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Motivation: model selection

Driving problem

Given observed data and multiple candidate models for the process generating
that data, which is the most appropriate model for that process?

Example (multisite phosphorylation):
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Motivation: model selection

Basic setting:
» Data:  x1,...,Xm
» Models: fi,..., 1,

Typically, each model also depends on some parameters, e.g., f = f(6).

Standard approaches:

> If the parameters are known, just simulate and compare, e.g., compute
% = f(0) and check ¢ = ||x — %||.
> If the parameters are unknown:

e Optimize parameters and check best-case error (parameter estimation).
o Average over parameters according to priors (Bayesian):

Pr (F]x) oc/Pr(x|f(t9))Pr(f(6))d9

For unknown parameters, most methods essentially involve some form of
optimization or exploration over the parameter space.



Parameter problem

In biology, the true parameters are hardly ever known (inability to measure,
uncertainties, etc.). Thus, some type of parameter optimization is often required.

But this optimization can be very difficult:
» Nonlinearity of objective function

» High dimensionality of parameter space

Can we get by without parameter optimization?
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In biology, the true parameters are hardly ever known (inability to measure,
uncertainties, etc.). Thus, some type of parameter optimization is often required.

But this optimization can be very difficult:

» Nonlinearity of objective function

» High dimensionality of parameter space

Can we get by without parameter optimization?

In this talk, we present a statistical model invalidation technique that does not
depend on any parameters, i.e., only on the model structure/topology.

Philosophically related:
» Chemical reaction network theory (Jackson, Horn, Feinberg)
» Stoichiometric network analysis (Clarke)

> Flux balance analysis (Palsson, Edwards)



Chemical reaction networks

To be concrete, consider a chemical reaction network
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Model compatibility

The dynamics x provide a quantitative description of the model and can, in
principle, be used to test its compatibility with observed data.

In practice, however, not all variables can be measured:
> Velocities are often difficult, so consider only the steady state X =0
> Experimentally inaccessible species must be eliminated

Back to our example:
K1Xy — 3kox3 + K3z =0

—R1Xy + n2x3 +Kk4z=0

2kx® — (k3 + Ka)z =0

. . 3 . .y ..
If Z cannot be measured, eliminate z = %er% Compatibility conditions:

2
K1Xy — 3/<u2x3 + (ﬂ) x=0
K3 + Ka

2
—/ilxy—l—ngx?’—i- <ﬂ) x=0
K3 + Ka



Parameter-free invalidation: easy case

How to test compatibility without knowing parameters in advance?

Easy case: suppose all variables can be measured. Then the compatibility
conditions f(x; k) = 0 are linear in &, e.g.,
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Parameter-free invalidation: easy case

How to test compatibility without knowing parameters in advance?

Easy case: suppose all variables can be measured. Then the compatibility

conditions f(x; k) = 0 are linear in &, e.g.,
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Parameter-free invalidation: easy case

In general, there is a nonlinear matrix function ® such that the compatibility
conditions can be expressed as ®(X) - k = 0, where X is the data matrix.

» Compatible if and only if x € null(®(X))
> Necessary condition: dim(null(®(X))) >0
» Compute SVD and check smallest singular value

e Reject model if omin(P(X)) >0
o Criterion depends only on data and so is parameter-free

Geometric perspective:
» Rows of ®(X), considered as points, are coplanar

> Omin quantifies the deviation from coplanarity

Necessary but not sufficient:

» Cannot demonstrate correctness

» Contrasts with parameter optimization Manrai and Gunawardena
(2008) Biophys J



Statistical rejection

How close to zero is close enough?
> Assume i.i.d. Gaussian noise in X
> Estimate propagated noise in ¢(X)

e ® depends only on model topology and hence is known
o First-order expansion in noise magnitude using V&

> Rescale rows of ®(X) so that all noise components have variance < 1:
Omin < [|2Il, 2o ~ N(O, i), |pil <1
» Compare with chi distribution for p-value
This provides a means to reject the null hypothesis that ®(X) is coplanar.

