
Hierarchical interpolative factorization

Kenneth L. Ho (Stanford)

Joint work with Lexing Ying

BIRS Integral Equations Workshop 2013

Introduction

Problem:

a(x)u(x) + b(x)

∫
Ω

K (‖x − y‖)c(y)u(y) dΩ(y) = f (x)

I a, b, c , f are given; u is unknown

I K is related to the Green’s function of an elliptic PDE

I Ω is a quasi-2D or 3D domain

I Discretize via Nyström, collocation, Galerkin, etc.

I Dense (structured) linear system Ax = b

Goal: fast and accurate algorithms for the discrete operator

I Fast matrix-vector multiplication

I Fast solver, good preconditioner

I Linear or nearly linear complexity

Previous work

Matrix-vector multiplication provided by FMM

I Related: treecode, panel clustering, H-matrices, etc.

However, fast solvers have been much harder to come by

I Iterative methods
• Number of iterations can be large
• Inefficient for multiple right-hand sides

I H-matrices
• Optimal complexity but large prefactor

I HSS matrices/skeletonization
• Small constants, optimal in quasi-1D
• Growing skeleton sizes in higher dimensions yield superlinear cost

Many contributors; apologies for not listing names

Recently:

I Linear-time solver in 2D by Corona/Martinsson/Zorin

I A few other ideas floating around...

Previous work

Matrix-vector multiplication provided by FMM

I Related: treecode, panel clustering, H-matrices, etc.

However, fast solvers have been much harder to come by

I Iterative methods
• Number of iterations can be large
• Inefficient for multiple right-hand sides

I H-matrices
• Optimal complexity but large prefactor

I HSS matrices/skeletonization
• Small constants, optimal in quasi-1D
• Growing skeleton sizes in higher dimensions yield superlinear cost

Many contributors; apologies for not listing names

Recently:

I Linear-time solver in 2D by Corona/Martinsson/Zorin

I A few other ideas floating around...

Overview

Hierarchical interpolative factorization

I Skeletonization + recursive dimensional reduction

I Same basic idea as CMZ but in a different linear algebraic framework

I Explicit matrix sparsification, generalized LU decomposition

I Extends to 3D, complex geometry, etc.

Tools: Schur complement, interpolative decomposition, skeletonization

Schur complement

Let

A =

App Apq

Aqp Aqq Aqr

Arq Arr

 .
(Think of A as a sparse matrix.) If App is nonsingular, define

R∗p =

 I
−AqpA

−1
pp I

I

 , Sp =

I −A−1
pp Apq

I
I


so that

R∗p ASp =

App

∗ Aqr

Arq Arr

 .
I DOFs p have been eliminated

I Interactions involving r are unchanged

Interpolative decomposition

If A:,q is numerically low-rank, then there exist

I redundant (q̌) and skeleton (q̂) columns partitioning q = q̌ ∪ q̂

I an interpolation matrix Tq with ‖Tq‖ small

such that

A:,q̌ ≈ A:,q̂Tq.

I Essentially an RRQR written slightly differently

I Can be computed adaptively to any specified precision

I Fast randomized algorithms are available

Interactions between separated regions are low-rank.

Skeletonization

I Use ID + Schur complement to eliminate redundant DOFs

I Let A =

[
App Apq

Aqp Aqq

]
with Apq and Aqp low-rank

I Apply ID to

[
Aqp

A∗pq

]
:

[
Aqp̌

A∗p̌q

]
≈
[
Aqp̂

A∗p̂q

]
Tp =⇒ Aqp̌ ≈ Aqp̂Tp

Ap̌q ≈ T ∗p Ap̂q

I Reorder A =

Ap̌p̌ Ap̌p̂ Ap̌q

Ap̂p̌ Ap̂p̂ Ap̂q

Aqp̌ Aqp̂ Aqq

, define Qp =

 I
−Tp I

I



I Sparsify via ID: Q∗p AQp ≈

∗ ∗
∗ Ap̂p̂ Ap̂q

Aqp̂ Aqq



I Schur complement: R∗p Q∗p AQpSp ≈

∗ ∗ Ap̂q

Aqp̂ Aqq



Algorithm: recursive skeletonization

Build quadtree/octree.
for each level ` = 0, 1, 2, . . . , L do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c .
end for

end for

RS in 2D: level 0

domain matrix

RS in 2D: level 1

domain matrix

RS in 2D: level 2

domain matrix

RS in 2D: level 3

domain matrix

RS in 3D: level 0

domain

RS in 3D: level 1

domain

RS in 3D: level 2

domain

RS analysis

I Skeletonization operators:

