Fast direct methods for structured matrices

Kenneth L. Ho (Stanford)

Caltech, Nov. 2014

Introduction

- For $A \in \mathbb{C}^{N \times N}$ dense, solution generally requires $O\left(N^{3}\right)$ work
- Classical methods infeasible beyond $N \sim 10^{4}$

Introduction

- For $A \in \mathbb{C}^{N \times N}$ dense, solution generally requires $O\left(N^{3}\right)$ work
- Classical methods infeasible beyond $N \sim 10^{4}$
- Other common matrix problems:
- $y=A x: \quad O\left(N^{2}\right)$
- $A=U V^{*}: O\left(N^{3}\right)$
- $\Delta=\operatorname{det} A: O\left(N^{3}\right)$

Introduction

$$
A x=b
$$

- For $A \in \mathbb{C}^{N \times N}$ dense, solution generally requires $O\left(N^{3}\right)$ work
- Classical methods infeasible beyond $N \sim 10^{4}$
- Other common matrix problems:
- $y=A x: \quad O\left(N^{2}\right)$
- $A=U V^{*}: O\left(N^{3}\right)$
- $\Delta=\operatorname{det} A: \quad O\left(N^{3}\right)$
- Observation: many matrices arising in practice are structured

Introduction

$$
A x=b
$$

- For $A \in \mathbb{C}^{N \times N}$ dense, solution generally requires $O\left(N^{3}\right)$ work $\rightarrow O(N)$
- Classical methods infeasible beyond $N \sim 10^{4}$
- Other common matrix problems:
- $y=A x: \quad O\left(N^{2}\right) \rightarrow O(N)$
- $A=U V^{*}: \quad O\left(N^{3}\right) \rightarrow O(N)$
- $\Delta=\operatorname{det} A: \quad O\left(N^{3}\right) \rightarrow O(N)$
- Observation: many matrices arising in practice are structured
- Goal: accelerate to linear complexity by exploiting matrix structure

Introduction

- Hierarchical matrices: low-rank submatrices at a hierarchy of scales
- Canonical example: N-body problem
- Particle locations: $x_{i}, i=1, \ldots, N$
- Interaction kernel: $K(x, y)=1 /\|x-y\|$
- Forces: $\quad f_{i}=\sum_{j=1}^{N} K\left(x_{i}, x_{j}\right) m_{j}$
- Matrix $A_{i j}=K\left(x_{i}, x_{j}\right)$ can be applied in $O(N)$ time

Introduction

- Applications: integral equations, elliptic PDEs, data analysis, etc.

Introduction

Many structured matrix problems can be solved efficiently by iteration

- CG/GMRES + fast multiplication: $O\left(n_{\text {iter }} N\right)$ complexity
- Very successful; industrial applications in electromagnetics, acoustics, etc.

Many structured matrix problems can be solved efficiently by iteration

- CG/GMRES + fast multiplication: $O\left(n_{\text {iter }} N\right)$ complexity
- Very successful; industrial applications in electromagnetics, acoustics, etc.

But ...

- What if $n_{\text {iter }}$ is large (high contrasts, geometric singularities, ill-conditioning)?
- What if there are many RHS's (time stepping, inverse problems)?

Compare with direct solvers: no convergence issues, efficient information reuse.

Many structured matrix problems can be solved efficiently by iteration

- CG/GMRES + fast multiplication: $O\left(n_{\text {iter }} N\right)$ complexity
- Very successful; industrial applications in electromagnetics, acoustics, etc.

But ...

- What if $n_{\text {iter }}$ is large (high contrasts, geometric singularities, ill-conditioning)?
- What if there are many RHS's (time stepping, inverse problems)?

Compare with direct solvers: no convergence issues, efficient information reuse.

In certain important environments, there is a need for fast direct methods.

