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Motivation: model selection

Driving problem

Given observed data and multiple candidate models for the process generating
that data, which is the most appropriate model for that process?

Example (multisite phosphorylation):

S1

K + S0

κ01 55jjjj

κ02
))TTTT K + S1

κ12 // S2

S2

If κ02 = 0, the kinase is distributive; otherwise, processive.

Aoki et al. (2011) PNAS



Motivation: model selection

Basic setting:

I Data: x1, . . . , xm

I Models: f1, . . . , fn

Typically, each model also depends on some parameters, e.g., f = f (θ).

Standard approaches:

I If the parameters are known, just simulate and compare, e.g., compute
x̂i = f (θ) and check ε = ‖x − x̂‖.

I If the parameters are unknown:
• Optimize parameters and check best-case error (parameter estimation).
• Average over parameters according to priors (Bayesian):

Pr (f |x) ∝
Z

Pr (x |f (θ)) Pr (f (θ)) dθ

For unknown parameters, most methods essentially involve some form of
optimization or exploration over the parameter space.



Parameter problem

In biology, the true parameters are hardly ever known (inability to measure,
uncertainties, etc.). Thus, some type of parameter optimization is often required.

But this optimization can be very difficult:

I Nonlinearity of objective function

I High dimensionality of parameter space

Can we get by without parameter optimization?

In this talk, we present a statistical model invalidation technique that does not
depend on any parameters, i.e., only on the model structure/topology.

Philosophically related:

I Chemical reaction network theory (Jackson, Horn, Feinberg)

I Stoichiometric network analysis (Clarke)

I Flux balance analysis (Palsson, Edwards)
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Chemical reaction networks

To be concrete, consider a chemical reaction network

N∑
j=1

rijXj
κi−→

N∑
j=1

pijXj , i = 1, . . . ,R

with mass-action kinetics

ẋj =
R∑

i=1

κi (pij − rij) x ri , j = 1, . . . ,N,

where x ri = x ri1
1 · · · x

riN
N .

Example

X + Y
κ1−→ 2X ẋ = κ1xy − 3κ2x

3 + κ3z

3X
κ2−→ Y + 2Z ẏ = −κ1xy + κ2x

3 + κ4z

Z
κ3−→ X , Z

κ4−→ Y ż = 2κ2x
3 − (κ3 + κ4)z



Model compatibility

The dynamics ẋ provide a quantitative description of the model and can, in
principle, be used to test its compatibility with observed data.

In practice, however, not all variables can be measured:

I Velocities are often difficult, so consider only the steady state ẋ = 0
I Experimentally inaccessible species must be eliminated

Back to our example:
κ1xy − 3κ2x

3 + κ3z = 0

−κ1xy + κ2x
3 + κ4z = 0

2κ2x
3 − (κ3 + κ4)z = 0

If Z cannot be measured, eliminate z = 2κ2x
3

κ3+κ4
. Compatibility conditions:

κ1xy − 3κ2x
3 +

(
2κ2κ3

κ3 + κ4

)
x = 0

−κ1xy + κ2x
3 +

(
2κ2κ4

κ3 + κ4

)
x = 0



Parameter-free invalidation: easy case

How to test compatibility without knowing parameters in advance?

Easy case: suppose all variables can be measured. Then the compatibility
conditions f (x ;κ) = 0 are linear in κ, e.g.,

 xy −3x3 z
−xy x3 z

2x3 −z −z



κ1

κ2

κ3

κ4

 =

0
0
0

 .

Compatibility with the data requires that there exist κ (possibly with restrictions)
satisfying this matrix equation.
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Parameter-free invalidation: easy case

In general, there is a nonlinear matrix function Φ such that the compatibility
conditions can be expressed as Φ(X ) · κ = 0, where X is the data matrix.