U` =
∏
c∈C`

QcRc , V` =
∏
c∈C`

QcSc

I Block diagonalization:

D ≈ U∗L−1 · · ·U∗0 AV0 · · ·VL−1

I Generalized LU decomposition:

A ≈ U−∗0 · · ·U−∗L−1DV−1
L−1 · · ·V

−1
0

A−1 ≈ V0 · · ·VL−1D
−1U∗L · · ·U∗0

I Fast direct solver or preconditioner

RS analysis

The cost is determined by the skeleton size.

1D 2D 3D

Skeleton size O(log N) O(N1/2) O(N2/3)
Factorization cost O(N) O(N3/2) O(N2)
Solve cost O(N) O(N log N) O(N4/3)

Question: How to reduce the skeleton size in 2D and 3D?

I Skeletons cluster near cell interfaces

I Exploit skeleton geometry by skeletonizing along interfaces

I Dimensional reduction

RS analysis

The cost is determined by the skeleton size.

1D 2D 3D

Skeleton size O(log N) O(N1/2) O(N2/3)
Factorization cost O(N) O(N3/2) O(N2)
Solve cost O(N) O(N log N) O(N4/3)

Question: How to reduce the skeleton size in 2D and 3D?

I Skeletons cluster near cell interfaces

I Exploit skeleton geometry by skeletonizing along interfaces

I Dimensional reduction

Algorithm: hierarchical interpolative factorization in 2D

Build quadtree.
for each level ` = 0, 1, 2, . . . , L do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c .
end for
Let C`+1/2 be the set of all edges on level `.
for each cell c ∈ C`+1/2 do

Skeletonize remaining DOFs in c .
end for

end for

HIF in 2D: level 0

domain matrix

HIF in 2D: level 1/2

domain matrix

HIF in 2D: level 1

domain matrix

HIF in 2D: level 3/2

domain matrix

HIF in 2D: level 2

domain matrix

HIF in 2D: level 5/2

domain matrix

HIF in 2D: level 3

domain matrix

RS vs. HIF in 2D

RS HIF

RS vs. HIF in 2D

RS HIF

Algorithm: hierarchical interpolative factorization in 3D

Build octree.
for each level ` = 0, 1, 2, . . . , L do

Let C` be the set of all cells on level `.
for each cell c ∈ C` do

Skeletonize remaining DOFs in c .
end for
Let C`+1/3 be the set of all faces on level `.
for each cell c ∈ C`+1/3 do

Skeletonize remaining DOFs in c .
end for
Let C`+2/3 be the set of all edges on level `.
for each cell c ∈ C`+2/3 do

Skeletonize remaining DOFs in c .
end for

end for

HIF in 3D: level 0

domain

HIF in 3D: level 1/3

domain

HIF in 3D: level 2/3

domain

HIF in 3D: level 1

domain

HIF in 3D: level 4/3

domain

HIF in 3D: level 5/3

domain

HIF in 3D: level 2

domain

RS vs. HIF in 3D

RS HIF

HIF analysis

I 2D: A ≈ U−∗0 U−∗1/2 · · ·U
−∗
L−1/2DV−1

L−1/2 · · ·V
−1
1/2V

−1
0

A−1 ≈ V0V1/2 · · ·VL−1/2D
−1U∗L−1/2 · · ·U

∗
1/2U

∗
0

I 3D: A ≈ U−∗0 U−∗1/3U
−∗
2/3 · · ·U

−∗
L−1/3DV−1

L−1/3 · · ·V
−1
2/3V

−1
1/3V

−1
0

A−1 ≈ V0V1/3V2/3 · · ·VL−1/3D
−1U∗L−1/3 · · ·U

∗
2/3U

∗
1/3U

∗
0

Skeleton size: O(log N)
Factorization cost: O(N)
Solve cost: O(N)

Numerical results in 2D

First-kind volume integral equation on a square with

K (r) = − 1

2π
log r .

