Hierarchical interpolative factorization

Kenneth L. Ho (Stanford)

Joint work with Lexing Ying

BIRS Integral Equations Workshop 2013

Introduction

Problem:

$$a(x)u(x) + b(x) \int_{\Omega} K(\|x - y\|)c(y)u(y) d\Omega(y) = f(x)$$

- ▶ a, b, c, f are given; u is unknown
- K is related to the Green's function of an elliptic PDE
- Ω is a quasi-2D or 3D domain
- Discretize via Nyström, collocation, Galerkin, etc.
- ▶ Dense (structured) linear system Ax = b

Goal: fast and accurate algorithms for the discrete operator

- Fast matrix-vector multiplication
- Fast solver, good preconditioner
- Linear or nearly linear complexity

Previous work

Matrix-vector multiplication provided by FMM

▶ Related: treecode, panel clustering, *H*-matrices, etc.

However, fast solvers have been much harder to come by

- ▶ Iterative methods
 - Number of iterations can be large
 - Inefficient for multiple right-hand sides
- ▶ H-matrices
 - Optimal complexity but large prefactor
- ► HSS matrices/skeletonization
 - Small constants, optimal in quasi-1D
 - Growing skeleton sizes in higher dimensions yield superlinear cost

Many contributors; apologies for not listing names

Previous work

Matrix-vector multiplication provided by FMM

▶ Related: treecode, panel clustering, *H*-matrices, etc.

However, fast solvers have been much harder to come by

- ▶ Iterative methods
 - Number of iterations can be large
 - Inefficient for multiple right-hand sides
- ▶ H-matrices
 - Optimal complexity but large prefactor
- ► HSS matrices/skeletonization
 - Small constants, optimal in quasi-1D
 - Growing skeleton sizes in higher dimensions yield superlinear cost

Many contributors; apologies for not listing names

Recently:

- ▶ Linear-time solver in 2D by Corona/Martinsson/Zorin
- A few other ideas floating around...

Overview

Hierarchical interpolative factorization

- ▶ Skeletonization + recursive dimensional reduction
- ▶ Same basic idea as CMZ but in a different linear algebraic framework
- Explicit matrix sparsification, generalized LU decomposition
- Extends to 3D, complex geometry, etc.

Tools: Schur complement, interpolative decomposition, skeletonization

Schur complement

Let

$$A = egin{bmatrix} A_{pp} & A_{pq} & \ A_{qp} & A_{qq} & A_{qr} \ A_{rq} & A_{rr} \end{bmatrix}.$$

(Think of A as a sparse matrix.) If A_{pp} is nonsingular, define

$$R_p^* = \begin{bmatrix} I & I \\ -A_{qp}A_{pp}^{-1} & I & I \end{bmatrix}, \quad S_p = \begin{bmatrix} I & -A_{pp}^{-1}A_{pq} & I & I & I \end{bmatrix}$$

so that

$$R_p^*AS_p = \begin{bmatrix} A_{pp} & & & \\ & * & A_{qr} \\ & A_{rq} & A_{rr} \end{bmatrix}.$$

- DOFs p have been eliminated
- ▶ Interactions involving r are unchanged

Interpolative decomposition

If $A_{:,q}$ is numerically low-rank, then there exist

- lacktriangledown redundant (\check{q}) and skeleton (\hat{q}) columns partitioning $q=\check{q}\cup\hat{q}$
- lacktriangle an interpolation matrix T_q with $\|T_q\|$ small

such that

$$A_{:,\check{q}} \approx A_{:,\hat{q}} T_q.$$

- Essentially an RRQR written slightly differently
- Can be computed adaptively to any specified precision
- ▶ Fast randomized algorithms are available

Interactions between separated regions are low-rank.