I Compatible if and only if κ ∈ null(Φ(X ))

I Necessary condition: dim(null(Φ(X ))) > 0

I Compute SVD and check smallest singular value
• Reject model if σmin(Φ(X )) > 0
• Criterion depends only on data and so is parameter-free

Geometric perspective:

I Rows of Φ(X ), considered as points, are coplanar

I σmin quantifies the deviation from coplanarity

Necessary but not sufficient:

I Cannot demonstrate correctness

I Contrasts with parameter optimization

followed by cE00;11 and cF11;00 for the remaining cases. The
specific values for the example in Fig. 3 are listed in the
Mathematica notebook. Fig. 3 also shows the plane defined
by Eq. 6. As discussed above, this plane intersects the posi-
tive quadrant and does not contain the origin. The disposi-
tions of the four curves with respect to this plane follow the
limiting behavior summarized in Fig. 2. It can be seen that
processivity in either or both of the enzymes is clearly dis-
tinguished by the geometry of the corresponding curve.
The curves in Fig. 3 were generated from the rational pa-

rameterization which, as mentioned previously, makes no
distinction between stable and unstable steady states. If the
(y1, y2, y3) data were being obtained from an experiment, or if
they were being generated from a numerical simulation of the
equations, then only stable steady states would be found. We
undertook such numerical simulations using randomly se-
lected sets of parameter values, as previously, along with
randomly chosen initial conditions. We found that for each
set of parameter values, the (y1, y2, y3) values of the stable

states were distributed throughout the expected curves (data
not shown). In particular, the stable states were not confined
to any portion of the curve but were to be found everywhere
along the curve. There was no difficulty in interpolating, by
eye, the shape of the curve despite having a limited number of
points on it corresponding to only the stable steady states.

Experimental tests

The above results make clear predictions about existing
kinase-phosphatase-substrate systems. For instance, in the
Mek-MKP3-Erk system, the substrate Erk is doubly phos-
phorylated and both enzymes act distributively (10,11,13).
We therefore predict that this system satisfies the planarity
invariant (Eq. 6). This can be tested in vitro using purified
kinase, phosphatase, and substrate under conditions in which
ATP is not limiting. It is remarkable that such ‘‘systems
biochemistry’’ has rarely been attempted. Much has been
understood about individual kinases and phosphatases
through in vitro studies, but the two enzymes have rarely
been brought together to study their systems properties. Al-
though such experiments do not appear to be technically
challenging, several issues need discussion.
First, although the experimenter can control the total

amounts of substrate and enzymes and, to a lesser extent, the
initial phosphorylation state of the substrate, the amounts of
free enzymes at steady state are determined by the system’s
dynamics. The parameter t ¼ [E]/[F] is not within the ex-
perimenter’s direct control. However, it is not essential to
trace the curve generated by t in Fig. 3 in any monotonic
fashion. All that is required is to plot the (y1, y2, y3) points
defined by Eq. 7 as a set in R3. The t parameter can be ex-
ercised by varying the total amount of substrate and enzymes
over as broad a range as possible.
Second, any method for detecting the substrate phospho-

rylation state, whether antibodies or 2D gels or mass spec-
trometry, will not preserve transient enzyme-substrate
complexes. To avoid misquantifying the amounts of phos-
phoforms, it is necessary to maintain substrate in excess of
enzymes. In this regime, any error arising from breakdown of
enzyme-substrate complexes will be limited to no more than
the total amount of enzyme.
Third, it is necessary to distinguish and quantify each of

the four phosphoforms. Although antibodies and 2D gels
have often been used to detect phosphorylation state, it can be
difficult to distinguish intermediate phosphoforms (S01 and
S10) with these methods. For instance, although commercial
antibodies are available against all four phosphoforms of
Erk1/2, those against the intermediate phosphoforms show
poor specificity compared to the others (43). Mass spec-
trometry (MS) is a better option and has become the method
of choice for detecting protein posttranslational modifica-
tions (44). Mayya et al studied the cyclin-dependent kinases
CDK1/2, which are inhibited by double phosphorylation, and
usedMS to track all four phosphoforms dynamically over the

FIGURE 3 (y1, y2, y3) curves for each of the four combinations of enzyme

mechanisms, in the positive quadrant of R3. The paired labels indicate

kinase/phosphatase, where D is distributive and P is processive. blue, D/D
curve; cyan, D/P curve; red, P/D curve; purple, P/P curve. Each of the curves

is based on the same core set of parameter values as in the D/D case. These

values were drawn randomly from the uniform distribution on [0.00, 5.00]

and are listed in the Mathematica notebook. The plane defined by Eq. 6 is
shown with the D/D curve lying on it. The D/P curve has, in addition to the

already chosen parameter values, cF11;00 ¼ 2:57; whereas the P/D curve has

cE00;11 ¼ 4:83: The D/P and P/D curves look similar but have different
behaviors for small and large t, as described in Fig. 2. The P/P curve has both

cF11;00 ¼ 2:57 and cE00;11 ¼ 4:83: The value of t¼ [E]/[F] was varied in [0.01,
100]. This example was representative of 100 similarly generated ones. The

Mathematica notebook allows the vantage point of the plot to be varied,
which reveals the shape of the curves more clearly.