ε N |ĉ| mf (GB) tf (s) ta/s (s) ea es ni

10−3

2562 19 9.8e−2 1.0e+1 1.6e−1 1.8e−04 1.1e−2 8
5122 20 3.8e−1 4.3e+1 6.3e−1 1.6e−04 1.6e−2 8

10242 20 1.5e+0 1.8e+2 2.6e+0 2.1e−04 1.4e−2 9
20482 21 6.1e+0 7.5e+2 1.1e+1 2.2e−04 3.4e−2 9

10−6
2562 85 3.0e−1 2.7e+1 1.2e−1 2.0e−07 1.6e−5 3
5122 99 1.3e+0 1.3e+2 5.0e−1 1.3e−07 2.3e−5 3

10242 115 5.4e+0 5.9e+2 2.1e+0 2.5e−07 3.4e−5 3

10−9
2562 132 4.4e−1 4.5e+1 1.2e−1 7.8e−11 1.3e−8 2
5122 155 1.8e+0 2.1e+2 4.9e−1 1.1e−10 1.6e−8 2

10242 181 7.5e+0 9.7e+2 2.0e+0 1.8e−10 3.1e−8 2

Numerical results in 3D

Second-kind boundary integral equation on a sphere with

K (r) =
1

4πr
.

ε N |ĉ| mf (GB) tf (s) ta/s (s) ea es

10−3

20480 201 1.4e−1 9.8e+0 3.8e−2 7.2e−4 7.1e−4
81920 307 5.6e−1 5.0e+1 1.8e−1 1.8e−3 1.8e−3

327680 373 2.1e+0 2.2e+2 7.5e−1 3.8e−3 3.7e−3
1310720 440 8.1e+0 8.9e+2 3.2e+0 9.7e−3 9.5e−3

10−6
20480 497 5.2e−1 6.3e+1 5.3e−2 1.1e−7 1.1e−7
81920 841 2.1e+0 4.1e+2 2.4e−1 2.3e−7 2.3e−7

327680 1236 8.2e+0 2.3e+3 1.0e+0 1.2e−6 1.2e−6

Numerical results in 3D

First-kind volume integral equation on a cube with

K (r) =
1

4πr
.

ε N |ĉ| mf tf ta/s ea es ni

10−2
163 39 1.5e−2 1.5e+0 1.5e−2 6.0e−3 2.8e−2 10
323 51 1.7e−1 2.1e+1 1.5e−1 9.0e−3 5.7e−2 14
643 65 1.7e+0 2.8e+2 1.4e+0 1.3e−2 1.3e−1 17

10−3
163 92 4.3e−2 2.7e+0 9.6e−3 2.2e−4 1.0e−3 6
323 171 4.1e−1 4.8e+1 5.9e−2 4.0e−4 2.0e−3 8
643 364 4.2e+0 8.8e+2 5.7e−1 7.1e−4 2.4e−3 8

10−4
163 182 6.1e−2 3.1e+0 7.2e−3 1.2e−5 1.2e−4 4
323 360 7.7e−1 1.5e+2 8.6e−2 2.8e−5 2.3e−4 5
643 793 9.1e+0 3.5e+3 9.1e−1 5.7e−5 3.6e−4 5

Conclusions

I Linear-time algorithm for integral operators in 2D and 3D
• Fast matrix-vector multiplication
• Fast direct solver at high accuracy, preconditioner otherwise

I Main novelties:
• Dimensional reduction by alternating between cells, faces, and edges
• Matrix factorization via new linear algebraic formulation

I Explicit elimination of DOFs, no nested hierarchical operations

I Can be viewed as adaptive numerical upscaling

I Extensions: A1/2, log det A, diag A−1 (plus others?)

I High accuracy in 3D still challenging, may require new ideas

I Similar methods for sparse differential operators
• Skeletonize dense Schur complements in multifrontal
• Preserving sparsity is key

