
A fast direct solver for structured matrices arising from
non-oscillatory integral equations

Kenneth L. Ho and Leslie Greengard

Courant Institute, New York University

SIAM LA 2012

Model problem

I Laplace’s equation with Dirichlet boundary conditions:

∆u = 0 in Ω , u = f on ∂Ω

I Fundamental to many areas of mathematical physics

I Solve using a Green’s function representation:

u (r) =

∫
∂Ω

∂G

∂νs
(r, s)σ (s) dAs in Ω

I Integral equation for unknown surface density σ:

−1

2
σ (r) +

∫
∂Ω

∂G

∂νs
(r, s)σ (s) dAs = f (r) on ∂Ω

I Discretize: Ax = b

I Good: well-conditioned, high-order, dimensional reduction

I Bad: dense matrices, computational cost

Let A ∈ CN×N discretize a non-oscillatory Green’s function integral operator.

I Cost of applying A: O(N2)

I Cost of inverting A: O(N3)
Fast algorithms are required!

Fortunately, such matrices are structured.

I Analysis: non-oscillatory Green’s functions have smooth far fields

I Algebra: off-diagonal matrix blocks are numerically low-rank

I Exploit smoothness with a hierarchical decomposition of space

I O(N log N) matrix-vector multiplication (treecode, FMM, panel clustering)

I Combine with GMRES, BiCG, CGR, etc. for fast iterative solvers

Let A ∈ CN×N discretize a non-oscillatory Green’s function integral operator.

I Cost of applying A: O(N2)

I Cost of inverting A: O(N3)
Fast algorithms are required!

Fortunately, such matrices are structured.

I Analysis: non-oscillatory Green’s functions have smooth far fields

I Algebra: off-diagonal matrix blocks are numerically low-rank

I Exploit smoothness with a hierarchical decomposition of space

I O(N log N) matrix-vector multiplication (treecode, FMM, panel clustering)

I Combine with GMRES, BiCG, CGR, etc. for fast iterative solvers

Fast iterative solvers have been very successful, but they can still be inefficient:

I When A is ill-conditioned (multiphysics, singular geometries)

I When Ax = b must be solved with many right-hand sides b or many
perturbations of a base matrix A (optimization, design, time marching)

One solution: fast direct solvers (construct A−1).

I Robust: insensitive to conditioning, always works

I Fast solves and inverse updates following initial factorization

Various approaches in recent years:

I H - and H 2-matrices (Hackbusch, Börm et al.)

I HSS matrices (Chandrasekaran, Gu, Xia et al.)

I Skeletonization (Martinsson, Rokhlin, Greengard et al.)
• BIEs in 2D
• One-level BIEs in 3D

Fast iterative solvers have been very successful, but they can still be inefficient:

I When A is ill-conditioned (multiphysics, singular geometries)

I When Ax = b must be solved with many right-hand sides b or many
perturbations of a base matrix A (optimization, design, time marching)

One solution: fast direct solvers (construct A−1).

I Robust: insensitive to conditioning, always works

I Fast solves and inverse updates following initial factorization

Various approaches in recent years:

I H - and H 2-matrices (Hackbusch, Börm et al.)

I HSS matrices (Chandrasekaran, Gu, Xia et al.)

I Skeletonization (Martinsson, Rokhlin, Greengard et al.)
• BIEs in 2D
• One-level BIEs in 3D

Fast iterative solvers have been very successful, but they can still be inefficient:

I When A is ill-conditioned (multiphysics, singular geometries)

I When Ax = b must be solved with many right-hand sides b or many
perturbations of a base matrix A (optimization, design, time marching)

One solution: fast direct solvers (construct A−1).

I Robust: insensitive to conditioning, always works

I Fast solves and inverse updates following initial factorization

Various approaches in recent years:

I H - and H 2-matrices (Hackbusch, Börm et al.)

I HSS matrices (Chandrasekaran, Gu, Xia et al.)