Geometry of Multisite Phosphorylation 5541

Biophysical Journal 95(12) 5533–5543

Manrai and Gunawardena

(2008) Biophys J



Statistical rejection

How close to zero is close enough?

I Assume i.i.d. Gaussian noise in X

I Estimate propagated noise in Φ(X )
• Φ depends only on model topology and hence is known
• First-order expansion in noise magnitude using ∇Φ

I Rescale rows of Φ(X ) so that all noise components have variance ≤ 1:

σmin ≤ ‖z‖, zi ∼ N (0, µi ), |µi | ≤ 1

I Compare with chi distribution for p-value

This provides a means to reject the null hypothesis that Φ(X ) is coplanar.

Other bounds are also possible:

I Courant-Fisher-Weyl, Wielandt-Hoffman, concentration of measure, etc.



Parameter-free invalidation: general case

In the general case, we must eliminate all variables that cannot be measured.

I How to do this systematically?

I Elimination also destroys linearity in κ
• Recall example:

κ1xy − 3κ2x
3 +

„
2κ2κ3

κ3 + κ4

«
x = 0

−κ1xy + κ2x
3 +

„
2κ2κ4

κ3 + κ4

«
x = 0

• How to linearize?

Our solution:

I Algebraic geometry, Gröbner bases

I Lifting procedure by relaxing nonlinearities



Gröbner bases

fi (x) =

p∑
j=1

aijx
bij = 0, i = 1, . . . , n

x = (x1, . . . , xN)

I Algebraic geometry: zeros of polynomial equations

I Algebraic variety: V = {x | f1(x) = · · · = fn(x) = 0}
I Gröbner bases: Gaussian elimination for multivariate polynomial systems

I Form polynomial ring Q[a] =
{∑

i cia
bi | ci ∈ Q

}
and let

K = Frac(Q[a]) =

{
p

q
| p, q 6= 0 ∈ Q[a]

}
• Allows symbolic computation over a

I Construct ideal I = 〈f1, . . . , fn〉 = {
∑

i fihi | hi ∈ K[x ]}
• Contains all elements of K[x ] that vanish on V



Gröbner bases

fi (x) =

p∑
j=1

aijx
bij = 0, i = 1, . . . , n

x = (x1, . . . , xN)

To eliminate x1, . . . , xk , consider the elimination ideal Ik = I ∩K[xk+1, . . . , xN ].

Elimination property

If g = (g1, . . . , gm) is a Gröbner basis for I over K under the lexicographic
ordering x1 > · · · > xN , then Ik = 〈gk〉 for gk = g ∩K[xk+1, . . . , xN ].

The basis polynomials gk all vanish on V and depend only on xk+1, . . . , xN . We
call the elements

∑
i hi (a) xpi of gk , where hi (a) ∈ K, steady-state invariants.

I Properties can depend delicately on the monomial ordering

I Can be computed using standard computer algebra packages

I No reasonable bounds on computing time or storage



Algorithm

Given dynamics ẋ , identified observables xobs, and
steady-state data x̂obs,1, . . . , x̂obs,m:

I Compute steady-state invariants in xobs using
Gröbner bases

I For each invariant
∑n

i=1 ai (κ) xpi

obs:
• Linearize by writing as

Pn
i=1 biyi , where

bi = ai (κ) and yi = ϕi (xobs) = xpi
obs

• Test coplanarity of Y = Φ(X̂obs) ∈ Rm×n with
respect to effective parameters b

I Reject model if any invariant does not induce a
transformation to coplanarity

Harrington et al. (2012) PNAS
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ẋ1 = . . . . . . . . . . . .

... . . . . . . . . . . . .
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Many caveats remain (enlarged lifted space, Gröbner basis issues,
b = 0, etc.); however, the method is still “surprisingly” effective.



