Introduction

The direct solution of dense linear systems by classical
methods requires O(N3) operations, where N is the sys-
tem size. This can be prohibitive when NN is large. For sys-
tem matrices with special structure, however, this cost can
be dramatically decreased. Here, we present a fast algo-
rithm for hierarchically structured matrices based on mul-
tilevel compression that exposes their underlying sparsity.
Our method is an extension of the skeletonization scheme
of Martinsson and Rokhlin, embedded in a linear algebraic
framework that allows for significant generalization. It is par-
ticularly useful for the solution of the integral equations of po-
tential theory, where, compared with iterative fast multipole-
based approaches, its primary advantages are its reduced
sensitivity to conditioning and its extremely fast solve time
following precomputation.

Definition 1. A block matrix A is block separable if each
off-diagonal block is the product of three low-rank matrices:
Ajj = LiS;iR; for i # 7.

Then

A = D + L S R,
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so the linear system Ax = b can be written as
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where z = Rx and y = Sz. This can be solved efficiently
using standard sparse direct solver technology.

Definition 2. A block matrix A with a tree 7 on its block in-
dices is hierarchically block separable (HBS) if it is block sep-
arable on every level of 7.

This describes the matrix discretizations of many non-
oscillatory Green’s function integral operators (e.g., Laplace,
Stokes, low-frequency Helmholtz), sorted by an orthtree.
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Figure 1: Hierarchically block separable matrix structure.

For such matrices, if we use the interpolative decomposition
for low-rank compression, then the skeleton matrix S is also
HBS and can be represented in the same form. This leads
to a multilevel compression and inversion scheme:

e telescoping compressed representation:
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e multilevel sparse embedding:
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Figure 2: One-level compression by skeletonization.
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Figure 3: Multilevel compression by recursive skeletoniza-
tion.
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Figure 4: Data sparsification (logarithmic interactions, ¢ =
1073).

The algorithm proceeds in two phases: a precomputation
phase, consisting of matrix compression and factorization,
followed by a solution phase to apply the matrix inverse. For
efficient compression, we use proxy surfaces to represent
global interactions locally.
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Figure 5: Interactions are decomposed into contributions
from the near field, which are handled directly, and the far
field, which are represented using a proxy surface.

Table 1: Computational complexities for solving integral
equations in d-dimensional domains.

d precomp  solve

1 O(N) O(N)
2 O(N3/2) O(NlogN)
3 O(N?)  O(NY3)

Numerical results

We implemented our algorithm in Fortran, using UMFPACK
for sparse inversion. All results are for a single 2.66 GHz
processor.

Laplace equation

e second-kind boundary integral formulation:
1 0G

—50 (r) + F(?_Vs (r,s)dSs = f(r)

e 2D: 2 : 1 ellipse (points), e = 10~
e 3D: unit sphere (triangles), ¢ = 107
e compare with LAPACK/ATLAS and FMM/GMRES
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Figure 6: CPU times for solving the boundary integral for-
mulation of the Laplace equation.

Molecular electrostatics

e piecewise constant dielectric Poisson:
~V-(eVe) =D qid(r—m)
i

e DNA: N = 19752 triangles, ¢ = 107>
e precomp: 592 s; solve: 0.08 s; FMM/GMRES: 27 s
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Figure 7: Surface potential of DNA.

A fast direct solver by structured matrix compression

A NYU

Multiple scattering

e sound-hard acoustics on two scatterers:
(A+k2)uzo in R2\ (Q U Q)
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e FMM/GMRES with RS preconditioner (N = 1024, e = 1079)
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e precon: 8 s (10 iterations each)
e Unprecon: 474 s (700 iterations each)

e block system:
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Figure 8: Acoustic pressure field energy.

Generalizations and conclusions

We have developed a matrix compression algorithm that
exposes the sparsity of structured dense matrices and pro-
vides a platform for fast matrix algebra. As a direct solver, its
principal novelties are its generality (kernel independence)
and its low cost per solve (after precomputation), often beat-
ing the FMM Dby several orders of magnitude. Thus, it is
especially suited to problems involving multiple right-hand
sides. Our overall approach is similar to that of work on 7-
matrices and HSS matrices.

Several extensions are immediate, including low-rank in-
verse updates (e.g., for local geometric perturbations) via
preconditioning or the Sherman-Morrison-Woodbury for-
mula, and the solution of least squares problems using a
sparse QR factorization. Research is ongoing.
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