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Introduction

The direct solution of dense linear systems by classical
methods requires O(N3) operations, where N is the sys-
tem size. This can be prohibitive when N is large. For sys-
tem matrices with special structure, however, this cost can
be dramatically decreased. Here, we present a fast algo-
rithm for hierarchically structured matrices based on mul-
tilevel compression that exposes their underlying sparsity.
Our method is an extension of the skeletonization scheme
of Martinsson and Rokhlin, embedded in a linear algebraic
framework that allows for significant generalization. It is par-
ticularly useful for the solution of the integral equations of po-
tential theory, where, compared with iterative fast multipole-
based approaches, its primary advantages are its reduced
sensitivity to conditioning and its extremely fast solve time
following precomputation.

Algorithm

Definition 1. A block matrix A is block separable if each
off-diagonal block is the product of three low-rank matrices:
Aij = LiSijRj for i 6= j.
Then
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where z ≡ Rx and y ≡ Sz. This can be solved efficiently
using standard sparse direct solver technology.
Definition 2. A block matrix A with a tree τ on its block in-
dices is hierarchically block separable (HBS) if it is block sep-
arable on every level of τ .
This describes the matrix discretizations of many non-
oscillatory Green’s function integral operators (e.g., Laplace,
Stokes, low-frequency Helmholtz), sorted by an orthtree.

Figure 1: Hierarchically block separable matrix structure.

For such matrices, if we use the interpolative decomposition
for low-rank compression, then the skeleton matrix S is also
HBS and can be represented in the same form. This leads
to a multilevel compression and inversion scheme:
• telescoping compressed representation:

A ≈ D(1) + L(1)
(
· · ·D(λ) + L(λ)SR(λ) · · ·

)
R(1)

•multilevel sparse embedding:
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Figure 2: One-level compression by skeletonization.

Figure 3: Multilevel compression by recursive skeletoniza-
tion.

Figure 4: Data sparsification (logarithmic interactions, ε =
10−3).

The algorithm proceeds in two phases: a precomputation
phase, consisting of matrix compression and factorization,
followed by a solution phase to apply the matrix inverse. For
efficient compression, we use proxy surfaces to represent
global interactions locally.

Figure 5: Interactions are decomposed into contributions
from the near field, which are handled directly, and the far
field, which are represented using a proxy surface.

Table 1: Computational complexities for solving integral
equations in d-dimensional domains.

d precomp solve

1 O(N) O(N)

2 O(N3/2) O(N logN)

3 O(N2) O(N4/3)

Numerical results

We implemented our algorithm in Fortran, using UMFPACK
for sparse inversion. All results are for a single 2.66 GHz
processor.

Laplace equation

• second-kind boundary integral formulation:
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• 2D: 2 : 1 ellipse (points), ε = 10−9

• 3D: unit sphere (triangles), ε = 10−6

• compare with LAPACK/ATLAS and FMM/GMRES

Figure 6: CPU times for solving the boundary integral for-
mulation of the Laplace equation.

Molecular electrostatics

• piecewise constant dielectric Poisson:

−∇ · (ε∇ϕ) =
∑
i

qiδ (r − ri)

•DNA: N = 19752 triangles, ε = 10−3

• precomp: 592 s; solve: 0.08 s; FMM/GMRES: 27 s

Figure 7: Surface potential of DNA.

Multiple scattering

• sound-hard acoustics on two scatterers:(
∆ + k2

)
u = 0 in R2 \ (Ω1 ∪ Ω2)

• block system: [
A11 A12
A21 A22

] [
x1
x2

]
=

[
b1
b2

]
• FMM/GMRES with RS preconditioner (N = 1024, ε = 10−6)

P−1 =

[
A−1

11
A−1

22

]
• precon: 8 s (10 iterations each)
• unprecon: 474 s (700 iterations each)

Figure 8: Acoustic pressure field energy.

Generalizations and conclusions

We have developed a matrix compression algorithm that
exposes the sparsity of structured dense matrices and pro-
vides a platform for fast matrix algebra. As a direct solver, its
principal novelties are its generality (kernel independence)
and its low cost per solve (after precomputation), often beat-
ing the FMM by several orders of magnitude. Thus, it is
especially suited to problems involving multiple right-hand
sides. Our overall approach is similar to that of work on H -
matrices and HSS matrices.

Several extensions are immediate, including low-rank in-
verse updates (e.g., for local geometric perturbations) via
preconditioning or the Sherman-Morrison-Woodbury for-
mula, and the solution of least squares problems using a
sparse QR factorization. Research is ongoing.
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