Hierarchical interpolative factorization

Kenneth L. Ho (Stanford)

Joint work with Lexing Ying
BIRS Integral Equations Workshop 2013

Introduction

Problem:

$$
a(x) u(x)+b(x) \int_{\Omega} K(\|x-y\|) c(y) u(y) d \Omega(y)=f(x)
$$

- a, b, c, f are given; u is unknown
- K is related to the Green's function of an elliptic PDE
- Ω is a quasi-2D or 3D domain
- Discretize via Nyström, collocation, Galerkin, etc.
- Dense (structured) linear system $A x=b$

Goal: fast and accurate algorithms for the discrete operator

- Fast matrix-vector multiplication
- Fast solver, good preconditioner
- Linear or nearly linear complexity

Previous work

Matrix-vector multiplication provided by FMM

- Related: treecode, panel clustering, \mathcal{H}-matrices, etc.

However, fast solvers have been much harder to come by

- Iterative methods
- Number of iterations can be large
- Inefficient for multiple right-hand sides
- \mathcal{H}-matrices
- Optimal complexity but large prefactor
- HSS matrices/skeletonization
- Small constants, optimal in quasi-1D
- Growing skeleton sizes in higher dimensions yield superlinear cost

Many contributors; apologies for not listing names

Previous work

Matrix-vector multiplication provided by FMM

- Related: treecode, panel clustering, \mathcal{H}-matrices, etc.

However, fast solvers have been much harder to come by

- Iterative methods
- Number of iterations can be large
- Inefficient for multiple right-hand sides
- \mathcal{H}-matrices
- Optimal complexity but large prefactor
- HSS matrices/skeletonization
- Small constants, optimal in quasi-1D
- Growing skeleton sizes in higher dimensions yield superlinear cost

Many contributors; apologies for not listing names
Recently:

- Linear-time solver in 2D by Corona/Martinsson/Zorin
- A few other ideas floating around...

Hierarchical interpolative factorization

- Skeletonization + recursive dimensional reduction
- Same basic idea as CMZ but in a different linear algebraic framework
- Explicit matrix sparsification, generalized LU decomposition
- Extends to 3D, complex geometry, etc.

Tools: Schur complement, interpolative decomposition, skeletonization

Schur complement

Let

$$
A=\left[\begin{array}{ccc}
A_{p p} & A_{p q} & \\
A_{q p} & A_{q q} & A_{q r} \\
& A_{r q} & A_{r r}
\end{array}\right] .
$$

(Think of A as a sparse matrix.) If $A_{p p}$ is nonsingular, define

$$
R_{p}^{*}=\left[\begin{array}{ccc}
I & & \\
-A_{q p} A_{p p}^{-1} & & \\
& & I
\end{array}\right], \quad S_{p}=\left[\begin{array}{ccc}
I & -A_{p p}^{-1} A_{p q} & \\
& I & \\
& & I
\end{array}\right]
$$

so that

$$
R_{p}^{*} A S_{p}=\left[\begin{array}{ccc}
A_{p p} & & \\
& * & A_{q r} \\
& A_{r q} & A_{r r}
\end{array}\right] .
$$

- DOFs p have been eliminated
- Interactions involving r are unchanged

If $A_{:, q}$ is numerically low-rank, then there exist

- redundant (\check{q}) and skeleton (\hat{q}) columns partitioning $q=\check{q} \cup \hat{q}$
- an interpolation matrix T_{q} with $\left\|T_{q}\right\|$ small
such that

$$
A_{:, \check{q}} \approx A_{:, \hat{q}} T_{q} .
$$

- Essentially an RRQR written slightly differently
- Can be computed adaptively to any specified precision
- Fast randomized algorithms are available

Interactions between separated regions are low-rank.

Skeletonization

- Use ID + Schur complement to eliminate redundant DOFs
- Let $A=\left[\begin{array}{ll}A_{p p} & A_{p q} \\ A_{q p} & A_{q q}\end{array}\right]$ with $A_{p q}$ and $A_{q p}$ low-rank
- Apply ID to $\left[\begin{array}{c}A_{q p} \\ A_{p q}^{*}\end{array}\right]:\left[\begin{array}{c}A_{q \check{p}} \\ A_{\hat{p} q}^{*}\end{array}\right] \approx\left[\begin{array}{c}A_{q \hat{p}} \\ A_{\hat{p} q}^{*}\end{array}\right] T_{p} \Longrightarrow \begin{gathered}A_{q \check{p}} \approx A_{q \hat{p}} T_{p} \\ A_{\check{p} q} \approx T_{p}^{*} A_{\hat{p} q}\end{gathered}$
- Reorder $A=\left[\begin{array}{lll}A_{\check{\rho} \check{\rho}} & A_{\breve{\rho} \hat{\rho}} & A_{\check{\rho} q} \\ A_{\hat{\rho} \check{\rho}} & A_{\hat{\rho} \hat{\rho}} & A_{\hat{\rho} q} \\ A_{q \check{\rho}} & A_{q \hat{\rho}} & A_{q q}\end{array}\right]$, define $Q_{p}=\left[\begin{array}{ccc}1 & & \\ -T_{p} & 1 & \\ & & I\end{array}\right]$
- Sparsify via ID: $Q_{p}^{*} A Q_{p} \approx\left[\begin{array}{ccc}* & * & \\ * & A_{\hat{p} \hat{p}} & A_{\hat{p} q} \\ & A_{q \hat{p}} & A_{q q}\end{array}\right]$
- Schur complement: $R_{p}^{*} Q_{p}^{*} A Q_{p} S_{p} \approx\left[\begin{array}{cccc}* & & \\ & * & A_{\hat{p} q} \\ & A_{q \hat{p}} & A_{q q}\end{array}\right]$

