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Motivation

Can we do better? Inspired by RCIP (Helsing and Ojala), the answer is yes.

I Fine-scale structure only needs to be
seen locally

I From far away, a coarse description is
adequate (skeletons)

I Compute interactions between
subdomains using skeletons

I Iterate on compressed skeleton system

This talk in a nutshell: RCIP in the language of skeletons.

I All linear algebra; completely transparent; easy to apply, optimize, extend

I Outline: block separable matrix, interpolative decomposition, fast direct
solver, skeleton preconditioner, numerical results
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Block separable matrix
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Matrix decomposition:
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U
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To solve Ax = b, let z = V ∗x , y = Sz , Λ =
(
V ∗D−1U

)−1
:

(Λ + S)z = ΛV ∗D−1b, x = D−1(b − Uy)
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Interpolative decomposition

Factorization of low-rank matrix:

A︸︷︷︸
m×n

= B︸︷︷︸
m×k

P︸︷︷︸
k×n

I B is a column-submatrix of A

I P is an interpolation matrix (containing the k × k identity)

Essentially an RRQR written slightly differently

I ID compresses the column space; to compress the row space, apply to A∗

I Retained rows and columns: skeletons

I Can adaptively compute the ID to any specified precision



Matrix compression

I Extract diagonal blocks D

I Compress row spaces of off-diagonal block rows → U

I Compress column spaces of off-diagonal block columns → V ∗

I Subselect S from intersection of row and column skeletons

I Approximate off-diagonal blocks by Aij ≈ UiSijV
∗
j

Skeletonization



Fast direct solver

I Skeletonize matrix: A = D + USV ∗

I Reduce Ax = b to (Λ + S)z = ΛV ∗D−1b

I Since Λ + S is “just like A”, skeletonize again by working up a tree

I Repeat until at root, then solve densely



Fast direct solver



Remarks

I Many authors: Bremer, Gillman, Greengard, Martinsson, Rokhlin, ...

I Great for quasi-1D problems at low frequency (e.g., 2D Laplace BIE)

I Not so great in higher dimensions (yet) or at high frequency

In many cases, iterating is still the best approach.

I But iterative solvers deal poorly with singularities

I Hybrid strategy: precondition with local direct solves

I Design goals:
• Flexibility, generality, compatibility with fast algorithms
• Iterate only on ‘true’ problem size
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Skeleton preconditioner

I Block diagonal preconditioner:

D−1Ax = D−1b or (AD−1)Dx = b

• Fast algorithms to invert D and apply A
• But system has large dimension

I Compressed skeleton system:

(Λ + S)z = ΛV ∗D−1b, Λ =
(
V ∗D−1U

)−1

• Reveals true problem size (charge basis)
• Requires identical row/column skeletons, how to construct Λ efficiently?

I Skeleton preconditioner:(
I + V ∗D−1US

)
z = V ∗D−1b

• Small system size, fast algorithms, no skeleton restrictions
• Diagonally preconditioned version of above

... and that’s it!
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Algorithm

I Choose subdomains (requires scale separation) and skeletonize
• Based on feature size, wavelength, etc.
• Compute IDs hierarchically and use proxy trick:

I Direct solve on each subdomain (fast direct solver, dense)

I Iterate on preconditioned skeleton system (fast multiplication)(
I + V ∗D−1US

)
z = V ∗D−1b

I Local solves to recover x = D−1(b − USz)
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Remarks

I Coarse-grained description of subdomain interactions
• x : fine variables
• z : coarse variables, good outside of own subdomain

I Capture moments of solution (cf. moments of source in FMM)

I Evaluate field using coarse variables plus local ‘corrections’

I If only far field needed (e.g., RCS), no further work!

I Explicit control over coarse basis during compression

I Example: Neumann problem
• Single-layer representation: u = Sσ
• Integral equation: u′ = ± 1

2
σ + S′σ

• Compress contributions from both S and S′

I Same asymptotic complexity as iterative solver

I Just like RCIP but using(
I + V ∗D−1US

)
z = V ∗D−1b



Numerical results

I Interior Dirichlet Helmholtz

I 16 bumps, 32–256 points each

I 8λ total, 2λ subdomains

I Tenth-order Kapur-Rokhlin

I Compress to ε = 10−14

I Dense linear algebra

p N K T skel
comp T skel

dir T skel
iter nskel

iter T full
iter nfull

iter error

32 512 484 0.24 0.01 0.32 155 1.0 373 8.4E−04
64 1024 859 0.80 0.03 0.80 138 4.1 475 3.9E−07

128 2048 977 1.86 0.10 0.91 107 5.2 221 3.0E−10
256 4096 757 4.24 0.90 1.61 101 13.5 145 7.3E−13



Numerical results

256 bumps, ε = 10−6

λ-size p N K Tsolv Trcs

64 / 4 128 32768 4771 267 0.13
128 / 4 256 65536 11953 1419 0.34



Summary

I Skeleton preconditioner based on variant of fast direct solver reduction

I Related to RCIP (Helsing/Ojala) and charge bases (Bremer/Rokhlin/Sammis)

I Cleans up corners, boundary layers, sub-wavelength structures, etc.

I Allows brute force discretization without much penalty

I All overhead is local and parallelizable

I Compressed evaluation of far field

I Plug-and-play: fast direct solvers, fast multipole methods

I Very general: boundaries, volumes, whatever

I Formalizes philosophy of compress-then-iterate


