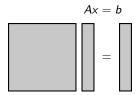
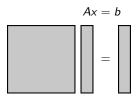
Fast direct methods for structured matrices

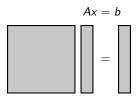
Kenneth L. Ho (Stanford)

Caltech, Nov. 2014

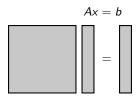




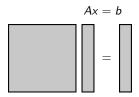
- ▶ For $A \in \mathbb{C}^{N \times N}$ dense, solution generally requires $O(N^3)$ work
- $\blacktriangleright\,$ Classical methods infeasible beyond $N\sim 10^4\,$



- ▶ For $A \in \mathbb{C}^{N \times N}$ dense, solution generally requires $O(N^3)$ work
- $\blacktriangleright\,$ Classical methods infeasible beyond $N\sim 10^4\,$
- Other common matrix problems:
 - y = Ax: O(N²)
 A = UV*: O(N³)
 Δ = det A: O(N³)



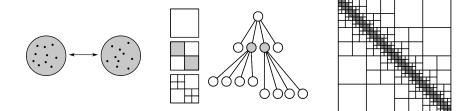
- ▶ For $A \in \mathbb{C}^{N \times N}$ dense, solution generally requires $O(N^3)$ work
- Classical methods infeasible beyond $N \sim 10^4$
- Other common matrix problems:
 - y = Ax: O(N²)
 A = UV*: O(N³)
 Δ = det A: O(N³)
- Observation: many matrices arising in practice are structured



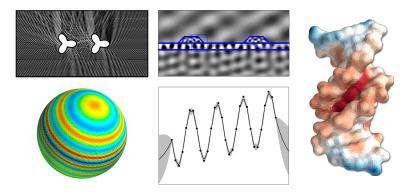
- ▶ For $A \in \mathbb{C}^{N \times N}$ dense, solution generally requires $O(N^3)$ work $\rightarrow O(N)$
- Classical methods infeasible beyond $N \sim 10^4$ ►
- Other common matrix problems:
 - y = Ax: $O(N^2) \rightarrow O(N)$ $A = UV^*$: $O(N^3) \rightarrow O(N)$ $\Delta = \det A$: $O(N^3) \rightarrow O(N)$
- Observation: many matrices arising in practice are structured
- Goal: accelerate to linear complexity by exploiting matrix structure

Hierarchical matrices: low-rank submatrices at a hierarchy of scales

- Canonical example: N-body problem
 - Particle locations: x_i , $i = 1, \ldots, N$
 - Interaction kernel: K(x, y) = 1/||x y||
 - Forces: $f_i = \sum_{j=1}^N K(x_i, x_j) m_j$
- Matrix $A_{ij} = K(x_i, x_j)$ can be applied in O(N) time



> Applications: integral equations, elliptic PDEs, data analysis, etc.



[Greengard/Ho/Lee 2014, Ho 2012, Ho/Greengard 2012]

Many structured matrix problems can be solved efficiently by iteration

- CG/GMRES + fast multiplication: O(n_{iter}N) complexity
- ▶ Very successful; industrial applications in electromagnetics, acoustics, etc.

Many structured matrix problems can be solved efficiently by iteration

- ► CG/GMRES + fast multiplication: O(n_{iter}N) complexity
- ► Very successful; industrial applications in electromagnetics, acoustics, etc.

But . . .

- ▶ What if *n*_{iter} is large (high contrasts, geometric singularities, ill-conditioning)?
- What if there are many RHS's (time stepping, inverse problems)?

Compare with direct solvers: no convergence issues, efficient information reuse.

Many structured matrix problems can be solved efficiently by iteration

- ► CG/GMRES + fast multiplication: O(n_{iter}N) complexity
- ► Very successful; industrial applications in electromagnetics, acoustics, etc.

But . . .

- ▶ What if *n*_{iter} is large (high contrasts, geometric singularities, ill-conditioning)?
- What if there are many RHS's (time stepping, inverse problems)?

Compare with direct solvers: no convergence issues, efficient information reuse.

In certain important environments, there is a need for fast direct methods.