Other bounds are also possible:

» Courant-Fisher-Weyl, Wielandt-Hoffman, concentration of measure, etc.



Parameter-free invalidation: general case

In the general case, we must eliminate all variables that cannot be measured.
> How to do this systematically?

» Elimination also destroys linearity in x
o Recall example:

R1Xy — 3Kax" + < 2Rk ) x=0
K3 + Ka

—R1Xy + Kax® + < 2ratis ) x=0
K3 4 Ky

e How to linearize?

Our solution:

> Algebraic geometry, Grobner bases

» Lifting procedure by relaxing nonlinearities



Grobner bases

p
f;(X):Za,-ij"fzo, i=1,...,n
j=1

X:(X17"'>XN)

Algebraic geometry: zeros of polynomial equations
Algebraic variety: V = {x| fi(x) = -+ = fo(x) = 0}
Grobner bases: Gaussian elimination for multivariate polynomial systems

Form polynomial ring Q[a] = {3>"; ¢;a” | ¢; € Q} and let

vV v v Vv

K = Frac(Qla]) = {g Ipa#0c @[a]}

o Allows symbolic computation over a
Construct ideal | = (fi,...,f,) ={>_; fihi | hi € K[x]}

e Contains all elements of K[x] that vanish on V

v



Grobner bases

p

f;(X):Za,-ij"f =0, i=1,...,n
Jj=1
X = (Xl,"')XN)
To eliminate xi, ..., xx, consider the elimination ideal Iy = I N K[xk41, ..., xn].

Elimination property

If ¢ =(g1,-..,8m) is a Grobner basis for | over K under the lexicographic
ordering x; > - -+ > xp, then Iy = (gk) for gk = g N K[xk+1, .-, xn]-

The basis polynomials g all vanish on V' and depend only on xxi1,...,xy. We
call the elements ), hi(a) xP" of g, where h;(a) € K, steady-state invariants.

> Properties can depend delicately on the monomial ordering
> Can be computed using standard computer algebra packages

» No reasonable bounds on computing time or storage



Algorithm

Models Observed Data
Given dynamics )'<, identified observables Xobsv and i Model 1 Model L f’[Sltmd\ state measurements)
steady-state data Xops,1; - - - ; Xobs,m:
» Compute steady-state invariants in X,ps USing |
. Reduce number of variables
Grobner bases 10 ol any obsarvabis
. . Characterize steady
» For each invariant Y, a;(x) x5 : .
e Linearize by writing as Y1, ,y,, where e ezt e SR
bi = ai(k) and y; = (Pl(Xobs) = x5, ;""\“’
o Test coplanarity of Y = ®(Xops) € R™" with o oo o
respect to effective parameters b
1
> Reject model if any invariant does not induce a ] ‘V\
. . Pt
transformation to coplanarity |
Harri ngton et a I - (2012) PNAS Model compatible Model incompatible
lifted

Many caveats remain (enlarged lifted space, Grobner basis issues,
b =0, etc.); however, the method is still “surprisingly” effective.



Example: two-site phosphorylation

Sot
S :/ _\:5 Kinase/phosphatase: distributive/processive
°°\ e 1 Four models: PP, PD, DP, DD
S10
» Variable ordering: (k5007 /(50]_7 kSlo, fSol, fSlo, f511, k, f, 500, S015 5105 511)
» Only kinase mechanism is discriminative Xobs
> Can reject DP/DD models on the basis of PP data
> Results strongly dependent on ordering, e.g., reversing x,,s makes
phosphatase mechanism discriminative instead
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Harrington et al. (2012) PNAS



Example: cell death signaling
FasL m
cell membrane

clustering K_&
% "\ » Extrinsic pathway

(
reveie lobuor » FasL/Fas interactions
transition interactions
closed Fas
FADD stem helix

binding interactions

open Fas stabilization
of open form

> Crosslinking model: sequential Fas recruitment
> Cluster model: scaffold for Fas clustering, capable of bistability
» Can reject crosslinking model from cluster model data
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Ho and Harrington (2010) PLoS Comput Biol, Harrington et al. (2012) PNAS