Algorithm: recursive skeletonization

Build quadtree/octree.
for each level $\ell=0,1,2, \ldots, L$ do
Let C_{ℓ} be the set of all cells on level ℓ.
for each cell $c \in C_{\ell}$ do
Skeletonize remaining DOFs in c.

end for

end for

RS in 2D: level 0

domain

matrix

RS in 2D: level 1

domain
matrix

RS in 2D: level 2

RS in 2D: level 3

RS in 3D: level 0

RS in 3D: level 1

domain

RS in 3D: level 2

domain

RS analysis

- Skeletonization operators:

$$
U_{\ell}=\prod_{c \in C_{\ell}} Q_{c} R_{c}, \quad V_{\ell}=\prod_{c \in C_{\ell}} Q_{c} S_{c}
$$

- Block diagonalization:

$$
D \approx U_{L-1}^{*} \cdots U_{0}^{*} A V_{0} \cdots V_{L-1}
$$

- Generalized LU decomposition:

$$
\begin{aligned}
A & \approx U_{0}^{-*} \cdots U_{L-1}^{-*} D V_{L-1}^{-1} \cdots V_{0}^{-1} \\
A^{-1} & \approx V_{0} \cdots V_{L-1} D^{-1} U_{L}^{*} \cdots U_{0}^{*}
\end{aligned}
$$

- Fast direct solver or preconditioner

RS analysis

The cost is determined by the skeleton size.

	1 D	2 D	3 D
Skeleton size	$\mathcal{O}(\log N)$	$\mathcal{O}\left(N^{1 / 2}\right)$	$\mathcal{O}\left(N^{2 / 3}\right)$
Factorization cost	$\mathcal{O}(N)$	$\mathcal{O}\left(N^{3 / 2}\right)$	$\mathcal{O}\left(N^{2}\right)$
Solve cost	$\mathcal{O}(N)$	$\mathcal{O}(N \log N)$	$\mathcal{O}\left(N^{4 / 3}\right)$

Question: How to reduce the skeleton size in 2D and 3D?

RS analysis

The cost is determined by the skeleton size.

	1 D	2 D	3 D
Skeleton size	$\mathcal{O}(\log N)$	$\mathcal{O}\left(N^{1 / 2}\right)$	$\mathcal{O}\left(N^{2 / 3}\right)$
Factorization cost	$\mathcal{O}(N)$	$\mathcal{O}\left(N^{3 / 2}\right)$	$\mathcal{O}\left(N^{2}\right)$
Solve cost	$\mathcal{O}(N)$	$\mathcal{O}(N \log N)$	$\mathcal{O}\left(N^{4 / 3}\right)$

Question: How to reduce the skeleton size in 2D and 3D?

- Skeletons cluster near cell interfaces
- Exploit skeleton geometry by skeletonizing along interfaces
- Dimensional reduction

Algorithm: hierarchical interpolative factorization in 2D

Build quadtree.
for each level $\ell=0,1,2, \ldots, L$ do
Let C_{ℓ} be the set of all cells on level ℓ.
for each cell $c \in C_{\ell}$ do
Skeletonize remaining DOFs in c.
end for
Let $C_{\ell+1 / 2}$ be the set of all edges on level ℓ.
for each cell $c \in C_{\ell+1 / 2}$ do
Skeletonize remaining DOFs in c.
end for
end for

HIF in 2D: level 0

domain

HIF in 2D: level $1 / 2$

domain
matrix

HIF in 2D: level 1

domain
matrix

HIF in 2D: level $3 / 2$

matrix

HIF in 2D: level 2

HIF in 2D: level $5 / 2$

HIF in 2D: level 3

RS vs. HIF in 2D

RS vs. HIF in 2D

Algorithm: hierarchical interpolative factorization in 3D

Build octree.
for each level $\ell=0,1,2, \ldots, L$ do
Let C_{ℓ} be the set of all cells on level ℓ.
for each cell $c \in C_{\ell}$ do
Skeletonize remaining DOFs in c.
end for
Let $C_{\ell+1 / 3}$ be the set of all faces on level ℓ.
for each cell $c \in C_{\ell+1 / 3}$ do
Skeletonize remaining DOFs in c.
end for
Let $C_{\ell+2 / 3}$ be the set of all edges on level ℓ.
for each cell $c \in C_{\ell+2 / 3}$ do
Skeletonize remaining DOFs in c.
end for
end for