Skeletonization

- Use ID + Schur complement to eliminate redundant DOFs
- ► Let $A = \begin{pmatrix} A_{pp} & A_{pq} \\ A_{qp} & A_{qq} \end{pmatrix}$ with A_{pq} and A_{qp} low-rank
- $\blacktriangleright \text{ Apply ID to } \begin{bmatrix} A_{qp} \\ A_{pq}^* \end{bmatrix} \colon \ \begin{bmatrix} A_{q\check{p}} \\ A_{\check{p}q}^* \end{bmatrix} \approx \begin{bmatrix} A_{q\check{p}} \\ A_{\check{p}q}^* \end{bmatrix} \mathcal{T}_p \implies \begin{array}{c} A_{q\check{p}} \approx A_{q\hat{p}} \mathcal{T}_p \\ A_{\check{p}q} \approx \mathcal{T}_p^* A_{\hat{p}q} \end{array}$
- Reorder $A = \begin{bmatrix} A_{\check{p}\check{p}} & A_{\check{p}\hat{p}} & A_{\check{p}q} \\ A_{\check{p}\check{p}} & A_{\hat{p}\hat{p}} & A_{\hat{p}q} \\ A_{q\check{p}} & A_{q\hat{p}} & A_{qq} \end{bmatrix}$, define $Q_p = \begin{bmatrix} I \\ -T_p & I \end{bmatrix}$
- Sparsify via ID: $Q_p^*AQ_p \approx \begin{bmatrix} * & * \\ * & A_{\hat{p}\hat{p}} & A_{\hat{p}q} \\ A_{q\hat{p}} & A_{qq} \end{bmatrix}$
- Schur complement: $R_p^* Q_p^* A Q_p S_p \approx \begin{bmatrix} * & & & \\ & * & A_{\hat{p}q} \\ & A_{q\hat{p}} & A_{qq} \end{bmatrix}$

Algorithm: recursive skeletonization

```
Build quadtree/octree. for each level \ell=0,1,2,\ldots,L do Let C_\ell be the set of all cells on level \ell. for each cell c\in C_\ell do Skeletonize remaining DOFs in c. end for end for
```

RS in 2D: level 0

RS in 2D: level 1

RS in 2D: level 2

RS in 2D: level 3

RS in 3D: level 0

domain

RS in 3D: level 1

RS in 3D: level 2

RS analysis

Skeletonization operators:

$$U_{\ell} = \prod_{c \in C_{\ell}} Q_c R_c, \quad V_{\ell} = \prod_{c \in C_{\ell}} Q_c S_c$$

Block diagonalization:

$$D \approx U_{L-1}^* \cdots U_0^* A V_0 \cdots V_{L-1}$$

Generalized LU decomposition:

$$A \approx U_0^{-*} \cdots U_{L-1}^{-*} D V_{L-1}^{-1} \cdots V_0^{-1}$$
$$A^{-1} \approx V_0 \cdots V_{L-1} D^{-1} U_L^* \cdots U_0^*$$

► Fast direct solver or preconditioner

RS analysis

The cost is determined by the skeleton size.

	1D	2D	3D
Skeleton size	$\mathcal{O}(\log N)$	$\mathcal{O}(\mathit{N}^{1/2})$	$\mathcal{O}(N^{2/3})$
Factorization cost	$\mathcal{O}(N)$	$\mathcal{O}(N^{3/2})$	$\mathcal{O}(N^2)$
Solve cost	$\mathcal{O}(N)$	$\mathcal{O}(N \log N)$	$\mathcal{O}(N^{4/3})$

Question: How to reduce the skeleton size in 2D and 3D?

RS analysis

The cost is determined by the skeleton size.

	1D	2D	3D
Skeleton size	$\mathcal{O}(\log N)$	$\mathcal{O}(N^{1/2})$	$\mathcal{O}(N^{2/3})$
Factorization cost	$\mathcal{O}(N)$	$\mathcal{O}(N^{3/2})$	$\mathcal{O}(N^2)$
Solve cost	$\mathcal{O}(N)$	$\mathcal{O}(N \log N)$	$\mathcal{O}(N^{4/3})$

Question: How to reduce the skeleton size in 2D and 3D?

