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Suppose I give you a structure.

What can you tell me about its function?

(What are the physics acting on it?)

Electromagnetism is the force of chemistry.

Davis ME, McCammon JA (1990) Chem Rev

I Charge complementarity

I Conformation and dynamics

I Long-range steering

I Polarization and ionization

In this talk, we focus on electrostatics.
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Molecule: discrete collection of charged atoms

Ω0: solvent

Ω1: (solvent-excluded) molecular volume

Σ: molecular surface

Explicit solvent:

I Discretize Ω0

I Coulomb’s law:

ϕ (r) = ke

∑
i

qi

|r − ri |

I Can be expensive!

Implicit solvent:

I Continuum dielectric

I Poisson equation:

−∇ · (ε∇ϕ) = ρ

For many applications, implicit solvation provides a good balance of physical
realism and computational efficiency.



Poisson equation: −∇ · (ε∇ϕ) = ρ
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−
(
∆− κ2

)
ϕ = 0 in Ω0

−∆ϕ =
1

ε1

∑
i

qiδ (r − ri ) in Ω1

[ϕ] =

[
ε
∂ϕ

∂ν

]
= 0 on Σ

Many ways to solve: finite differences, finite elements

I Can be ill-conditioned

I Artificial domain truncation

We use instead boundary integral equation methods:

I Provably well-conditioned

I Exact boundary conditions

I Dimensional reduction



Integral equation basics

Green’s function: Gk (r, s) =
e−k|r−s|

4π |r − s|

Single-layer potential: Sk [σ] (r) =

∫
Σ

Gk (r, s)σ (s) dAs in Ω0,1

Double-layer potential: Dk [µ] (r) =

∫
Σ

∂Gk

∂νs
(r, s)µ (s) dAs in Ω0,1

Jump relations as r→ s ∈ Σ:

S ′k [σ] (r) → ∓
1

2
σ (s) + S ′∗k [σ] (s)

Dk [µ] (r) → ±
1

2
µ (s) + D∗k [µ] (s)

 if r ∈ Ω0,1



−
(
∆− κ2

)
ϕ = 0 in Ω0

−∆ϕ =
1

ε1

∑
i

qiδ (r − ri ) in Ω1

[ϕ] =

[
ε
∂ϕ

∂ν

]
= 0 on Σ

Solution representation:

ϕ ≡

{
Sκσ + Dκµ in Ω0,

S0σ + αD0µ+ ϕs in Ω1,
α ≡ ε0

ε1
, ϕs (r) ≡ 1

ε1

∑
i

qiG0 (r, ri )

Boundary integral equation on Σ:

1

2
(1 + α)µ+ (Sκ − S0)σ + (Dκ − αD0)µ = ϕs ,

−1

2
(1 + α)σ + (αS ′κ − S ′0)σ + α (D ′κ − D ′0)µ =

∂ϕs

∂ν

(I + λK )

[
µ
σ

]
= λ

[
ϕs

−∂ϕs/∂ν

]
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Let A ∈ CN×N be a matrix discretization of some non-oscillatory Green’s function
integral operator. Note that A is dense.

I Cost of applying A: O(N2)

I Cost of inverting A: O(N3)

Fast iterative solvers:

I Krylov subspace methods (GMRES, BiCG, CGR)

I Fast matrix-vector product algorithms (treecode, FMM, panel clustering)

I Cost: O(N) or O(N log N)

Basic idea:

I Non-oscillatory Green’s functions have smooth far fields

I Exploit smoothness with a hierarchical decomposition of space



Fast iterative solvers have been very successful, but they remain inefficient in
certain important regimes:

I When A is ill-conditioned (multiphysics, singular geometries)

I When Ax = b must be solved with many right-hand sides b or many
perturbations of a base matrix A (optimization, design, time marching)

I Biological context: pKa calculation, structure prediction, docking

One solution: direct solvers (construct A−1).

I Robust: insensitive to conditioning, always works

I Fast solves and inverse updates following initial factorization

Can we accelerate direct solvers to the same extent?

The answer is yes (more or less).