Example: protein design

- Protein defined by a fixed backbone with flexible residue sidechains
- Each sidechain can be one of several rotamers $r_{i} \in R_{i}$
- Energy $E(\mathbf{r})$ depends on the joint rotamer configuration \mathbf{r}
- Goal: find \mathbf{r} such that $E(\mathbf{r})$ is minimized

- NP-hard but various strategies are available
- One of many related formulations

Example: protein design

- Simplest approach: pairwise approximation

$$
E(\mathbf{r}) \approx \sum_{i} E\left(r_{i}\right)+\frac{1}{2} \sum_{i} \sum_{j \neq i} E\left(r_{i}, r_{j}\right)
$$

- Number of energy evaluations: $O\left(\left(n_{\text {rot }} N_{\text {res }}\right)^{2}\right)$
- Each evaluation requires a PDE solve for the electrostatic energy:

$$
A_{i} x_{i}=b_{i}, \quad i=1, \ldots, O\left(\left(n_{\mathrm{rot}} N_{\mathrm{res}}\right)^{2}\right)
$$

- Matrices A_{i} are perturbations of fixed backbone matrix A_{0}
- Precompute A_{0}^{-1}, rapid update for each $x_{i}=A_{i}^{-1} b_{i}$

Potential for massive acceleration using fast direct methods.

- This talk: our recent work on fast direct methods for structured matrices
- Many other contributors (apologies for an incomplete list)
- Focus on integral equations in 2D/3D, complex geometry
- Main result: linear-complexity generalized LU decomposition
- Sparsification/elimination + recursive dimensional reduction
[Ambikasaran, Bebendorf, Börm, Bremer, Chandrasekaran, Chen, Corona, Darve, Gillman, Greengard, Gu, Hackbusch, Li, Martinsson, Rokhlin, Schmitz, Starr, Xia, Ying, Young, Zorin, . . .]
- This talk: our recent work on fast direct methods for structured matrices
- Many other contributors (apologies for an incomplete list)
- Focus on integral equations in 2D/3D, complex geometry
- Main result: linear-complexity generalized LU decomposition
- Sparsification/elimination + recursive dimensional reduction

Tools: sparse elimination, interpolative decomposition, skeletonization

Sparse elimination

Let

$$
A=\left[\begin{array}{ccc}
A_{p p} & A_{p q} & \\
A_{q p} & A_{q q} & A_{q r} \\
& A_{r q} & A_{r r}
\end{array}\right]
$$

(Think of A as a sparse matrix.) If $A_{p p}$ is nonsingular, define

$$
R_{p}^{*}=\left[\begin{array}{ccc}
I & & \\
-A_{q p} A_{p p}^{-1} & I & \\
& & I
\end{array}\right], \quad S_{p}=\left[\begin{array}{ccc}
I & -A_{p p}^{-1} A_{p q} & \\
& I & \\
& & I
\end{array}\right]
$$

so that

$$
R_{p}^{*} A S_{p}=\left[\begin{array}{ccc}
A_{p p} & & \\
& * & A_{q r} \\
& A_{r q} & A_{r r}
\end{array}\right]
$$

- DOFs p have been eliminated
- Interactions involving r are unchanged

If $A_{:, q}$ has numerical rank k, then there exist

- skeleton (\hat{q}) and redundant (\check{q}) columns partitioning $q=\hat{q} \cup \breve{q}$ with $|\hat{q}|=k$
- an interpolation matrix T_{q}
such that

$$
A_{:,, \bar{q}} \approx A_{:, \hat{q}} T_{q} .
$$

- Essentially a pivoted QR written slightly differently
- Rank-revealing to any specified precison $\epsilon>0$

Interactions between separated regions are low-rank.

