�) at precision ε = 10−6

I Reference scalings (gray dashes):

• Left: O(N) and O(N3/2)
• Right: O(N) and O(N log N)



Numerical results in 3D

Second-kind boundary IE on the unit sphere with

a(x) ≡ −1

2
, K(x , y) =

∂

∂ν(y)

1

4π‖x − y‖ .

I rskelf3 (white), hifie3 (gray), hifie3x (black)

I Factorization time (◦), solve time (�), memory (�) at precision ε = 10−3

I Reference scalings (gray dashes):

• Left: O(N) and O(N3/2)
• Right: O(N) and O(N log N)



Numerical results in 3D

First-kind volume IE on the unit cube with

a(x) ≡ 0, K(x , y) =
1

4π‖x − y‖ .

I rskelf3 (white), hifie3 (black)

I Factorization time (◦), solve time (�), memory (�) at precision ε = 10−3

I Reference scalings (gray dashes):

• Left: O(N) and O(N2)
• Right: O(N) and O(N4/3)



Differential equations

I Old algorithm (MF)

I New algorithm: HIF-DE

I Exploit sparsity: trivial “skeletonization”, thin separators



Algorithm: multifrontal

Build quadtree/octree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Eliminate remaining interior DOFs in c.
end for

end for



MF in 2D: level 0

domain matrix



MF in 2D: level 1

domain matrix



MF in 2D: level 2

domain matrix



MF in 2D: level 3

domain matrix



MF in 3D: level 0

domain



MF in 3D: level 1

domain



MF in 3D: level 2

domain



Algorithm: hierarchical interpolative factorization for PDEs in 2D

Build quadtree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Eliminate remaining interior DOFs in c.
end for
Let C`+1/2 be the set of all edges on level `.
for each cell c ∈ C`+1/2 do

Skeletonize remaining DOFs in c.
end for

end for



HIF-DE in 2D: level 0

domain matrix



HIF-DE in 2D: level 1/2

domain matrix



HIF-DE in 2D: level 1

domain matrix



HIF-DE in 2D: level 3/2

domain matrix



HIF-DE in 2D: level 2

domain matrix



HIF-DE in 2D: level 5/2

domain matrix



HIF-DE in 2D: level 3

domain matrix



MF vs. HIF-DE in 2D

MF HIF-DE



MF vs. HIF-DE in 2D

MF HIF-DE



Algorithm: hierarchical interpolative factorization for PDEs in 3D

Build octree.
for each level ` = 0, 1, 2, . . . , L from finest to coarsest do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Eliminate remaining interior DOFs in c.
end for
Let C`+1/3 be the set of all faces on level `.
for each cell c ∈ C`+1/3 do

Skeletonize remaining DOFs in c.
end for
Let C`+2/3 be the set of all edges on level `.
for each cell c ∈ C`+2/3 do

Skeletonize remaining DOFs in c.
end for

end for



HIF-DE in 3D: level 0

domain



HIF-DE in 3D: level 1/3

domain



HIF-DE in 3D: level 2/3

domain



HIF-DE in 3D: level 2

domain



HIF-DE in 3D: level 4/3

domain



HIF-DE in 3D: level 5/3

domain



HIF-DE in 3D: level 2

domain



MF vs. HIF-DE in 3D

MF HIF-DE



Numerical results in 2D

Five-point stencil on the unit square with

a(x) ≡ 1, b(x) ≡ 0.

I mf2 (white), hifde2 (black)

I Factorization time (◦), solve time (�), memory (�) at precision ε = 10−9

I Reference scalings (gray dashes):

• Left: O(N) and O(N3/2)
• Right: O(N) and O(N log N)



Numerical results in 2D

Five-point stencil on the unit square with a(x) a
quantized high-contrast random field, b(x) ≡ 0.

I mf2 (white), hifde2 (black)

I Factorization time (◦), solve time (�), memory (�) at precision ε = 10−9

I Reference scalings (gray dashes):

• Left: O(N) and O(N3/2)
• Right: O(N) and O(N log N)



Numerical results in 3D

Seven-point stencil discretization on the unit cube with

a(x) ≡ 1, b(x) ≡ 0.

I mf3 (white), hifde3 (gray), hifde3x (black)

I Factorization time (◦), solve time (�), memory (�) at precision ε = 10−6

I Reference scalings (gray dashes):

• Left: O(N) and O(N2)
• Right: O(N) and O(N4/3)



Conclusions

I Efficient factorization of structured operators in 2D and 3D
• Fast matrix-vector multiplication
• Fast direct solver at high accuracy, preconditioner otherwise
• Empirical linear complexity but no proof yet

I Sparsification and elimination (skeletonization) via the ID

I Dimensional reduction by alternating between cells, faces, and edges

I Can be viewed as adaptive numerical coarsening

I Extensions: A1/2, log detA, diagA−1

I Naturally parallelizable, block-sweep structure

I Perspective: structured dense matrices can be sparsified very efficiently

I Can borrow directly from sparse algorithms, e.g., RSF = MF

I What other features of sparse matrices can be exploited?

MATLAB codes available at https://github.com/klho/FLAM/.

https://github.com/klho/FLAM/


Additional slides



Proxy compression

I Main cost of algorithm is computing IDs of tall-and-skinny matrices

I Global operation can be reduced to local operation using Green’s theorem

I Suffices to compress against neighbors plus “proxy” surface

I Crucial for beating O(N2) complexity



Second-kind IEs

I IEs of the form u(x) +

∫
Ω

K(x , y)u(y) dΩ(y) = f (x)

I High contrast in diagonal vs. off-diagonal entries

I Mixing of cell, face, edge in HIF-IE leads to error

I Need to use effective precision O(ε/N)

I Quasilinear complexity estimates:

2D 3D

Factorization cost O(N logN) O(N log6 N)
Solve cost O(N log logN) O(N log2 N)


