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Forced to iterate on a system of high dimension...
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This talk in a nutshell: RCIP in the language of skeletons.
» All linear algebra; completely transparent; easy to apply, optimize, extend

» Outline: block separable matrix, interpolative decomposition, fast direct
solver, skeleton preconditioner, numerical results



Block separable matrix

Low-rank off-diagonal block rows and columns:
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Block separable matrix

Low-rank off-diagonal block rows and columns:
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Matrix decomposition:
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Interpolative decomposition

Factorization of low-rank matrix:

A= B P
~—~ ~— "~~~
mxn mxk kxn

» B is a column-submatrix of A

> P is an interpolation matrix (containing the k x k identity)

Essentially an RRQR written slightly differently
> ID compresses the column space; to compress the row space, apply to A*
» Retained rows and columns: skeletons

» Can adaptively compute the ID to any specified precision
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Matrix compression

Extract diagonal blocks D
Compress row spaces of off-diagonal block rows — U
Compress column spaces of off-diagonal block columns — V*

Subselect S from intersection of row and column skeletons

vV vVv.v. v .Yy

Approximate off-diagonal blocks by A; ~ U;S;V}*

Skeletonization



Fast direct solver

Skeletonize matrix: A= D + USV*
Reduce Ax = b to (A+S)z=AV*D71b
Since A+ S is “just like A", skeletonize again by working up a tree
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Repeat until at root, then solve densely

No = 8192 N1 =7134 N2 = 4138

N3 = 1849 Na =776 N5 = 265
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Fast direct solver

S/A=125




Remarks

» Many authors: Bremer, Gillman, Greengard, Martinsson, Rokhlin, ...
> Great for quasi-1D problems at low frequency (e.g., 2D Laplace BIE)
» Not so great in higher dimensions (yet) or at high frequency

In many cases, iterating is still the best approach.
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Not so great in higher dimensions (yet) or at high frequency

In many cases, iterating is still the best approach.
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But iterative solvers deal poorly with singularities

v

Hybrid strategy: precondition with local direct solves

v

Design goals:
o Flexibility, generality, compatibility with fast algorithms
o |terate only on ‘true’ problem size
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» Compressed skeleton system:
(A+S)z=AV*D b, A= (VD U)"

e Reveals true problem size (charge basis)
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(I+V*D7'US)z=V*D'b

e Small system size, fast algorithms, no skeleton restrictions
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. and that’s it!



Algorithm

» Choose subdomains (requires scale separation) and skeletonize

e Based on feature size, wavelength, etc.
e Compute IDs hierarchically and use proxy trick:
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Algorithm

» Choose subdomains (requires scale separation) and skeletonize

e Based on feature size, wavelength, etc.
e Compute IDs hierarchically and use proxy trick:
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» Direct solve on each subdomain (fast direct solver, dense)

Iterate on preconditioned skeleton system (fast multiplication)
(I+V*D7'US)z=V*D'b

» Local solves to recover x = D~1(b — USz)



Remarks
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» Same asymptotic complexity as iterative solver /

Coarse-grained description of subdomain interactions
e x: fine variables
e z: coarse variables, good outside of own subdomain
Capture moments of solution (cf. moments of source in FMM)
Evaluate field using coarse variables plus local ‘corrections’
If only far field needed (e.g., RCS), no further work!
Explicit control over coarse basis during compression
Example: Neumann problem
o Single-layer representation: u = So \ S
e Integral equation: v ==+0+S0 )
e Compress contributions from both S and §' '

Just like RCIP but using !
(I+V*D7'US)z=V*D7'b



Numerical results

. N
» Interior Dirichlet Helmholtz
Y ! » 16 bumps, 32-256 points each
> » 8\ total, 2\ subdomains
) ( » Tenth-order Kapur-Rokhlin
{ ) » Compress to e = 10714
» Dense linear algebra
,.vv\
PN | K TE, T TE e | T mw | e

32 512 | 484 024 0.01 0.32 155 1.0 373 | 8.4e-04
64 1024 | 859 0.80 0.03 0.80 138 4.1 475 | 3.9e—-07
128 2048 | 977 1.86 0.10 091 107 5.2 221 | 3.0e—10
256 4096 | 757 424 090 1.61 101 | 13.5 145 | 7.3e—13




Numerical results

256 bumps, € = 10~

\-size p N K Toov  Tres

64 /4 128 32768 4771 267 0.13
128 /4 256 65536 11953 1419 0.34




Summary

vV V. vV V. YV VvV VY

Skeleton preconditioner based on variant of fast direct solver reduction
Related to RCIP (Helsing/Ojala) and charge bases (Bremer/Rokhlin/Sammis)
Cleans up corners, boundary layers, sub-wavelength structures, etc.

Allows brute force discretization without much penalty

All overhead is local and parallelizable

Compressed evaluation of far field

Plug-and-play: fast direct solvers, fast multipole methods

Very general: boundaries, volumes, whatever

Formalizes philosophy of compress-then-iterate