I Skeletonization (Martinsson, Rokhlin, Greengard et al.)
• BIEs in 2D
• One-level BIEs in 3D

Here, we present a multilevel skeletonization-based fast direct solver in general
dimension. For BIEs:

2D 3D

precomp O(N) O(N3/2)
solve O(N) O(N log N)

Main ideas/take-home messages :

I Kernel-independent: Laplace, Stokes, Yukawa, low-frequency Helmholtz

I Robust to geometry (e.g., boundary vs. volume, dimensionality)

I User-specified precision: trade accuracy for speed

I Naturally exposes the underlying sparsity of integral equation matrices

I Transparently takes advantage of sparse direct solver development

I Very fast solve times, beating the FMM by factors of 100–1000

I Simple framework: easy to analyze, implement, and optimize

I Somewhat similar in flavor to nested dissection

A block matrix A is block separable if[
× ×
× ×

]
︸ ︷︷ ︸

Aij

=

[
×
×

]
︸︷︷︸

Li

[
×
]︸︷︷︸

Sij

[
× ×

]︸ ︷︷ ︸
Rj

, i 6= j .

Integral equation matrices are block separable.

O(log n) O(n1/2) O(n2/3)

A block matrix A is block separable if[
× ×
× ×

]
︸ ︷︷ ︸

Aij

=

[
×
×

]
︸︷︷︸

Li

[
×
]︸︷︷︸

Sij

[
× ×

]︸ ︷︷ ︸
Rj

, i 6= j .

Integral equation matrices are block separable.

O(log n) O(n1/2) O(n2/3)

If A is block separable, then

︸ ︷︷ ︸
A

=

︸ ︷︷ ︸
D

+

︸ ︷︷ ︸
L

︸ ︷︷ ︸
S

︸ ︷︷ ︸
R

.

The inverse can be written in essentially the same form:

A−1 = D + LS−1R,

where

D = D−1 − D−1LΛRD−1, L = D−1LΛ, R = ΛRD−1, S = Λ + S ,

with Λ =
(
RD−1L

)−1
.

I D, L, and R are block diagonal

I Reduces to inverting S ∈ CK×K , where typically K � N

If A is block separable, then

︸ ︷︷ ︸
A

=

︸ ︷︷ ︸
D

+

︸ ︷︷ ︸
L

︸ ︷︷ ︸
S

︸ ︷︷ ︸
R

.

The inverse can be written in essentially the same form:

A−1 = D + LS−1R,

where

D = D−1 − D−1LΛRD−1, L = D−1LΛ, R = ΛRD−1, S = Λ + S ,

with Λ =
(
RD−1L

)−1
.

I D, L, and R are block diagonal

I Reduces to inverting S ∈ CK×K , where typically K � N

We can also adopt a sparse matrix perspective. For

Ax = (D + LSR) x = b,

let z ≡ Rx and y ≡ Sz . Then this is equivalent to the structured sparse systemD L
R −I
−I S

x
y
z

 =

b
0
0

 .
Factor using UMFPACK, SuperLU, MUMPS, Pardiso, etc.

Integral equation matrices are, in fact, hierarchically block separable, i.e., they are
block separable at every level of an octree-type ordering.

In this setting, much more powerful algorithms can be developed.

How to compress to block separable form?

Integral equation matrices are, in fact, hierarchically block separable, i.e., they are
block separable at every level of an octree-type ordering.

In this setting, much more powerful algorithms can be developed.

How to compress to block separable form?

An interpolative decomposition of a rank-k matrix is a representation

A︸︷︷︸
m×n

= B︸︷︷︸
m×k

P︸︷︷︸
k×n

,

where B is a column-submatrix of A (with ‖P‖ small).

I The ID compresses the column space; to compress the row space, apply the
ID to AT. We call the retained rows and columns skeletons.

I Adaptive algorithms can compute the ID to any specified precision ε > 0.

I Related factorizations: RRQR, pseudoskeleton (CUR), ACA

One-level matrix compression

I Compress the row space of each off-diagonal block row.
Let the Li be the corresponding row interpolation matrices.