Example: two-site phosphorylation

S01 dd
$$HHHH

S00

zz
::vvvv

dd
$$HHHH

oo //_____ S11

S10

zz
::vvvv

Kinase/phosphatase: distributive/processive
Four models: PP, PD, DP, DD

I Variable ordering: (ks00, ks01, ks10, fs01, fs10, fs11, k , f , s00, s01, s10, s11︸ ︷︷ ︸
xobs

)

I Only kinase mechanism is discriminative

I Can reject DP/DD models on the basis of PP data

I Results strongly dependent on ordering, e.g., reversing xobs makes
phosphatase mechanism discriminative instead

Harrington et al. (2012) PNAS



Example: cell death signaling

I Extrinsic pathway

I FasL/Fas interactions

I Crosslinking model: sequential Fas recruitment
I Cluster model: scaffold for Fas clustering, capable of bistability
I Can reject crosslinking model from cluster model data

Ho and Harrington (2010) PLoS Comput Biol, Harrington et al. (2012) PNAS



Remarks

Summary:

I Parameter-free statistical model invalidation

I Very simple yet can still be reasonably effective

I Cheap compared to parameter optimization

I Use as preprocessor to thin out model space

I Hierarchy of methods:

parametric→ Bayesian→ coplanarity

I Can probably generalize to periodic systems using
integrated variables
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Primary limitation: Gröbner bases are unreliable

I Does not always work

I Often requires manual intervention



Beyond Gröbner bases

Can we eliminate without using Gröbner bases?

I Nonlinear methods can be somewhat brittle

I How far can we get using only linear (i.e., Gaussian) elimination?

Chemical reaction network models: nonlinear ODEs

I Need to restrict to classes for which linear elimination is possible

Appeal to chemical reaction network theory

I Banaji, Conradi, Craciun, Dickenstein, Feinberg, Gunawardena, Horn,
Jackson, Pantea, Pérez Millán, Shinar, Shiu, Sontag, and many others

I Qualitative dynamics, algebraic structure of chemical reaction networks

I Fundamental insight: there is a lot of hidden linearity

What follows is very much a work in progress (with Heather Harrington).
Any comments, thoughts, or connections are very much appreciated.
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I Need to restrict to classes for which linear elimination is possible

Appeal to chemical reaction network theory

I Banaji, Conradi, Craciun, Dickenstein, Feinberg, Gunawardena, Horn,
Jackson, Pantea, Pérez Millán, Shinar, Shiu, Sontag, and many others

I Qualitative dynamics, algebraic structure of chemical reaction networks

I Fundamental insight: there is a lot of hidden linearity

What follows is very much a work in progress (with Heather Harrington).
Any comments, thoughts, or connections are very much appreciated.



Chemical reaction network theory

N∑
j=1

rijXj
κi−→

N∑
j=1

pijXj , i = 1, . . . ,R

ẋj =
R∑

i=1

κi (pij − rij) x ri , j = 1, . . . ,N

RC Aκ←−−−− RC

Y

y xΨ

RS f←−−−− RS

ẋ = f (x) = YAκΨ(x)

I Species: S = {Xj | j = 1, . . . ,N}

I Complexes: C =
{∑N

j=1 rijXj ,
∑N

j=1 pijXj | i = 1, . . . ,R
}

I Ψ : nonlinear species-to-complex map

I Aκ: complex-to-complex rate matrix

I Y : complex-to-species stoichiometric matrix

Note that Aκ is linear; hence the dynamics in complex space is linear.
Furthermore, Aκ is a Laplacian matrix (complex conservation).



CRNT example

X

X + Y
κ1 // 2X , 3X

κ2 // Y + 2Z , Z

κ3 77nnnn

κ4
''PPPP

Y

I S = {X , Y , Z}
I C = {X , Y , Z , 2X , X + Y , 3X , Y + 2Z}

Ψ(x) =



x
y
z
x2

xy
x3

yz2


, Aκ =



x y z x2 xy x3 yz2

x κ3

y κ4

z −κ3 − κ4

x2 κ1

xy −κ1

x3 −κ2

yz2 κ2



Y =


x y z x2 xy x3 yz2

x 1 0 0 2 1 3 0
y 0 1 0 0 1 0 1
z 0 0 1 0 0 0 2





Linear elimination

Linear elimination in complex space (complex-linear invariants)