- Skeletons cluster near cell interfaces
- Exploit skeleton geometry by skeletonizing along interfaces
- Dimensional reduction

Algorithm: hierarchical interpolative factorization in 2D

```
Build quadtree. 

for each level \ell=0,1,2,\ldots,L do 

Let C_\ell be the set of all cells on level \ell. 

for each cell c\in C_\ell do 

Skeletonize remaining DOFs in c. 

end for 

Let C_{\ell+1/2} be the set of all edges on level \ell. 

for each cell c\in C_{\ell+1/2} do 

Skeletonize remaining DOFs in c. 

end for 

end for
```

HIF in 2D: level 0

matrix

HIF in 2D: level 1/2

HIF in 2D: level 1

HIF in 2D: level 3/2

HIF in 2D: level 2

HIF in 2D: level 5/2

HIF in 2D: level 3

RS vs. HIF in 2D

RS vs. HIF in 2D

Algorithm: hierarchical interpolative factorization in 3D

```
Build octree.
for each level \ell = 0, 1, 2, \dots, L do
    Let C_{\ell} be the set of all cells on level \ell.
    for each cell c \in C_{\ell} do
        Skeletonize remaining DOFs in c.
    end for
    Let C_{\ell+1/3} be the set of all faces on level \ell.
    for each cell c \in C_{\ell+1/3} do
        Skeletonize remaining DOFs in c.
    end for
    Let C_{\ell+2/3} be the set of all edges on level \ell.
    for each cell c \in C_{\ell+2/3} do
        Skeletonize remaining DOFs in c.
    end for
end for
```

HIF in 3D: level 0

HIF in 3D: level 1/3

HIF in 3D: level 2/3

HIF in 3D: level 1

HIF in 3D: level 4/3

HIF in 3D: level 5/3

HIF in 3D: level 2

HIF analysis

$$A \approx U_0^{-*} U_{1/2}^{-*} \cdots U_{L-1/2}^{-*} D V_{L-1/2}^{-1} \cdots V_{1/2}^{-1} V_0^{-1}$$
$$A^{-1} \approx V_0 V_{1/2} \cdots V_{L-1/2} D^{-1} U_{L-1/2}^* \cdots U_{1/2}^* U_0^*$$

 $A \approx U_0^{-*} U_{1/3}^{-*} U_{2/3}^{-*} \cdots U_{l-1/3}^{-*} DV_{l-1/3}^{-1} \cdots V_{2/3}^{-1} V_{1/3}^{-1} V_0^{-1}$

$$A^{-1} \approx V_0 V_{1/3} V_{2/3} \cdots V_{L-1/3} D^{-1} U_{L-1/3}^* \cdots U_{2/3}^* U_{1/3}^* U_0^*$$

Skeleton size: $\mathcal{O}(\log N)$ Factorization cost: $\mathcal{O}(N)$ Solve cost: $\mathcal{O}(N)$

Numerical results in 2D

First-kind volume integral equation on a square with

$$K(r) = -\frac{1}{2\pi} \log r.$$

ϵ	N	c	m_f (GB)	t_f (s)	$t_{a/s}$ (s)	e_a	e_s	n _i
10^{-3}	256 ²	19	9.8e-2	1.0e + 1	$1.6e{-1}$	1.8e-04	$1.1e{-2}$	8
	512^{2}	20	$3.8e{-1}$	4.3e + 1	$6.3e{-1}$	1.6e - 04	1.6e-2	8
10	1024^{2}	20	1.5e+0	1.8e + 2	2.6e + 0	2.1e-04	1.4e-2	9
	2048 ²	21	6.1e+0	7.5e+2	1.1e+1	2.2e-04	$3.4e{-2}$	9
	256 ²	85	$3.0e{-1}$	2.7e + 1	$1.2e{-1}$	2.0e-07	1.6e-5	3
10^{-6}	512^{2}	99	1.3e + 0	1.3e + 2	5.0e-1	1.3e-07	$2.3e{-5}$	3
	1024 ²	115	5.4e+0	5.9e + 2	2.1e+0	2.5e-07	$3.4e{-5}$	3
	256 ²	132	$4.4e{-1}$	4.5e+1	$1.2e{-1}$	7.8e-11	1.3e-8	2
10^{-9}	512^{2}	155	1.8e + 0	2.1e + 2	4.9e-1	$1.1\mathrm{e}{-10}$	$1.6e{-8}$	2
	1024 ²	181	7.5e+0	9.7e+2	2.0e+0	$1.8\mathrm{e}{-10}$	3.1e-8	2
·						·		