Example: protein design

- Protein defined by a fixed backbone with flexible residue sidechains
- Each sidechain can be one of several rotamers $r_i \in R_i$
- Energy $E(\mathbf{r})$ depends on the joint rotamer configuration \mathbf{r}
- Goal: find **r** such that $E(\mathbf{r})$ is minimized

- NP-hard but various strategies are available
- One of many related formulations

Example: protein design

Simplest approach: pairwise approximation

$$E(\mathbf{r}) \approx \sum_{i} E(r_i) + \frac{1}{2} \sum_{i} \sum_{j \neq i} E(r_i, r_j)$$

- Number of energy evaluations: O((n_{rot} N_{res})²)
- Each evaluation requires a PDE solve for the electrostatic energy:

$$A_i x_i = b_i, \quad i = 1, \ldots, O((n_{\text{rot}} N_{\text{res}})^2)$$

- Matrices A_i are perturbations of fixed backbone matrix A₀
- Precompute A_0^{-1} , rapid update for each $x_i = A_i^{-1}b_i$

Potential for massive acceleration using fast direct methods.

Overview

- > This talk: our recent work on fast direct methods for structured matrices
- Many other contributors (apologies for an incomplete list)
- ▶ Focus on integral equations in 2D/3D, complex geometry
- Main result: linear-complexity generalized LU decomposition
- Sparsification/elimination + recursive dimensional reduction

[Ambikasaran, Bebendorf, Börm, Bremer, Chandrasekaran, Chen, Corona, Darve, Gillman, Greengard, Gu, Hackbusch, Li, Martinsson, Rokhlin, Schmitz, Starr, Xia, Ying, Young, Zorin, . . .]

Overview

- > This talk: our recent work on fast direct methods for structured matrices
- Many other contributors (apologies for an incomplete list)
- ▶ Focus on integral equations in 2D/3D, complex geometry
- Main result: linear-complexity generalized LU decomposition
- Sparsification/elimination + recursive dimensional reduction

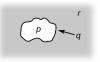
Tools: sparse elimination, interpolative decomposition, skeletonization

[Ambikasaran, Bebendorf, Börm, Bremer, Chandrasekaran, Chen, Corona, Darve, Gillman, Greengard, Gu, Hackbusch, Li, Martinsson, Rokhlin, Schmitz, Starr, Xia, Ying, Young, Zorin, . . .]

Sparse elimination

Let

$$A = \begin{bmatrix} A_{pp} & A_{pq} \\ A_{qp} & A_{qq} & A_{qr} \\ & A_{rq} & A_{rr} \end{bmatrix}.$$



(Think of A as a sparse matrix.) If A_{pp} is nonsingular, define

$$R_{p}^{*} = \begin{bmatrix} I & & \\ -A_{qp}A_{pp}^{-1} & I & \\ & & I \end{bmatrix}, \quad S_{p} = \begin{bmatrix} I & -A_{pp}^{-1}A_{pq} & \\ & I & \\ & & I \end{bmatrix}$$

so that

$$R_{p}^{*}AS_{p} = \begin{bmatrix} A_{pp} & & \\ & * & A_{qr} \\ & A_{rq} & A_{rr} \end{bmatrix}.$$

- DOFs p have been eliminated
- Interactions involving r are unchanged

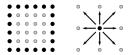
Interpolative decomposition

If $A_{:,q}$ has numerical rank k, then there exist

- ▶ skeleton (\hat{q}) and redundant (\check{q}) columns partitioning $q = \hat{q} \cup \check{q}$ with $|\hat{q}| = k$
- an interpolation matrix T_q

such that

$$A_{:,\check{q}} \approx A_{:,\hat{q}} T_q.$$



- Essentially a pivoted QR written slightly differently
- Rank-revealing to any specified precision $\epsilon > 0$

Interactions between separated regions are low-rank.