Fast iterative solvers have been very successful, but they remain inefficient in
certain important regimes:

I When A is ill-conditioned (multiphysics, singular geometries)

I When Ax = b must be solved with many right-hand sides b or many
perturbations of a base matrix A (optimization, design, time marching)

I Biological context: pKa calculation, structure prediction, docking

One solution: direct solvers (construct A−1).

I Robust: insensitive to conditioning, always works

I Fast solves and inverse updates following initial factorization

Can we accelerate direct solvers to the same extent?

The answer is yes (more or less).



Fast iterative solvers have been very successful, but they remain inefficient in
certain important regimes:

I When A is ill-conditioned (multiphysics, singular geometries)

I When Ax = b must be solved with many right-hand sides b or many
perturbations of a base matrix A (optimization, design, time marching)

I Biological context: pKa calculation, structure prediction, docking

One solution: direct solvers (construct A−1).

I Robust: insensitive to conditioning, always works

I Fast solves and inverse updates following initial factorization

Can we accelerate direct solvers to the same extent?

The answer is yes (more or less).



Fast iterative solvers have been very successful, but they remain inefficient in
certain important regimes:

I When A is ill-conditioned (multiphysics, singular geometries)

I When Ax = b must be solved with many right-hand sides b or many
perturbations of a base matrix A (optimization, design, time marching)

I Biological context: pKa calculation, structure prediction, docking

One solution: direct solvers (construct A−1).

I Robust: insensitive to conditioning, always works

I Fast solves and inverse updates following initial factorization

Can we accelerate direct solvers to the same extent?

The answer is yes (more or less).



The same basic ideas apply, though some numerical machinery is required.

Related work:

I H -matrices (Hackbusch et al.)

I HSS matrices (Chandrasekaran, Gu, et al.)

I Skeletonization (Martinsson, Rokhlin, Greengard et al.)
• BIEs in 2D
• One-level BIEs in 3D

Here, we present a multilevel fast direct solver in general dimension. For BIEs:

2D 3D

precomp O(N) O(N3/2)
solve O(N) O(N log N)

Each solve is very fast, often beating the FMM by several orders of magnitude.



A block matrix A is block separable if[
× ×
× ×

]
︸ ︷︷ ︸

Aij

=

[
×
×

]
︸︷︷︸

Li

[
×
]︸︷︷︸

Sij

[
× ×

]︸ ︷︷ ︸
Rj

, i 6= j .

Integral equation matrices are block separable.

O(log n) O(n1/2) O(n2/3)
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If A is block separable, then

︸ ︷︷ ︸
A

=

︸ ︷︷ ︸
D

+

︸ ︷︷ ︸
L

︸ ︷︷ ︸
S

︸ ︷︷ ︸
R

.

The inverse can be written in essentially the same form:

A−1 = D + LS−1R,

where

D = D−1 − D−1LΛRD−1, L = D−1LΛ, R = ΛRD−1, S = Λ + S ,

with Λ =
(
RD−1L

)−1
. If A has p × p blocks and each Sij ∈ Ck×k , then A−1 can

be computed in O(p(N/p)3 + (pk)3) operations.
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We can also adopt a sparse matrix perspective. For

Ax = (D + LSR) x = b,

let z ≡ Rx and y ≡ Sz . Then this is equivalent to the structured sparse systemD L
R −I
−I S

x
y
z

 =

b
0
0

 .
Factor using UMFPACK, SuperLU, MUMPS, Pardiso, etc.



Integral equation matrices are, in fact, hierarchically block separable, i.e., they are
block separable at every level of an octree-type ordering.

In this setting, much more powerful algorithms can be developed.

How to compress to block separable form?
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An interpolative decomposition of a rank-k matrix is a representation

A︸︷︷︸
m×n

= B︸︷︷︸
m×k

P︸︷︷︸
k×n

,

where B is a column-submatrix of A (with ‖P‖ small).

I The ID compresses the column space; to compress the row space, apply the
ID to AT. We call the retained rows and columns skeletons.

I Adaptive algorithms can compute the ID to any specified precision ε > 0.



One-level matrix compression

I Compress the row space of each off-diagonal block row.
Let the Li be the corresponding row projection matrices.

I Compress the column space of each off-diagonal block column.
Let the Rj be the corresponding column projection matrices.