Skeletonization

- Efficient elimination of redundant DOFs
- Let $A=\left[\begin{array}{cc}A_{p p} & A_{p q} \\ A_{q p} & A_{q q}\end{array}\right]$ with $A_{p q}$ and $A_{q p}$ low-rank
- Apply ID to $\left[\begin{array}{c}A_{q p} \\ A_{p q}^{*}\end{array}\right]:\left[\begin{array}{c}A_{q \check{p}} \\ A_{\check{p} q}^{*}\end{array}\right] \approx\left[\begin{array}{c}A_{q \hat{p}} \\ A_{\hat{p} q}^{*}\end{array}\right] T_{p} \Longrightarrow \begin{aligned} & A_{q \check{p}} \approx A_{q \hat{p}} T_{p} \\ & A_{\check{\rho} q} \approx T_{p}^{*} A_{\hat{\rho} q}\end{aligned}$
- Reorder $A=\left[\begin{array}{lll}A_{\check{\rho} \check{\rho}} & A_{\check{\rho} \hat{\rho}} & A_{\check{\rho} q} \\ A_{\hat{\rho} \check{\rho}} & A_{\hat{\rho} \hat{\rho}} & A_{\hat{\rho} q} \\ A_{q \check{\rho}} & A_{q \hat{\rho}} & A_{q q}\end{array}\right]$, define $Q_{p}=\left[\begin{array}{ccc}I & & \\ -T_{p} & I & \\ & & I\end{array}\right]$
- Sparsify via ID: $Q_{p}^{*} A Q_{p} \approx\left[\begin{array}{ccc}* & * & \\ * & A_{\hat{\rho} \hat{\rho}} & A_{\hat{p} q} \\ & A_{q \hat{p}} & A_{q q}\end{array}\right] \xrightarrow{\text { elim }}\left[\begin{array}{cccc}* & & \\ & * & A_{\hat{\rho} q} \\ & A_{q \hat{p}} & A_{q q}\end{array}\right]$
- Reduces to a subsystem involving skeletons only

Algorithm: recursive skeletonization factorization

Build quadtree/octree.
for each level $\ell=0,1,2, \ldots, L$ from finest to coarsest do
Let C_{ℓ} be the set of all cells on level ℓ. for each cell $c \in C_{\ell}$ do Skeletonize remaining DOFs in c. end for
end for

- Reformulation of old algorithm using new elimination framework

RSF in 2D: level 0

domain

matrix

RSF in 2D: level 1

domain

[Ho/Ying 2013]

RSF in 2D: level 2

[Ho/Ying 2013]

RSF in 2D: level 3

[Ho/Ying 2013]

RSF in 3D: level 0

[Ho/Ying 2013]

RSF in 3D: level 1

domain

domain

RSF analysis

- Skeletonization operators:

$$
\begin{gathered}
U_{\ell}=\prod_{c \in C_{\ell}} Q_{c} R_{\check{c}}, \quad V_{\ell}=\prod_{c \in C_{\ell}} Q_{c} S_{\check{c}} \\
Q_{c}=\left[\begin{array}{lll}
l & & \\
* & I & \\
& & I
\end{array}\right], \quad R_{\check{c}}, S_{\check{c}}=\left[\begin{array}{lll}
I & * & \\
& I & \\
& & I
\end{array}\right]
\end{gathered}
$$

- Block diagonalization:

$$
D \approx U_{L-1}^{*} \cdots U_{0}^{*} A V_{0} \cdots V_{L-1}
$$

- Generalized LU decomposition:

$$
\begin{aligned}
A & \approx U_{0}^{-*} \cdots U_{L-1}^{-*} D V_{L-1}^{-1} \cdots V_{0}^{-1} \\
A^{-1} & \approx V_{0} \cdots V_{L-1} D^{-1} U_{L}^{*} \cdots U_{0}^{*}
\end{aligned}
$$

- Fast direct solver or preconditioner

RSF analysis

The cost is determined by the skeleton size.

	1 D	2 D	3 D
Skeleton size	$O(\log N)$	$O\left(N^{1 / 2}\right)$	$O\left(N^{2 / 3}\right)$
Factorization cost	$O(N)$	$O\left(N^{3 / 2}\right)$	$O\left(N^{2}\right)$
Solve cost	$O(N)$	$O(N \log N)$	$O\left(N^{4 / 3}\right)$

Question: How to reduce the skeleton size in 2D and 3D?

Question: How to reduce the skeleton size in 2D and 3D?