Skeletonization

Efficient elimination of redundant DOFs

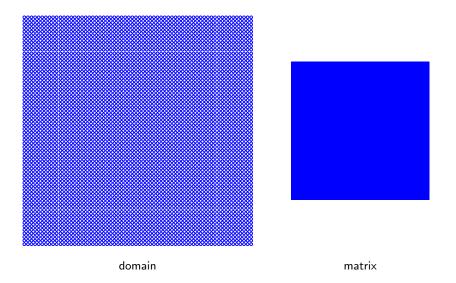
► Let
$$A = \begin{bmatrix} A_{pp} & A_{pq} \\ A_{qp} & A_{qq} \end{bmatrix}$$
 with A_{pq} and A_{qp} low-rank
► Apply ID to $\begin{bmatrix} A_{qp} \\ A_{pq}^{*} \end{bmatrix}$: $\begin{bmatrix} A_{q\tilde{p}} \\ A_{pq}^{*} \end{bmatrix} \approx \begin{bmatrix} A_{q\tilde{p}} \\ A_{pq}^{*} \end{bmatrix} T_{p} \implies A_{q\tilde{p}} \approx A_{q\tilde{p}} T_{p}$
► Reorder $A = \begin{bmatrix} A_{p\tilde{p}} & A_{p\tilde{p}} & A_{p\tilde{q}} \\ A_{p\tilde{p}} & A_{p\tilde{p}} & A_{pq} \\ A_{q\tilde{p}} & A_{q\tilde{p}} & A_{qq} \end{bmatrix}$, define $Q_{p} = \begin{bmatrix} I \\ -T_{p} & I \\ I \end{bmatrix}$
► Sparsify via ID: $Q_{p}^{*}AQ_{p} \approx \begin{bmatrix} * & * \\ * & A_{p\tilde{p}} & A_{pq} \\ A_{q\tilde{p}} & A_{qq} \end{bmatrix} \stackrel{\text{elim}}{\longrightarrow} \begin{bmatrix} * & * \\ * & A_{p\tilde{p}} & A_{qq} \end{bmatrix}$

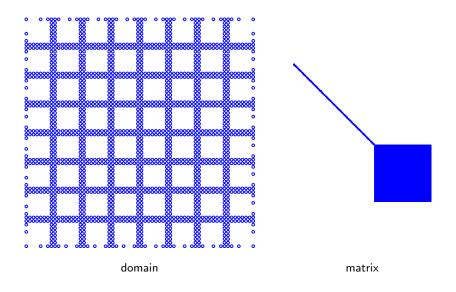
Reduces to a subsystem involving skeletons only

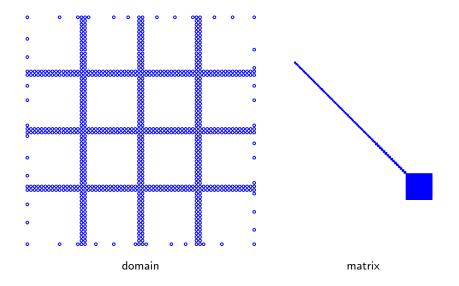
Algorithm: recursive skeletonization factorization

Build quadtree/octree. for each level $\ell = 0, 1, 2, \dots, L$ from finest to coarsest do Let C_{ℓ} be the set of all cells on level ℓ . for each cell $c \in C_{\ell}$ do Skeletonize remaining DOFs in c. end for end for

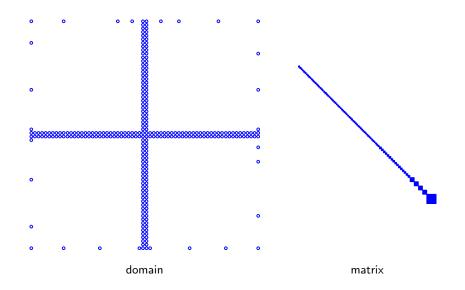
Reformulation of old algorithm using new elimination framework



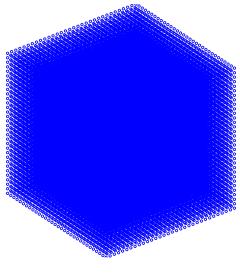




RSF in 2D: level 3

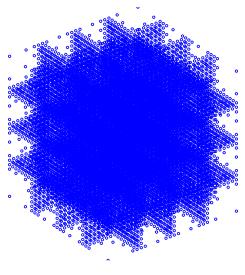


RSF in 3D: level 0

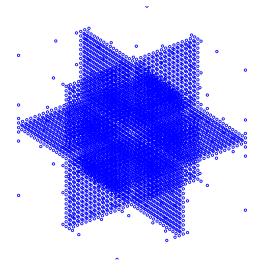


domain

RSF in 3D: level 1



domain



domain

RSF analysis

Skeletonization operators:

$$U_{\ell} = \prod_{c \in C_{\ell}} Q_{c} R_{\check{c}}, \quad V_{\ell} = \prod_{c \in C_{\ell}} Q_{c} S_{\check{c}}$$
$$Q_{c} = \begin{bmatrix} I & & \\ * & I & \\ & & I \end{bmatrix}, \quad R_{\check{c}}, S_{\check{c}} = \begin{bmatrix} I & * & \\ & I & \\ & & I \end{bmatrix}$$