Models Observed Data
Model 1 Model L (Steady state measurements)
Summary: i
» Parameter-free statistical model invalidation =
. . . |
» Very simple yet can still be reasonably effective Reduco number of variabls
1
» Cheap compared to parameter optimization e
. |
> Use as preprocessor to thin out model space Tt e e, prametrs snd gt
. Assess coplanarity
» Hierarchy of methods: Py

Data coplanar Data not coplanar

parametric — Bayesian — coplanarity

1

» Can probably generalize to periodic systems using A
integrated variables

Model compatible Model incompatible
Primary limitation: Grobner bases are unreliable
» Does not always work

» Often requires manual intervention



Beyond Grobner bases

Can we eliminate without using Grobner bases?
» Nonlinear methods can be somewhat brittle

» How far can we get using only linear (i.e., Gaussian) elimination?
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Chemical reaction network models: nonlinear ODEs

> Need to restrict to classes for which linear elimination is possible

Appeal to chemical reaction network theory

» Banaji, Conradi, Craciun, Dickenstein, Feinberg, Gunawardena, Horn,
Jackson, Pantea, Pérez Milldn, Shinar, Shiu, Sontag, and many others

» Qualitative dynamics, algebraic structure of chemical reaction networks
> Fundamental insight: there is a lot of hidden linearity



Beyond Grobner bases

Can we eliminate without using Grobner bases?
» Nonlinear methods can be somewhat brittle

» How far can we get using only linear (i.e., Gaussian) elimination?

Chemical reaction network models: nonlinear ODEs
> Need to restrict to classes for which linear elimination is possible

Appeal to chemical reaction network theory

» Banaji, Conradi, Craciun, Dickenstein, Feinberg, Gunawardena, Horn,
Jackson, Pantea, Pérez Milldn, Shinar, Shiu, Sontag, and many others

» Qualitative dynamics, algebraic structure of chemical reaction networks
> Fundamental insight: there is a lot of hidden linearity

What follows is very much a work in progress (with Heather Harrington).
Any comments, thoughts, or connections are very much appreciated.



Chemical reaction network theory

RC A RC

N N
SorXi > piX, i=1,...,R
j=1 j=1 Yl T"’
R f
. o RS « RS
)g:Zn,-(p,-j—r,-j)x", j=1,...,N
i=1 x = f(x) = YA.V(x)

v

Species:  S={Xj|j=1,...,N}
Complexes: C = {ZJN=1 rii Xj, ZJN=1 piXi|i=1,..., R}

WV : nonlinear species-to-complex map

v

v

v

Ag: complex-to-complex rate matrix

v

Y : complex-to-species stoichiometric matrix

Note that A is linear; hence the dynamics in complex space is linear.
Furthermore, A, is a Laplacian matrix (complex conservation).



CRNT example

k3 _ X
X+y-2tox, ax‘iyiez, zT
» S={X,VY, Z}
> C={X,Y, Z,2X, X+Y,3X, Y+27}
X y z x? Xy X3 yz*
[ x ] x [ K3 |
y y K4
z z —KR3 — Ra
U(x)= [ x2|, A= % K1
Xy xy —k1
X3 33 —K2
_yz2_ 2 | ) i
X y z X2 Xy X3 y22
x 100 2 1 3 0
Y=y 0100 1 0 1
z 0 01 0 0 0 2



Linear elimination

Linear elimination in complex space (complex-linear invariants)
» Elimination on YA, (complex-to-species map)

Karp et al. (2012) J Theor Biol

Same algorithm as before: check smallest singular value

Complexity bounds, quite general, no ordering issues

Still can be difficult to understand

» Elimination on A, (complex-to-complex map)

o Restrict to complex-balanced networks
o Exploit Laplacian structure (off-diagonal non-negativity, diagonal dominance)
e Much more powerful results, can basically understand everything

Definition

A chemical reaction network is complex-balanced if A,W(x) = 0 at any steady
state x € RS. A network is unconditionally complex-balanced if it is
complex-balanced for all parameters «.