I Approximate the off-diagonal blocks by Aij ≈ LiSijRj for i 6= j .

Skeletonization



Multilevel matrix compression

Recursive skeletonization



G (x , y) = − 1

2π
log |x − y | , ε = 10−3



I General compression algorithm is global and so at least O(N2)

I For potential fields, use Green’s theorem to accelerate:

u (r) =

∫
Γ

[
u (s)

∂G

∂νs
(r, s)− G (r, s)

∂u

∂ν
(s)

]
dAs

I Represent well-separated points with a local proxy surface



Compressed telescoping matrix representation:

A ≈ D(1) + L(1)
[
D(2) + L(2)

(
· · ·D(λ) + L(λ)SR(λ) · · ·

)
R(2)

]
R(1)

I Efficient storage (data-sparse)

N uncomp comp

8192 537 MB 9.7 MB
131072 137 GB 184 MB

I Fast matrix-vector multiplication (generalized FMM)

I Fast matrix factorization and inverse application



Recursively expand in sparse form:

D(1) L(1)

R(1) −I
−I D(2) L(2)

R(2) . . .
. . .

. . . D(λ) L(λ)

R(λ) −I
−I S





x
y (1)

z (1)

...

...
y (λ)

z (λ)


=



b
0
0
...
...
0
0


.

This can be treated efficiently using any standard sparse direct solver.

Multilevel inversion formula (for analysis):

A−1 ≈ D(1) + L(1)
[
D(2) + L(2)

(
· · ·D(λ) + L(λ)S−1R(λ) · · ·

)
R(2)

]
R(1)



Complexities in d dimensions (BIEs in d + 1 dimensions):

precomp ∼

{
N if d = 1,

N3(1−1/d) if d > 1,
solve ∼


N if d = 1,

N log N if d = 2,

N2(1−1/d) if d > 2

I Mild assumptions: low-rank off-diagonal blocks, Green’s theorem

I Based on numerical linear algebra rather than analytic expansions

I Kernel-independent: Laplace, Stokes, Yukawa, low-frequency Helmholtz, etc.

I Compressed ranks are optimal for the problem at hand

I Like the FMM but with some near-field compression

I Trade accuracy for speed: user-specified precision

I Naturally parallelizable via block-sweep structure



Laplace FMM



Laplace BIE solver

I Less memory-efficient than FMM/GMRES

I Each solve is extremely fast (in elements/sec)

ε 10−3 10−6 10−9

2D 3.3× 106 2.0× 106 1.7× 106

3D 6.0× 105 1.4× 105 6.2× 104



Poisson electrostatics

−∆ϕ = 0 in Ω0

−∆ϕ =
1

ε1

∑
i

qiδ (r − ri ) in Ω1

[ϕ] =

[
ε
∂ϕ

∂ν

]
= 0 on Σ

N 7612 19752

FMM/GMRES 12.6 s 26.9 s
RS precomp 151 s 592 s
RS solve 0.03 s 0.08 s

Break-even point: 10–25 solves



Multiple scattering

I Each object: 10λ[
A11 A12

A21 A22

] [
x1

x2

]
=

[
b1

b2

]
I FMM/GMRES with block

preconditioner via RS[
A−1

11

A−1
22

]
I Unprecon: 700 iterations

I Precon: 10 iterations

I 50× speedup

Rigid-body “docking”
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Main result:

I After precomputation, very fast solves (sub-second)

I Useful for systems involving many right-hand sides

Extensions:

I Approximate inverse preconditioning

I Local geometric perturbations:A B+ B−
C+ D+ D∗
C− I

x
x+

x−

 =

b
b+

0


I Least squares (semi-direct QR)

I Compression-based FMM
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Back to biophysics: protein pKa calculations

−⇀↽−

pKa ≡ − log10

[A] [H]

[AH]
= log10

[AH]

[A]
+ pH

Ionization behavior is important for many biomolecular phenomena:

I Binding affinities

I Enzymatic activities

I Structural properties



pKa =
β

ln 10
∆G p

AH→A+H

∆G p
AH→A+H = ∆G s

AH→A+H + ∆G s→p
A −∆G s→p

AH

= ∆G s
AH→A+H︸ ︷︷ ︸

experiment

+ ∆G s
A→AH −∆G p

A→AH︸ ︷︷ ︸
electrostatic only

AsH
∆G s

AH→A+H−−−−−−−→ As + H

∆G s→p
AH

y y∆G s→p
A

ApH
∆G p

AH→A+H−−−−−−−→ Ap + H

pKa = pKmodel
a︸ ︷︷ ︸

experiment

− β

ln 10
∆∆G s→p

A→AH︸ ︷︷ ︸
electrostatic



For M titrating sites, let θ ∈ {0, 1}M denote the protonation state of each site.

pK intr
i ≡ pKmodel

i − β

ln 10
∆∆G s→p

A→A(ei )

∆GA→A(ei ) (pH) = −RT ln 10
(
pK intr

i − pH
)

∆GA→A(θ) (pH) = −RT ln 10
∑

i

θi
(
pK intr

i − pH
)

+
1

2

∑
i

θi
∑
j 6=i

θj∆Gij

Mean site protonation:

〈θi 〉 (pH) =
1

Z

∑
θ

θie
−β∆GA→A(θ)(pH)

Sample using Markov chain Monte Carlo.

Find pKi such that 〈θi 〉 (pKi ) = 1/2.



How to calculate the titrating site interaction energies ∆Gij = qT
i ϕj? Recall:

ϕ =

{
Sκσ + Dκµ in Ω0,

S0σ + αD0µ+ ϕs in Ω1,
(I + λK )

[
µ
σ

]
= λ

[
ϕs

−∂ϕs/∂ν

]
.

Therefore, ϕj = (CA−1B + D)qj , where

A = I + λK , B = λ

[
ϕs

−∂ϕs/∂ν

]
,

C =
[
D0 αS0

]
, Dij =


0 if i = j ,

1

ε1
G0 (ri , rj) if i 6= j .

I Calculate ϕj for each site j .

I Compute ∆Gij = qT
i ϕj for each site i .

I Requires M solves in total.

I Compress matrices as direct solver or generalized FMM.



pKa algorithm

I Protein preparation

I Matrix precomputation

I Energy calculation

I Monte Carlo sampling
• Reduced site approximation
• Multi-site cluster moves

I Estimate pKi

• Error bars

Apply delta method.

I Link sites by interaction energy

I Clusters: connected components

I Modify one cluster at random

I Pick move distance from geometric distribution
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name PDB ID residues atoms sites

BPTI 4PTI 58 891 18
OMTKY3 2OVO 56 813 15
HEWL 2LZT 129 1965 30
RNase A 3RN3 124 1865 34
RNase H 2RN2 155 2474 53

I DoFs: 10,000–30,000

I Energy calc time: 10 s

I Much less memory than
classical direct methods

I Much faster solves than
iterative methods

I Precomputation is still
somewhat expensive



RMSD
ε1

4 8 20

BPTI 1.47 0.96 0.82
OMTKY3 1.77 1.07 1.09
HEWL 2.52 1.49 0.79
RNase A 3.22 2.25 0.85
RNase H 4.53 2.53 1.36

type number RMSD

Arg 12/18 1.23
Glu 17/24 1.00
His 8/11 0.92
Lys 11/14 0.79
Tyr 7/ 9 1.24
all 55/76 1.05



How to improve our pKa predictions?

I One possibility is to include conformational flexibility (Gunner et al.)

I Treat with perturbative techniques

Similar ideas are also relevant for other biological problems.

I Structure prediction: fixed backbone, rotamer optimization

I Rigid-body docking: like multiple scattering

I Flexible docking: combination of the above

These are all characterized by much larger search spaces and hence enable more
efficient amortization of the matrix precomputation costs.
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Summary

I Molecular electrostatics: second-kind boundary integral equation

I Fast direct solver for non-oscillatory integral equations
• Kernel-independent: Laplace, Stokes, Yukawa, low-frequency Helmholtz
• Very fast solves following precomputation (∼ 0.1 s)

I Application to protein pKa calculations

Next steps:

I Faster direct solvers: aim for O(N log N)

I Other compression-based numerical algorithms

I More realistic electrostatics: inhomogeneous dielectrics, solvent correlations

I Further biological applications: structure prediction, docking
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