Block diagonalization:

$$D \approx U_{L-1}^* \cdots U_0^* A V_0 \cdots V_{L-1}$$

Generalized LU decomposition:

$$A \approx U_0^{-*} \cdots U_{L-1}^{-*} D V_{L-1}^{-1} \cdots V_0^{-1}$$
$$A^{-1} \approx V_0 \cdots V_{L-1} D^{-1} U_L^* \cdots U_0^*$$

Fast direct solver or preconditioner

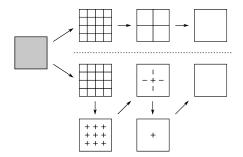
RSF analysis

The cost is determined by the skeleton size.

	1D	2D	3D
Skeleton size	$O(\log N)$	$O(N^{1/2})$	$O(N^{2/3})$
Factorization cost	O(N)	$O(N^{3/2})$	$O(N^2)$
Solve cost	O(N)	$O(N \log N)$	$O(N^{4/3})$

Question: How to reduce the skeleton size in 2D and 3D?

RSF analysis



Question: How to reduce the skeleton size in 2D and 3D?

- Skeletons cluster near cell interfaces (Green's theorem)
- Exploit skeleton geometry by further skeletonizing along interfaces
- Dimensional reduction

Algorithm: hierarchical interpolative factorization for IEs in 2D

Build quadtree.

```
for each level \ell = 0, 1, 2, \dots, L from finest to coarsest do

Let C_{\ell} be the set of all cells on level \ell.

for each cell c \in C_{\ell} do

Skeletonize remaining DOFs in c.

end for

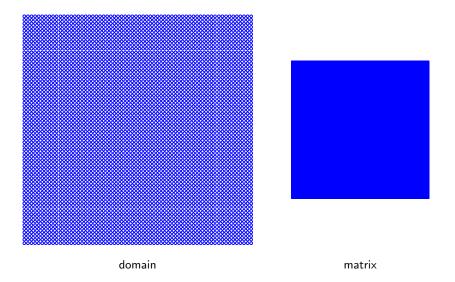
Let C_{\ell+1/2} be the set of all edges on level \ell.

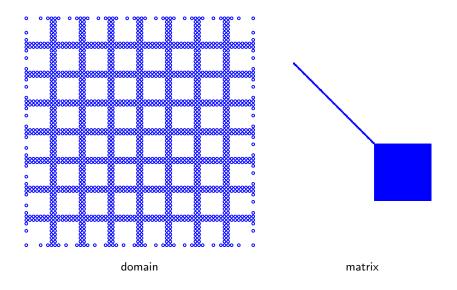
for each cell c \in C_{\ell+1/2} do

Skeletonize remaining DOFs in c.

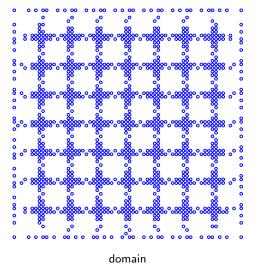
end for

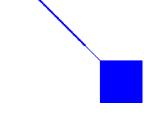
end for
```