- Skeletons cluster near cell interfaces (Green's theorem)
- Exploit skeleton geometry by further skeletonizing along interfaces
- Dimensional reduction

Algorithm: hierarchical interpolative factorization for IEs in 2D

Build quadtree.
for each level $\ell=0,1,2, \ldots, L$ from finest to coarsest do
Let C_{ℓ} be the set of all cells on level ℓ.
for each cell $c \in C_{\ell}$ do
Skeletonize remaining DOFs in c.
end for
Let $C_{\ell+1 / 2}$ be the set of all edges on level ℓ. for each cell $c \in C_{\ell+1 / 2}$ do

Skeletonize remaining DOFs in c. end for
end for

HIF-IE in 2D: level 0

domain

matrix

HIF-IE in 2D: level $1 / 2$

HIF-IE in 2D: level 1

domain
matrix

HIF-IE in 2D: level $3 / 2$

[Ho/Ying 2013]

HIF-IE in 2D: level 2

[Ho/Ying 2013]

HIF-IE in 2D: level 5/2

[Ho/Ying 2013]

HIF-IE in 2D: level 3

[Ho/Ying 2013]

RSF vs. HIF-IE in 2D

RSF vs. HIF-IE in 2D

Algorithm: hierarchical interpolative factorization for IEs in 3D

```
Build octree.
for each level \(\ell=0,1,2, \ldots, L\) from finest to coarsest do
    Let \(C_{\ell}\) be the set of all cells on level \(\ell\).
    for each cell \(c \in C_{\ell}\) do
    Skeletonize remaining DOFs in \(c\).
    end for
    Let \(C_{\ell+1 / 3}\) be the set of all faces on level \(\ell\).
    for each cell \(c \in C_{\ell+1 / 3}\) do
    Skeletonize remaining DOFs in \(c\).
    end for
    Let \(C_{\ell+2 / 3}\) be the set of all edges on level \(\ell\).
    for each cell \(c \in C_{\ell+2 / 3}\) do
    Skeletonize remaining DOFs in \(c\).
    end for
end for
```

HIF-IE in 3D: level 0

HIF-IE in 3D: level $1 / 3$

domain

HIF-IE in 3D: level $2 / 3$

domain

HIF-IE in 3D: level 1

domain

HIF-IE in 3D: level 4/3

domain

HIF-IE in 3D: level $5 / 3$

domain

HIF-IE in 3D: level 2

domain

- 2D:

$$
\begin{aligned}
A & \approx U_{0}^{-*} U_{1 / 2}^{-*} \cdots U_{L-1 / 2}^{-*} D V_{L-1 / 2}^{-1} \cdots V_{1 / 2}^{-1} V_{0}^{-1} \\
A^{-1} & \approx V_{0} V_{1 / 2} \cdots V_{L-1 / 2} D^{-1} U_{L-1 / 2}^{*} \cdots U_{1 / 2}^{*} U_{0}^{*}
\end{aligned}
$$

- 3D:

$$
\begin{aligned}
A & \approx U_{0}^{-*} U_{1 / 3}^{-*} U_{2 / 3}^{-*} \cdots U_{L-1 / 3}^{-*} D V_{L-1 / 3}^{-1} \cdots V_{2 / 3}^{-1} V_{1 / 3}^{-1} V_{0}^{-1} \\
A^{-1} & \approx V_{0} V_{1 / 3} V_{2 / 3} \cdots V_{L-1 / 3} D^{-1} U_{L-1 / 3}^{*} \cdots U_{2 / 3}^{*} U_{1 / 3}^{*} U_{0}^{*}
\end{aligned}
$$

Conjecture:

Skeleton size: $\quad O(\log N)$
Factorization cost: $\quad O(N)$
Solve cost: $\quad O(N)$

- 2D:

$$
\begin{aligned}
A & \approx U_{0}^{-*} U_{1 / 2}^{-*} \cdots U_{L-1 / 2}^{-*} D V_{L-1 / 2}^{-1} \cdots V_{1 / 2}^{-1} V_{0}^{-1} \\
A^{-1} & \approx V_{0} V_{1 / 2} \cdots V_{L-1 / 2} D^{-1} U_{L-1 / 2}^{*} \cdots U_{1 / 2}^{*} U_{0}^{*}
\end{aligned}
$$