Complex-balanced networks

Definition
A chemical reaction network is complex-balanced if A,W(x) = 0 at any steady

state x € R. A network is unconditionally complex-balanced if it is
complex-balanced for all parameters «.

Properties:
> Completely specified by complex reaction graph (directed, acyclic)
> Precludes “interesting” behavior, e.g., no multistationarity

» Sufficient graph-theoretic condition: deficiency zero (Feinberg)

Examples:

—— —\ 0
A+ B AB A B—C D
V V

-~

A+B TAB—=A+C AC
~ <~

\/



Results: computing invariants

Choose from C an arbitrary subset C* of observable complexes (comprising only
observable species). We first consider how to compute invariants in C*.

» Invariants are useful in their own right beyond model selection

» Absolute concentration robustness, e.g.,

K1Kk3

KR1R3 2 . . .
— =0 | =—— if 0
< s )xy (ka4 + Ks)Xx“y implies X oy ey if y #




Results: computing invariants

Choose from C an arbitrary subset C* of observable complexes (comprising only
observable species). We first consider how to compute invariants in C*.

» Invariants are useful in their own right beyond model selection
» Absolute concentration robustness, e.g.,

KR1KR3
Ko(kq + Ks)

ify #0

<K::3) xy — (k4 + Ks)x%y = 0 implies X =

Result: Gaussian elimination never breaks

In other words, if A, is block partitioned as
c* C\C*

c* A B
A“_C\c* [C D ]’

then the Schur complement A — BD~1C for C* always exists (and provides
invariant coefficients).



Results: nontrivial invariants

It is possible that the resulting invariants ), biy; have b =0, in which case y
need not be coplanar. How to guarantee unconditionally nontrivial invariants?

Necessary and sufficient graph-theoretic conditions (closed systems):
» Exists ¢ € C* in a non-terminal SCC
» Exists distinct ¢, ¢’ € C* in the same terminal SCC

Proofs are standard (induct on terminal SCCs, diagonal dominance).

Remarks:
> Intuition:

e Has a sink, concentration goes to zero
e Proportional concentrations by equilibrium constant

> Similar statements for open systems (synthesis and degradation)

» Punchline: can determine if complexes are coplanar by inspection



Results: Laplacian kernel

> Closely related to Feinberg's results on ker A,
» In fact, our approach can be used to prove and extend to open systems
e Matrix approach is quite easy
> Assume no constitutive synthesis without degradation somewhere
> Main results:
e If Cis in a non-terminal SCC, then x¢ =0
o If Cis in a terminal SCC without syn/deg, then dim(span(x©)) = 1
o If Cisin a terminal SCC with syn/deg, then x€ = x > 0 fixed
» Characterizes concentration robustness for complex-balanced networks
» Much more stringent than coplanarity:

o Test for zero, constant, and rank-one (o2 = 0)



Algorithm

Given a chemical reaction network:
» Check complex-balancing (deficiency zero)

» Determine all steady-state properties by graph inspection

e Zero, constant, rank-one
e Only fast, scalable graph algorithms required

» Test all steady-state properties statistically
» Control rejections with FDR



Conclusion

» Parameter-free statistical model invalidation
» Quantitative “qualitative” biology
» Current disconnect:

e Complex-balanced: quite limited, but know everything
o Everything else: don't know very much of anything
e How to bridge the gap?
» Fundamental idea: detect low-dimensional representations

e Specific representation may be parametric, but low dimensionality is not
e Can exploit in other ways besides coplanarity, rank-zero, rank-one

v

Success perhaps attributable to biological robustness

v

Generalizations: Laplacian dynamics, reverse engineering, design
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