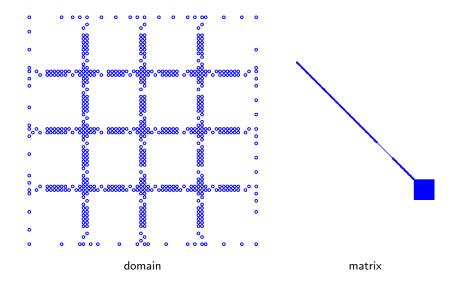


HIF-IE in 2D: level 1

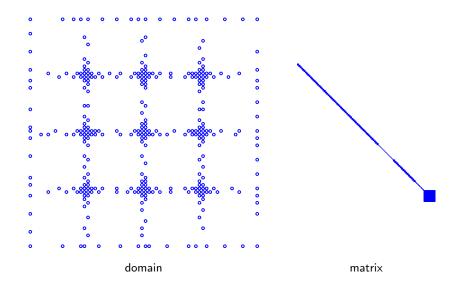


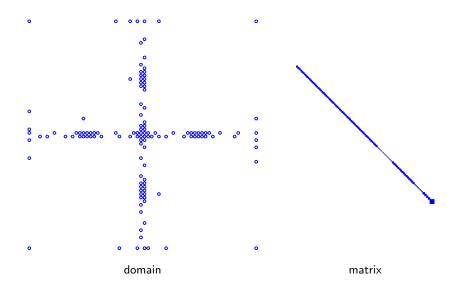


matrix

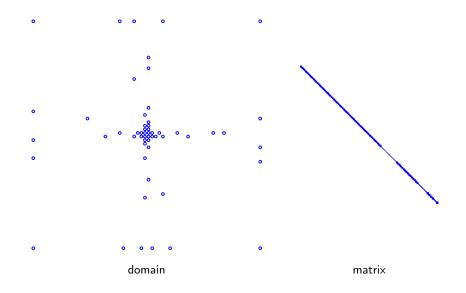


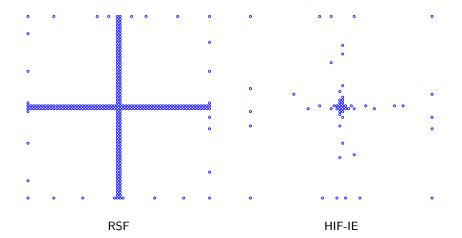
HIF-IE in 2D: level 2

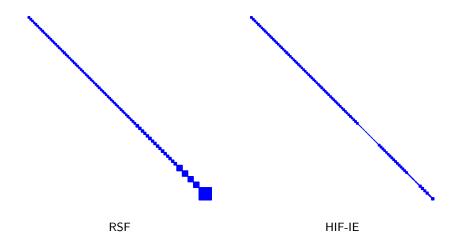




HIF-IE in 2D: level 3

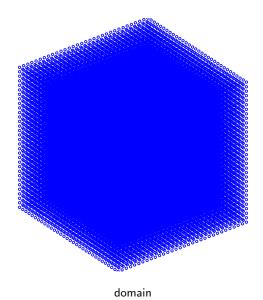




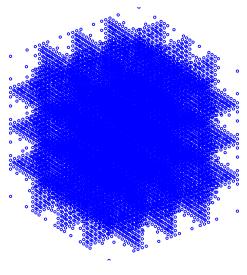


Algorithm: hierarchical interpolative factorization for IEs in 3D

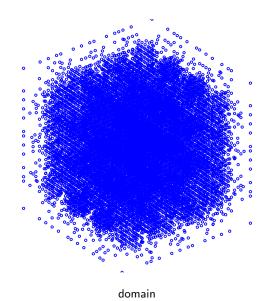
```
Build octree.
for each level \ell = 0, 1, 2, \dots, L from finest to coarsest do
    Let C_{\ell} be the set of all cells on level \ell.
    for each cell c \in C_{\ell} do
        Skeletonize remaining DOFs in c.
    end for
    Let C_{\ell+1/3} be the set of all faces on level \ell.
    for each cell c \in C_{\ell+1/3} do
        Skeletonize remaining DOFs in c.
    end for
    Let C_{\ell+2/3} be the set of all edges on level \ell.
    for each cell c \in C_{\ell+2/3} do
        Skeletonize remaining DOFs in c.
    end for
end for
```