I Compress the column space of each off-diagonal block column.
Let the Rj be the corresponding column interpolation matrices.

I Approximate the off-diagonal blocks by Aij ≈ LiSijRj for i 6= j .

I S is a skeleton submatrix of A

Skeletonization

Multilevel matrix compression

Recursive skeletonization

G (r, s) = − 1

2π
log |r − s| , ε = 10−3

Accelerated compression for PDEs

I General compression algorithm is global and so at least O(N2)

I For potential fields, use Green’s theorem to accelerate:

u (r) =

∫
Γ

[
u (s)

∂G

∂νs
(r, s)− G (r, s)

∂u

∂ν
(s)

]
dAs

I Represent well-separated points with a local proxy surface

Compressed matrix representation

Telescoping formula:

A ≈ D(1) + L(1)
[
D(2) + L(2)

(
· · ·D(λ) + L(λ)SR(λ) · · ·

)
R(2)

]
R(1)

I Efficient storage (data-sparse)

N uncomp comp

8192 537 MB 9.7 MB
131072 137 GB 184 MB

I Fast matrix-vector multiplication (generalized FMM)

I Fast matrix factorization and inverse application

Compressed matrix inversion

Recursively expand in sparse form:

D(1) L(1)

R(1) −I
−I D(2) L(2)

R(2) . . .
. . .

. . . D(λ) L(λ)

R(λ) −I
−I S





x
y (1)

z (1)

...

...
y (λ)

z (λ)


=



b
0
0
...
...
0
0


.

This can be treated efficiently using any standard sparse direct solver.

Multilevel inversion formula (for analysis):

A−1 ≈ D(1) + L(1)
[
D(2) + L(2)

(
· · ·D(λ) + L(λ)S−1R(λ) · · ·

)
R(2)

]
R(1)

Laplace FMM

Laplace BIE solver

I Less memory-efficient than FMM/GMRES

I Each solve is extremely fast (in elements/sec)

ε 10−3 10−6 10−9

2D 3.3× 106 2.0× 106 1.7× 106

3D 6.0× 105 1.4× 105 6.2× 104

Poisson electrostatics

−∆ϕ = 0 in Ω0

−∆ϕ =
1

ε1

∑
i

qiδ (r − ri) in Ω1

[ϕ] =

[
ε
∂ϕ

∂ν

]
= 0 on Σ

N 7612 19752

FMM/GMRES 12.6 s 26.9 s
RS precomp 151 s 592 s
RS solve 0.03 s 0.08 s

Break-even point: 10–25 solves

Multiple scattering

I Each object: 10λ[
A11 A12

A21 A22

] [
x1

x2

]
=

[
b1

b2

]
I FMM/GMRES with block

preconditioner via RS[
A−1

11

A−1
22

]
I Unprecon: 700 iterations

I Precon: 10 iterations

I 50× speedup

Helmholtz preconditioning

I N = 20480, 10λ

I Precondition with low-precision inverse
(ε = 10−3)

I Iterate for full accuracy (ε = 10−12)

I Unprecon: 190 iterations

I Precon: 6 iterations

I 10× speedup

Summary

Complexities in d dimensions (BIEs in d + 1 dimensions):

precomp ∼

{
N if d = 1,

N3(1−1/d) if d > 1,
solve ∼


N if d = 1,

N log N if d = 2,

N2(1−1/d) if d > 2

I Mild assumptions: low-rank off-diagonal blocks, Green’s theorem

I Based only on numerical linear algebra

I Kernel-independent: Laplace, Stokes, Yukawa, low-frequency Helmholtz

I Very fast solves following precomputation (∼ 0.1 s)

I Highly effective for preconditioning

I Reveals connection with sparse matrices (see Chandrasekaran, Gu, et al.)

I Naturally parallelizable via block-sweep structure

I Extensions: low-rank updates, least squares, other matrix decompositions

I Similar ideas also apply for PDE formulations (Xia et al.)