- 3D:

$$
\begin{aligned}
A & \approx U_{0}^{-*} U_{1 / 3}^{-*} U_{2 / 3}^{-*} \cdots U_{L-1 / 3}^{-*} D V_{L-1 / 3}^{-1} \cdots V_{2 / 3}^{-1} V_{1 / 3}^{-1} V_{0}^{-1} \\
A^{-1} & \approx V_{0} V_{1 / 3} V_{2 / 3} \cdots V_{L-1 / 3} D^{-1} U_{L-1 / 3}^{*} \cdots U_{2 / 3}^{*} U_{1 / 3}^{*} U_{0}^{*}
\end{aligned}
$$

Conjecture:

Skeleton size:	$O(\log N)$
Factorization cost:	$O(N)$
Solve cost:	$O(N)$

Actually slightly more complicated . . .

Numerical results in 2D

First-kind volume IE on the unit square:

$$
-\frac{1}{2 \pi} \int_{(0,1)^{2}} \log \|x-y\| u(y) d A(y)=f(x)
$$

- rskelf2 (white), hifie2 (black)
- Factorization time (○), solve time (\square), memory (\diamond) at precision $\epsilon=10^{-6}$
- Reference scalings (gray dashes):
- Left: $O(N)$ and $O\left(N^{3 / 2}\right)$
- Right: $O(N)$ and $O(N \log N)$

Numerical results in 3D

Second-kind boundary IE on the unit sphere:

$$
-\frac{1}{2} u(x)+\frac{1}{4 \pi} \int_{S^{2}} \frac{\partial}{\partial \nu(y)}\left(\frac{1}{\|x-y\|}\right) u(y) d S(y)=f(x)
$$

- rskelf3 (white), hifie3 (gray), hifie3x (black)
- Factorization time (\circ), solve time (\square), memory (\diamond) at precision $\epsilon=10^{-3}$
- Reference scalings (gray dashes):
- Left: $O(N)$ and $O\left(N^{3 / 2}\right)$
- Right: $O(N)$ and $O(N \log N)$

Numerical results in 3D

First-kind volume IE on the unit cube:

$$
\frac{1}{4 \pi} \int_{(0,1)^{3}} \frac{u(y)}{\|x-y\|} d V(y)=f(x)
$$

- rskelf3 (white), hifie3 (black)
- Factorization time (○), solve time (\square), memory (\diamond) at precision $\epsilon=10^{-3}$
- Reference scalings (gray dashes):
- Left: $O(N)$ and $O\left(N^{2}\right)$
- Right: $O(N)$ and $O\left(N^{4 / 3}\right)$

Hierarchical interpolative factorization for PDEs in 2D

- Build on top of multifrontral to exploit sparsity

-

Hierarchical interpolative factorization for PDEs in 3D

- Build on top of multifrontral to exploit sparsity

Numerical results in 2D

Five-point stencil on the unit square with $a(x)=1$:

$$
-\nabla \cdot(a(x) \nabla u(x))=f(x)
$$

- mf2 (white), hifde2 (black)
- Factorization time (○), solve time (\square), memory (\diamond) at precision $\epsilon=10^{-9}$
- Reference scalings (gray dashes):
- Left: $O(N)$ and $O\left(N^{3 / 2}\right)$
- Right: $O(N)$ and $O(N \log N)$

Five-point stencil on the unit square with $a(x)$ a quantized high-contrast ($\kappa \sim 10^{4}$) random field:

$$
-\nabla \cdot(a(x) \nabla u(x))=f(x)
$$

- mf2 (white), hifde2 (black)
- Factorization time (○), solve time (\square), memory (\diamond) at precision $\epsilon=10^{-9}$
- Reference scalings (gray dashes):
- Left: $O(N)$ and $O\left(N^{3 / 2}\right)$
- Right: $O(N)$ and $O(N \log N)$

Remarks on HIF

- Efficient factorization of structured operators in 2D/3D
- Empirical linear complexity but no proof yet
- Approximate generalized LU decomposition
- Fast direct solver or preconditioner
- Extremely effective for multiple RHS's
- Extensions: $A^{1 / 2}, \operatorname{det} A, \operatorname{diag} A^{-1}$
- Highly parallelizable [with A. Benson, Y. Li, J. Poulson, L. Ying]
- MATLAB codes available at https://github.com/klho/FLAM/