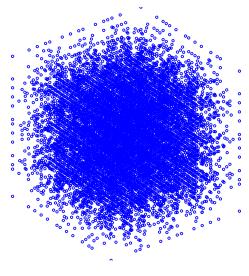
HIF-IE in 3D: level $1/3\,$



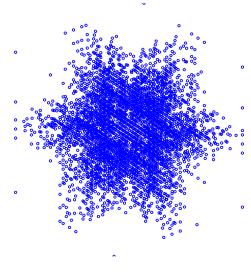
HIF-IE in 3D: level 2/3



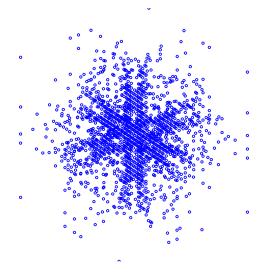
HIF-IE in 3D: level 1



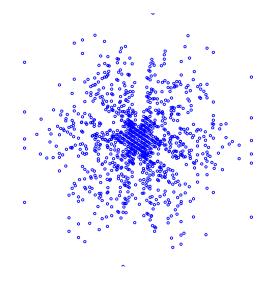
domain

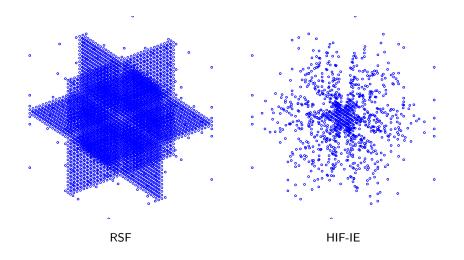


HIF-IE in 3D: level 5/3



HIF-IE in 3D: level 2





HIF-IE analysis

► 2D:

$$A \approx U_0^{-*} U_{1/2}^{-*} \cdots U_{L-1/2}^{-*} DV_{L-1/2}^{-1} \cdots V_{1/2}^{-1} V_0^{-1}$$

$$A^{-1} \approx V_0 V_{1/2} \cdots V_{L-1/2} D^{-1} U_{L-1/2}^* \cdots U_{1/2}^* U_0^*$$

$$\Rightarrow 3D:$$

$$A \approx U_0^{-*} U_{1/3}^{-*} U_{2/3}^{-*} \cdots U_{L-1/3}^{-*} DV_{L-1/3}^{-1} \cdots V_{2/3}^{-1} V_{1/3}^{-1} V_0^{-1}$$

$$A \approx V_0 V_{1/3} V_{2/3} \cdots V_{L-1/3} D V_{L-1/3} \cdots V_{2/3} V_{1/3} V_0$$
$$A^{-1} \approx V_0 V_{1/3} V_{2/3} \cdots V_{L-1/3} D^{-1} U_{L-1/3}^* \cdots U_{2/3}^* U_{1/3}^* U_0^*$$

Conjecture:

Skeleton size:	$O(\log N)$
Factorization cost:	O(N)
Solve cost:	O(N)

HIF-IE analysis

► 2D:

$$A \approx U_0^{-*} U_{1/2}^{-*} \cdots U_{L-1/2}^{-*} DV_{L-1/2}^{-1} \cdots V_{1/2}^{-1} V_0^{-1}$$

$$A^{-1} \approx V_0 V_{1/2} \cdots V_{L-1/2} D^{-1} U_{L-1/2}^{*} \cdots U_{1/2}^{*} U_0^{*}$$

$$\Rightarrow 3D:$$

$$A \approx U_0^{-*} U_{1/3}^{-*} U_{2/3}^{-*} \cdots U_{L-1/3}^{-*} DV_{L-1/3}^{-1} \cdots V_{2/3}^{-1} V_{1/3}^{-1} V_0^{-1}$$

$$A^{-1} \approx V_0 V_{1/3} V_{2/3} \cdots V_{L-1/3} D^{-1} U_{L-1/3}^{*} \cdots U_{2/3}^{*} U_{1/3}^{*} U_0^{*}$$

Conjecture:

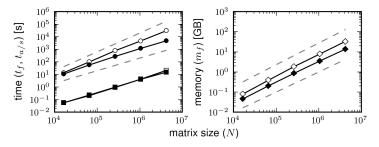
Skeleton size:	$O(\log N)$
Factorization cost:	O(N)
Solve cost:	O(N)

Actually slightly more complicated . . .