Numerical results in 3D

Second-kind boundary integral equation on a sphere with

$$K(r)=\frac{1}{4\pi r}.$$

ϵ	Ν	ĉ	m_f (GB)	t_f (s)	$t_{a/s}$ (s)	e_a	e_s
10 ⁻³	20480	201	1.4e-1	9.8e+0	3.8e-2	7.2e-4	7.1e-4
	81920 327680	307 373	5.6e-1 2.1e+0	5.0e+1 2.2e+2	1.8e−1 7.5e−1	1.8e-3 3.8e-3	1.8e-3 3.7e-3
	1310720	440	8.1e+0	8.9e+2	3.2e+0	9.7e-3	9.5e-3
10 ⁻⁶	20480	497	$5.2e{-1}$	6.3e+1	5.3e-2	1.1e-7	1.1e-7
	81920	841	2.1e+0	4.1e+2	2.4e-1	2.3e-7	2.3e-7
	327680	1236	8.2e+0	2.3e+3	1.0e+0	1.2e-6	1.2e-6

Numerical results in 3D

First-kind volume integral equation on a cube with

$$K(r)=\frac{1}{4\pi r}.$$

ϵ	Ν	ĉ	m_f	t_f	$t_{a/s}$	e _a	e _s	ni
	16 ³	39	1.5e-2	1.5e+0	1.5e-2	6.0e-3	2.8e-2	10
10^{-2}	32^{3}	51	$1.7\mathrm{e}{-1}$	2.1e+1	$1.5\mathrm{e}{-1}$	$9.0e{-3}$	5.7e-2	14
	64 ³	65	1.7e+0	2.8e+2	1.4e+0	1.3e-2	1.3e-1	17
	16^{3}	92	4.3e-2	2.7e + 0	$9.6e{-3}$	$2.2e{-4}$	$1.0e{-3}$	6
10^{-3}	32^{3}	171	4.1e-1	4.8e + 1	5.9e - 2	$4.0e{-4}$	2.0e - 3	8
	64 ³	364	4.2e+0	8.8e+2	5.7e-1	7.1e-4	2.4e-3	8
10^{-4}	16^{3}	182	$6.1e{-2}$	3.1e + 0	7.2e - 3	$1.2e{-5}$	$1.2e{-4}$	4
	32^{3}	360	7.7e-1	1.5e + 2	$8.6e{-2}$	$2.8e{-5}$	$2.3e{-4}$	5
	64 ³	793	9.1e+0	3.5e+3	$9.1e{-1}$	5.7e-5	3.6e-4	5

Conclusions

- Linear-time algorithm for integral operators in 2D and 3D
 - · Fast matrix-vector multiplication
 - Fast direct solver at high accuracy, preconditioner otherwise
- ► Main novelties:
 - Dimensional reduction by alternating between cells, faces, and edges
 - Matrix factorization via new linear algebraic formulation
- Explicit elimination of DOFs, no nested hierarchical operations
- Can be viewed as adaptive numerical upscaling
- **Extensions**: $A^{1/2}$, log det A, diag A^{-1} (plus others?)
- ▶ High accuracy in 3D still challenging, may require new ideas
- Similar methods for sparse differential operators
 - Skeletonize dense Schur complements in multifrontal
 - Preserving sparsity is key