I Elimination on YAκ (complex-to-species map)
• Karp et al. (2012) J Theor Biol
• Same algorithm as before: check smallest singular value
• Complexity bounds, quite general, no ordering issues
• Still can be difficult to understand

I Elimination on Aκ (complex-to-complex map)
• Restrict to complex-balanced networks
• Exploit Laplacian structure (off-diagonal non-negativity, diagonal dominance)
• Much more powerful results, can basically understand everything

Definition

A chemical reaction network is complex-balanced if AκΨ(x) = 0 at any steady
state x ∈ RS . A network is unconditionally complex-balanced if it is
complex-balanced for all parameters κ.



Complex-balanced networks

Definition

A chemical reaction network is complex-balanced if AκΨ(x) = 0 at any steady
state x ∈ RS . A network is unconditionally complex-balanced if it is
complex-balanced for all parameters κ.

Properties:

I Completely specified by complex reaction graph (directed, acyclic)

I Precludes “interesting” behavior, e.g., no multistationarity

I Sufficient graph-theoretic condition: deficiency zero (Feinberg)

Examples:

A + B
**
ABmm A

((
Bgg // C

((
Dhh

A + B
**
ABmm

// A + C
**
ACmmee



Results: computing invariants

Choose from C an arbitrary subset C∗ of observable complexes (comprising only
observable species). We first consider how to compute invariants in C∗.

I Invariants are useful in their own right beyond model selection

I Absolute concentration robustness, e.g.,(
κ1κ3

κ2

)
xy − (κ4 + κ5)x2y = 0 implies x =

κ1κ3

κ2(κ4 + κ5)
if y 6= 0

Result: Gaussian elimination never breaks

In other words, if Aκ is block partitioned as

Aκ =

[ C∗ C\C∗

C∗ A B
C\C∗ C D

]
,

then the Schur complement A− BD−1C for C∗ always exists (and provides
invariant coefficients).
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Results: nontrivial invariants

It is possible that the resulting invariants
∑

i biyi have b = 0, in which case y
need not be coplanar. How to guarantee unconditionally nontrivial invariants?

Necessary and sufficient graph-theoretic conditions (closed systems):

I Exists c ∈ C∗ in a non-terminal SCC

I Exists distinct c , c ′ ∈ C∗ in the same terminal SCC

Proofs are standard (induct on terminal SCCs, diagonal dominance).

A
((
Bgg // C

((
Dhh

Remarks:

I Intuition:
• Has a sink, concentration goes to zero
• Proportional concentrations by equilibrium constant

I Similar statements for open systems (synthesis and degradation)

I Punchline: can determine if complexes are coplanar by inspection



Results: Laplacian kernel

I Closely related to Feinberg’s results on ker Aκ
I In fact, our approach can be used to prove and extend to open systems

• Matrix approach is quite easy

I Assume no constitutive synthesis without degradation somewhere

I Main results:
• If C is in a non-terminal SCC, then xC = 0
• If C is in a terminal SCC without syn/deg, then dim(span(xC )) = 1
• If C is in a terminal SCC with syn/deg, then xC = χ > 0 fixed

I Characterizes concentration robustness for complex-balanced networks

I Much more stringent than coplanarity:
• Test for zero, constant, and rank-one (σ2 = 0)

A
((
Bgg

��

E
((

��

Fhh ∅

�������

C
((
Dhh G

((
Hhh 88 I

''
Jgg

hh



Algorithm

Given a chemical reaction network:

I Check complex-balancing (deficiency zero)

I Determine all steady-state properties by graph inspection
• Zero, constant, rank-one
• Only fast, scalable graph algorithms required

I Test all steady-state properties statistically

I Control rejections with FDR



Conclusion

I Parameter-free statistical model invalidation

I Quantitative “qualitative” biology

I Current disconnect:
• Complex-balanced: quite limited, but know everything
• Everything else: don’t know very much of anything
• How to bridge the gap?

I Fundamental idea: detect low-dimensional representations
• Specific representation may be parametric, but low dimensionality is not
• Can exploit in other ways besides coplanarity, rank-zero, rank-one

I Success perhaps attributable to biological robustness

I Generalizations: Laplacian dynamics, reverse engineering, design
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