Numerical results in 2D

First-kind volume IE on the unit square:

$$-\frac{1}{2\pi}\int_{(0,1)^2}\log\|x-y\|u(y)\,dA(y)=f(x)$$

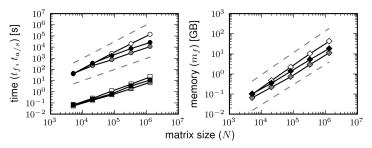


- rskelf2 (white), hifie2 (black)
- Factorization time (\circ), solve time (\Box), memory (\diamond) at precision $\epsilon = 10^{-6}$
- Reference scalings (gray dashes):
 - Left: O(N) and $O(N^{3/2})$
 - Right: O(N) and $O(N \log N)$

Numerical results in 3D

Second-kind boundary IE on the unit sphere:

$$-\frac{1}{2}u(x)+\frac{1}{4\pi}\int_{S^2}\frac{\partial}{\partial\nu(y)}\left(\frac{1}{\|x-y\|}\right)u(y)\,dS(y)=f(x)$$



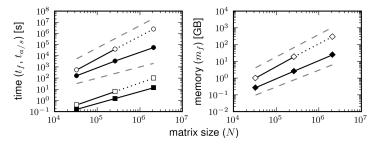
rskelf3 (white), hifie3 (gray), hifie3x (black)

- ▶ Factorization time (\circ), solve time (\Box), memory (\diamond) at precision $\epsilon = 10^{-3}$
- Reference scalings (gray dashes):
 - Left: O(N) and $O(N^{3/2})$
 - Right: O(N) and $O(N \log N)$

Numerical results in 3D

First-kind volume IE on the unit cube:

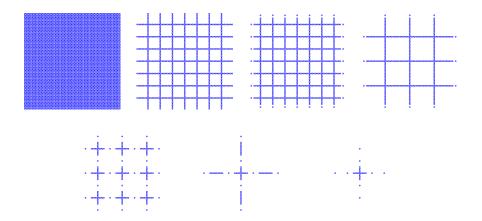
$$\frac{1}{4\pi}\int_{(0,1)^3}\frac{u(y)}{\|x-y\|}\,dV(y)=f(x)$$



- rskelf3 (white), hifie3 (black)
- ▶ Factorization time (\circ), solve time (\Box), memory (\diamond) at precision $\epsilon = 10^{-3}$
- Reference scalings (gray dashes):
 - Left: O(N) and $O(N^2)$
 - Right: O(N) and $O(N^{4/3})$

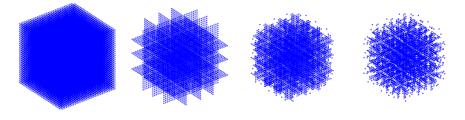
Hierarchical interpolative factorization for PDEs in 2D

Build on top of multifrontral to exploit sparsity



Hierarchical interpolative factorization for PDEs in 3D

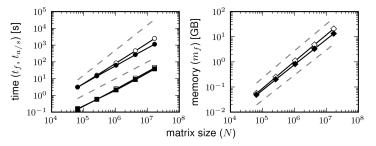
Build on top of multifrontral to exploit sparsity



Numerical results in 2D

Five-point stencil on the unit square with a(x) = 1:

$$-\nabla \cdot (a(x)\nabla u(x)) = f(x)$$

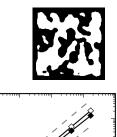


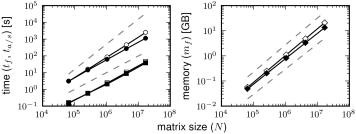
- mf2 (white), hifde2 (black)
- ▶ Factorization time (\circ), solve time (\Box), memory (\diamond) at precision $\epsilon = 10^{-9}$
- Reference scalings (gray dashes):
 - Left: O(N) and $O(N^{3/2})$
 - Right: O(N) and $O(N \log N)$

Numerical results in 2D

Five-point stencil on the unit square with a(x) a quantized high-contrast ($\kappa \sim 10^4$) random field:

$$-\nabla\cdot(a(x)\nabla u(x))=f(x)$$





- mf2 (white), hifde2 (black)
- ▶ Factorization time (\circ), solve time (\Box), memory (\diamond) at precision $\epsilon = 10^{-9}$
- Reference scalings (gray dashes):
 - Left: O(N) and $O(N^{3/2})$
 - Right: O(N) and $O(N \log N)$

Remarks on HIF

- Efficient factorization of structured operators in 2D/3D
- Empirical linear complexity but no proof yet
- Approximate generalized LU decomposition
 - Fast direct solver or preconditioner
 - Extremely effective for multiple RHS's
- Extensions: $A^{1/2}$, det A, diag A^{-1}
- Highly parallelizable [with A. Benson, Y. Li, J. Poulson, L. Ying]
- MATLAB codes available at https://github.com/klho/FLAM/