Remarks on HIF

- Efficient factorization of structured operators in 2D/3D
- Empirical linear complexity but no proof yet
- Approximate generalized LU decomposition
- Fast direct solver or preconditioner
- Extremely effective for multiple RHS's
- Extensions: $A^{1 / 2}, \operatorname{det} A, \operatorname{diag} A^{-1}$
- Highly parallelizable [with A. Benson, Y. Li, J. Poulson, L. Ying]
- MATLAB codes available at https://github.com/klho/FLAM/
- Perspective: structured dense matrices can be sparsified very efficiently
- Can borrow directly from sparse algorithms, e.g., RSF $=$ MF
- What other features of sparse matrices can be exploited?

Local updating

"Naive" approach: local geometric perturbations as low-rank updates

- Sherman-Morrison-Woodbury: rank $k \Longrightarrow O(N k)$ cost
- Cannot accumulate updates across domain

Factorization updating [with V. Minden, A. Damle, L. Ying]:

- Use Green's theorem to localize effect of perturbation
- Redo computation up only one branch of tree: $O\left(\log ^{\alpha} N\right)$ cost

Conclusion

- Main thrust of my work: building technology for structured matrices
- Fast multiplication, direct solvers, least squares, factorizations
- Supporting tools: e.g., local updating
- Outlook: almost enough technology to make a deep run at some hard problems

Conclusion

- Main thrust of my work: building technology for structured matrices
- Fast multiplication, direct solvers, least squares, factorizations
- Supporting tools: e.g., local updating
- Outlook: almost enough technology to make a deep run at some hard problems
- Other related work:
- Skeletonization/elimination as adaptive numerical coarsening
- Butterfly algorithms for oscillatory kernels [with Y. Li, H. Yang, L. Ying]
- Next steps:
- Global updating, spectral decompositions, matrix functions
- Applications: biology, materials science, data analysis, UQ

References

- L. Greengard, K.L. Ho, J.-Y. Lee. A fast direct solver for scattering from periodic structures with multiple material interfaces in two dimensions. J. Comput. Phys. 258: 738-751, 2014.
- K.L. Ho. Fast direct methods for molecular electrostatics. Ph.D. thesis, New York University, 2012.
- K.L. Ho, L. Greengard. A fast direct solver for structured linear systems by recursive skeletonization. SIAM J. Sci. Comput. 34 (5): A2507-A2532, 2012.
- K.L. Ho, L. Greengard. A fast semidirect least squares algorithm for hierarchically block separable matrices. SIAM J. Matrix Anal. Appl. 35 (2): 725-748, 2014.
- K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: differential equations. Preprint, arXiv:1307.2895 [math.NA], 2013.
- K.L. Ho, L. Ying. Hierarchical interpolative factorization for elliptic operators: integral equations. Preprint, arXiv:1307.2666 [math.NA], 2013.
- Main cost of algorithm: computing IDs of tall-and-skinny matrices
- Global operation can be reduced to local operation using Green's theorem
- Suffices to compress against neighbors plus "proxy" surface
- Crucial for overcoming $O\left(N^{2}\right)$ complexity

[Cheng/Gimbutas/Martinsson/Rokhlin 2005, Gillman/Young/Martinsson 2012, Ho/Greengard 2012, Ho/Ying 2013,

Second-kind IEs

- IEs of the form $a(x) u(x)+\int_{\Omega} K(x, y) u(y) d \Omega(y)=f(x)$
- High contrast in diagonal vs. off-diagonal entries
- Mixing of cell, face, edge in HIF-IE leads to error
- Need to use effective precision $O(\epsilon / N)$
- Quasilinear complexity estimates:

	2 D	3 D
Factorization cost	$O(N \log N)$	$O\left(N \log ^{6} N\right)$
Solve cost	$O(N \log \log N)$	$O\left(N \log ^{2} N\right)$

