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Model problem

v

Laplace's equation with Dirichlet boundary conditions:

Au=0 inQ , wu=f ondQ

v

Fundamental to many areas of mathematical physics
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Solve using a Green's function representation (double-layer potential):
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Integral equation for unknown surface density o:
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Discretize: Ax = b
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Good: well-conditioned, high-order, dimensional reduction
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Bad: dense matrices, computational cost



Numerical considerations

If Ae CV*N | then:
» Cost of applying A: O(N?)
» Cost of inverting A: O(N?3)

Fortunately, such matrices are often structured.

Fast algorithms are required!

> Analysis: non-oscillatory Green's functions have smooth far fields
> Algebra: off-diagonal matrix blocks are numerically low-rank
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» Exploit smoothness with a hierarchical decomposition of space
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> O(Nlog N) matrix-vector multiplication (treecode, FMM, panel clustering)

» Combine with Krylov methods for fast iterative solvers



Beyond iterative solvers

Fast iterative solvers have been very successful, but they can still be inefficient:

> When A is ill-conditioned (multiphysics, singular geometries)

» When Ax = b must be solved with many right-hand sides b or many
perturbations of a base matrix A (optimization, design, time marching)

An alternative: fast direct solvers (construct A™1).
» Robust: insensitive to conditioning, always works
» Fast solves and inverse updates following initial factorization

Various approaches in recent years:
> J-matrices (Hackbusch, Bérm, Grasedyck, Bebendorf et al.)

» HSS matrices (Chandrasekaran, Gu, Xia, Li et al.)
> Skeletonization (Martinsson, Rokhlin, Gillman, Greengard et al.)

e BIEs in 2D
e One-level BIEs in 3D



Fast direct solver for integral equations

Here, we describe a multilevel skeletonization-based solver in general dimension.

2D 3D

For BIEs: precomp O(N)  O(N3/?)
solve O(N) O(NlogN)

Main ideas/take-home messages :

» Kernel-independent: Laplace, Stokes, Yukawa, low-frequency Helmholtz
Robust to geometry (e.g., boundary vs. volume, dimensionality)
User-specified precision: trade accuracy for speed
Naturally exposes the underlying sparsity of integral equation matrices
Transparently takes advantage of sparse direct solver development
Very fast solve times, beating the FMM by factors of 100-1000

Simple framework: easy to analyze, implement, and optimize
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Can be improved (see Eduardo's talk coming up next)



Block separable matrices

A block matrix A is block separable if

column
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so Ax = b is equivalent to the structured sparse system
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with z = Rx and y = Sz. Factor using UMFPACK, SuperLU, WSMP, etc.



Hierarchically block separable matrices

Integral equation matrices are, in fact, hierarchically block separable, i.e., they are
block separable at every level of an octree-type ordering.

column
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In this setting, much more powerful algorithms can be developed.



Interpolative decomposition

An interpolative decomposition of a rank-k matrix is a factorization

A =B P,
~
mxn mxk kxn

where B is a column-submatrix of A (with ||P]|| small).
» The ID compresses the column space; to compress the row space, apply the
ID to AT. We call the retained rows and columns skeletons.
» Adaptive algorithms can compute the ID to any specified precision € > 0.

> Related factorizations: SVD, RRQR, pseudoskeleton (CUR), ACA
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One-level matrix compression

» Compress the row space of each off-diagonal block row.
Let the L; be the corresponding row interpolation matrices.

» Compress the column space of each off-diagonal block column.
Let the R; be the corresponding column interpolation matrices.

v

Approximate the off-diagonal blocks by Aj ~ L;S;iR; for i # j.
S is a skeleton submatrix of A

v

Skeletonization



Multilevel matrix compression
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Recursive skeletonization
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Data sparsification

No = 8192

N1 =17134

N3 = 1849
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Accelerated compression for PDEs

General compression algorithm is global and so at least O(N?)
For potential fields, use Green's theorem to accelerate

Represent well-separated interactions via a local proxy surface
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Can be generalized to non-PDE kernels using sparse grids
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Compressed matrix representation

> Telescoping formula:
A DO 11O {D(z) ) ( .. DV 1 [NGRMN). ) R(2>] R

» Efficient storage, fast matrix-vector multiplication (generalized FMM)

» Structured sparse inversion:
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Laplace BIE solver
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> Less memory-efficient than FMM/GMRES
> Each solve is extremely fast (in elements/sec)
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Poisson electrostatics
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Break-even
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Protein pK, calculations

» Characterizes free energy of ionization reaction

» Important for binding affinities, enzymatic activities, structural properties

» Main bottleneck: solving the same BIE with multiple right-hand sides

» Use recursive skeletonization with linearized Poisson-Boltzmann model
Results: name PDB ID  residues atoms sites

| 4 DOFSZ 10,000—30,000 BPTI 4PTI 58 891 18

» Precomp time: 1-2 hr OMTKY3  20VO 56 813 15

HEWL 2LZT 129 1965 30
> Solve time: 10s RNase A 3RN3 124 1865 34
> Speedup: 2_5x% RNase H 2RN2 155 2474 53




Multiple scattering

§/X =30 /A =20
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Each object: 10\
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FMM/GMRES with block
preconditioner via RS
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Unprecon: 700 iterations

§/A =11 5/ =105

v

Precon: 10 iterations
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50x speedup



Helmholtz preconditioning

» N = 20480, 10\
» Precondition with low-precision inverse (e = 1073)
> lIterate for full accuracy (e = 10712)
» Unprecon: 190 iterations
> Precon: 6 iterations
» 10x speedup
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Summary

Complexities in d dimensions (BIEs in d 4 1 dimensions):
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y o N ifd =1,
precomp ~ {N3(11/d) !f J B 1’ solve ~ ¢ NlogN  if d =2,
ma=t N20=1/d) i o > 2

Mild assumptions: low-rank off-diagonal blocks, Green's theorem
Can generalize to asymptotically smooth kernels

Very fast solves following precomputation (~ 0.1 s)

Highly effective for preconditioning

Reveals connection with sparse matrices (Chandrasekaran, Gu et al.)
Naturally parallelizable via block-sweep structure

Extensions: low-rank updates, geometric perturbations, least squares

Similar ideas also apply for PDE formulations (Xia, Gillman et al.)
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