HIF in 3D: level 0

HIF in 3D: level $1 / 3$

domain

HIF in 3D: level $2 / 3$

domain

HIF in 3D: level 1

domain

HIF in 3D: level 4/3

domain

HIF in 3D: level $5 / 3$

domain

HIF in 3D: level 2

domain

RS

HIF

HIF analysis

- 2 D :

$$
\begin{aligned}
A & \approx U_{0}^{-*} U_{1 / 2}^{-*} \cdots U_{L-1 / 2}^{-*} D V_{L-1 / 2}^{-1} \cdots V_{1 / 2}^{-1} V_{0}^{-1} \\
A^{-1} & \approx V_{0} V_{1 / 2} \cdots V_{L-1 / 2} D^{-1} U_{L-1 / 2}^{*} \cdots U_{1 / 2}^{*} U_{0}^{*}
\end{aligned}
$$

- 3D:

$$
\begin{aligned}
A & \approx U_{0}^{-*} U_{1 / 3}^{-*} U_{2 / 3}^{-*} \cdots U_{L-1 / 3}^{-*} D V_{L-1 / 3}^{-1} \cdots V_{2 / 3}^{-1} V_{1 / 3}^{-1} V_{0}^{-1} \\
A^{-1} & \approx V_{0} V_{1 / 3} V_{2 / 3} \cdots V_{L-1 / 3} D^{-1} U_{L-1 / 3}^{*} \cdots U_{2 / 3}^{*} U_{1 / 3}^{*} U_{0}^{*}
\end{aligned}
$$

Skeleton size: $\quad \mathcal{O}(\log N)$
Factorization cost: $\quad \mathcal{O}(N)$
Solve cost: $\quad \mathcal{O}(N)$

Numerical results in 2D

First-kind volume integral equation on a square with

$$
K(r)=-\frac{1}{2 \pi} \log r .
$$

ϵ	N	\| $\hat{\text { 人 }}$ \|	m_{f} (GB)	$t_{f}(\mathrm{~s})$	$t_{\text {a/s }}(\mathrm{s})$	e_{a}	e_{s}	n_{i}
10^{-3}	$256{ }^{2}$	19	$9.8 \mathrm{e}-2$	$1.0 \mathrm{e}+1$	1.6e-1	1.8e-04	1.1e-2	8
	512^{2}	20	$3.8 \mathrm{e}-1$	$4.3 \mathrm{e}+1$	$6.3 \mathrm{e}-1$	$1.6 \mathrm{e}-04$	$1.6 \mathrm{e}-2$	8
	1024^{2}	20	$1.5 \mathrm{e}+0$	$1.8 \mathrm{e}+2$	$2.6 \mathrm{e}+0$	$2.1 \mathrm{e}-04$	1.4e-2	9
	$2048{ }^{2}$	21	$6.1 \mathrm{e}+0$	$7.5 \mathrm{e}+2$	1.1e+1	$2.2 \mathrm{e}-04$	3.4e-2	9
10^{-6}	$256{ }^{2}$	85	$3.0 \mathrm{e}-1$	$2.7 \mathrm{e}+1$	1.2e-1	$2.0 \mathrm{e}-07$	1.6e-5	3
	$512{ }^{2}$	99	$1.3 \mathrm{e}+0$	$1.3 \mathrm{e}+2$	5.0e-1	$1.3 \mathrm{e}-07$	$2.3 \mathrm{e}-5$	3
	1024^{2}	115	$5.4 \mathrm{e}+0$	$5.9 \mathrm{e}+2$	$2.1 \mathrm{e}+0$	$2.5 \mathrm{e}-07$	$3.4 \mathrm{e}-5$	3
10^{-9}	$256{ }^{2}$	132	$4.4 \mathrm{e}-1$	$4.5 \mathrm{e}+1$	1.2e-1	$7.8 \mathrm{e}-11$	$1.3 \mathrm{e}-8$	2
	$512{ }^{2}$	155	$1.8 \mathrm{e}+0$	$2.1 \mathrm{e}+2$	$4.9 \mathrm{e}-1$	$1.1 \mathrm{e}-10$	1.6e-8	2
	1024^{2}	181	$7.5 \mathrm{e}+0$	$9.7 \mathrm{e}+2$	$2.0 \mathrm{e}+0$	$1.8 \mathrm{e}-10$	3.1e-8	,