Remarks on HIF

- Efficient factorization of structured operators in 2D/3D
- Empirical linear complexity but no proof yet
- Approximate generalized LU decomposition
 - Fast direct solver or preconditioner
 - Extremely effective for multiple RHS's
- Extensions: $A^{1/2}$, det A, diag A^{-1}
- ▶ Highly parallelizable [with A. Benson, Y. Li, J. Poulson, L. Ying]
- MATLAB codes available at https://github.com/klho/FLAM/
- Perspective: structured dense matrices can be sparsified very efficiently
- Can borrow directly from sparse algorithms, e.g., RSF = MF
- What other features of sparse matrices can be exploited?

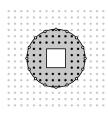
Local updating

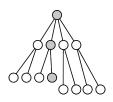
"Naive" approach: local geometric perturbations as low-rank updates

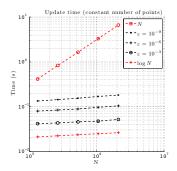
- Sherman-Morrison-Woodbury: rank $k \implies O(Nk)$ cost
- Cannot accumulate updates across domain

Factorization updating [with V. Minden, A. Damle, L. Ying]:

- Use Green's theorem to localize effect of perturbation
- Redo computation up only one branch of tree: $O(\log^{\alpha} N)$ cost







[Greengard/Gueyffier/Martinsson/Rokhlin 2009]

Conclusion

- Main thrust of my work: building technology for structured matrices
- ► Fast multiplication, direct solvers, least squares, factorizations
- Supporting tools: e.g., local updating
- > Outlook: almost enough technology to make a deep run at some hard problems

Conclusion

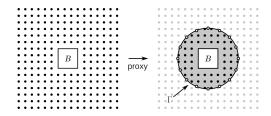
- Main thrust of my work: building technology for structured matrices
- Fast multiplication, direct solvers, least squares, factorizations
- Supporting tools: e.g., local updating
- Outlook: almost enough technology to make a deep run at some hard problems
- Other related work:
 - Skeletonization/elimination as adaptive numerical coarsening
 - Butterfly algorithms for oscillatory kernels [with Y. Li, H. Yang, L. Ying]
- Next steps:
 - Global updating, spectral decompositions, matrix functions
 - Applications: biology, materials science, data analysis, UQ

References

- L. Greengard, K.L. Ho, J.-Y. Lee. A fast direct solver for scattering from periodic structures with multiple material interfaces in two dimensions. J. Comput. Phys. 258: 738–751, 2014.
- ▶ K.L. Ho. Fast direct methods for molecular electrostatics. Ph.D. thesis, New York University, 2012.
- K.L. Ho, L. Greengard. A fast direct solver for structured linear systems by recursive skeletonization. SIAM J. Sci. Comput. 34 (5): A2507–A2532, 2012.
- K.L. Ho, L. Greengard. A fast semidirect least squares algorithm for hierarchically block separable matrices. SIAM J. Matrix Anal. Appl. 35 (2): 725–748, 2014.
- K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: differential equations. Preprint, arXiv:1307.2895 [math.NA], 2013.
- K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: integral equations. Preprint, arXiv:1307.2666 [math.NA], 2013.

Proxy compression

- Main cost of algorithm: computing IDs of tall-and-skinny matrices
- ▶ Global operation can be reduced to local operation using Green's theorem
- Suffices to compress against neighbors plus "proxy" surface
- Crucial for overcoming $O(N^2)$ complexity



[Cheng/Gimbutas/Martinsson/Rokhlin 2005, Gillman/Young/Martinsson 2012, Ho/Greengard 2012, Ho/Ying 2013,

Martinsson/Rokhlin 2005, Ying/Biros/Zorin 2004]

Second-kind IEs

- IEs of the form $a(x)u(x) + \int_{\Omega} K(x,y)u(y) d\Omega(y) = f(x)$
- High contrast in diagonal vs. off-diagonal entries
- Mixing of cell, face, edge in HIF-IE leads to error
- Need to use effective precision $O(\epsilon/N)$
- Quasilinear complexity estimates:

	2D	3D
Factorization cost Solve cost	$O(N \log N)$ $O(N \log \log N)$	$O(N \log^6 N)$ $O(N \log^2 N)$