Numerical results in 3D

Second-kind boundary integral equation on a sphere with

$$
K(r)=\frac{1}{4 \pi r} .
$$

ϵ	N	\| $\hat{c} \mid$	m_{f} (GB)	$t_{f}(\mathrm{~s})$	$t_{\text {a/s }}(\mathrm{s})$	e^{2}	e_{s}
10^{-3}	20480	201	$1.4 \mathrm{e}-1$	$9.8 \mathrm{e}+0$	3.8e-2	7.2e-4	7.1e-4
	81920	307	$5.6 \mathrm{e}-1$	$5.0 \mathrm{e}+1$	1.8e-1	$1.8 \mathrm{e}-3$	$1.8 \mathrm{e}-3$
	327680	373	$2.1 \mathrm{e}+0$	$2.2 \mathrm{e}+2$	$7.5 \mathrm{e}-1$	3.8e-3	3.7e-3
	1310720	440	$8.1 \mathrm{e}+0$	$8.9 \mathrm{e}+2$	$3.2 \mathrm{e}+0$	9.7e-3	9.5e-3
10^{-6}	20480	497	$5.2 \mathrm{e}-1$	$6.3 \mathrm{e}+1$	5.3e-2	1.1e-7	1.1e-7
	81920	841	$2.1 \mathrm{e}+0$	4.1e+2	2.4e-1	2.3e-7	2.3e-7
	327680	1236	$8.2 \mathrm{e}+0$	$2.3 \mathrm{e}+3$	$1.0 \mathrm{e}+0$	1.2e-6	$1.2 \mathrm{e}-6$

Numerical results in 3D

First-kind volume integral equation on a cube with

$$
K(r)=\frac{1}{4 \pi r} .
$$

ϵ	N	$\|\hat{c}\|$	m_{f}	t_{f}	$t_{a / s}$	e_{a}	e_{s}	n_{i}
10^{-2}	16^{3}	32^{3}	51	$1.5 \mathrm{e}-2$	$1.5 \mathrm{e}+0$	$1.5 \mathrm{e}-2$	$6.0 \mathrm{e}-3$	$2.8 \mathrm{e}-2$
	64^{3}	65	$1.7 \mathrm{e}-1$	$2.1 \mathrm{e}+1$	$1.5 \mathrm{e}-1$	$9.0 \mathrm{e}-3$	$5.7 \mathrm{e}-2$	14
		1.7	$2.8 \mathrm{e}+2$	$1.4 \mathrm{e}+0$	$1.3 \mathrm{e}-2$	$1.3 \mathrm{e}-1$	17	
10^{-3}	16^{3}	92	$4.3 \mathrm{e}-2$	$2.7 \mathrm{e}+0$	$9.6 \mathrm{e}-3$	$2.2 \mathrm{e}-4$	$1.0 \mathrm{e}-3$	6
	32^{3}	171	$4.1 \mathrm{e}-1$	$4.8 \mathrm{e}+1$	$5.9 \mathrm{e}-2$	$4.0 \mathrm{e}-4$	$2.0 \mathrm{e}-3$	8
	64^{3}	364	$4.2 \mathrm{e}+0$	$8.8 \mathrm{e}+2$	$5.7 \mathrm{e}-1$	$7.1 \mathrm{e}-4$	$2.4 \mathrm{e}-3$	8
10^{-4}	16^{3}	182	$6.1 \mathrm{e}-2$	$3.1 \mathrm{e}+0$	$7.2 \mathrm{e}-3$	$1.2 \mathrm{e}-5$	$1.2 \mathrm{e}-4$	4
	32^{3}	360	$7.7 \mathrm{e}-1$	$1.5 \mathrm{e}+2$	$8.6 \mathrm{e}-2$	$2.8 \mathrm{e}-5$	$2.3 \mathrm{e}-4$	5
	64^{3}	793	$9.1 \mathrm{e}+0$	$3.5 \mathrm{e}+3$	$9.1 \mathrm{e}-1$	$5.7 \mathrm{e}-5$	$3.6 \mathrm{e}-4$	5

Conclusions

- Linear-time algorithm for integral operators in 2D and 3D
- Fast matrix-vector multiplication
- Fast direct solver at high accuracy, preconditioner otherwise
- Main novelties:
- Dimensional reduction by alternating between cells, faces, and edges
- Matrix factorization via new linear algebraic formulation
- Explicit elimination of DOFs, no nested hierarchical operations
- Can be viewed as adaptive numerical upscaling
- Extensions: $A^{1 / 2}, \log \operatorname{det} A, \operatorname{diag} A^{-1}$ (plus others?)
- High accuracy in 3D still challenging, may require new ideas
- Similar methods for sparse differential operators
- Skeletonize dense Schur complements in multifrontal
- Preserving sparsity is key

