
Fast direct solvers for integral equations in complex
geometries

Kenneth L. Ho

Joint work with Leslie Greengard

Courant Institute, New York University

NSF RTG Symposium (Sep 22, 2012)

Model problem

I Laplace’s equation with Dirichlet boundary conditions:

∆u = 0 in Ω , u = f on ∂Ω

I Fundamental to many areas of mathematical physics

I Solve using a Green’s function representation (double-layer potential):

u (r) =

∫
∂Ω

∂G

∂νs
(r, s)σ (s) dAs in Ω

I Integral equation for unknown surface density σ:

−1

2
σ (r) +

∫
∂Ω

∂G

∂νs
(r, s)σ (s) dAs = f (r) on ∂Ω

I Discretize: Ax = b

I Good: well-conditioned, high-order, dimensional reduction

I Bad: dense matrices, computational cost

Numerical considerations

If A ∈ CN×N , then:

I Cost of applying A: O(N2)

I Cost of inverting A: O(N3)
Fast algorithms are required!

Fortunately, such matrices are often structured.

I Analysis: non-oscillatory Green’s functions have smooth far fields

I Algebra: off-diagonal matrix blocks are numerically low-rank

I Exploit smoothness with a hierarchical decomposition of space

I O(N log N) matrix-vector multiplication (treecode, FMM, panel clustering)

I Combine with Krylov methods for fast iterative solvers

Beyond iterative solvers

Fast iterative solvers have been very successful, but they can still be inefficient:

I When A is ill-conditioned (multiphysics, singular geometries)

I When Ax = b must be solved with many right-hand sides b or many
perturbations of a base matrix A (optimization, design, time marching)

An alternative: fast direct solvers (construct A−1).

I Robust: insensitive to conditioning, always works

I Fast solves and inverse updates following initial factorization

Various approaches in recent years:

I H -matrices (Hackbusch, Börm, Grasedyck, Bebendorf et al.)

I HSS matrices (Chandrasekaran, Gu, Xia, Li et al.)

I Skeletonization (Martinsson, Rokhlin, Gillman, Greengard et al.)
• BIEs in 2D
• One-level BIEs in 3D

Fast direct solver for integral equations

Here, we describe a multilevel skeletonization-based solver in general dimension.

For BIEs:

2D 3D

precomp O(N) O(N3/2)
solve O(N) O(N log N)

Main ideas/take-home messages :

I Kernel-independent: Laplace, Stokes, Yukawa, low-frequency Helmholtz

I Robust to geometry (e.g., boundary vs. volume, dimensionality)

I User-specified precision: trade accuracy for speed

I Naturally exposes the underlying sparsity of integral equation matrices

I Transparently takes advantage of sparse direct solver development

I Very fast solve times, beating the FMM by factors of 100–1000

I Simple framework: easy to analyze, implement, and optimize

I Can be improved (see Eduardo’s talk coming up next)

Block separable matrices

A block matrix A is block separable if[
× ×
× ×

]
︸ ︷︷ ︸

Aij

=

[
×
×

]
︸︷︷︸

Li

[
×
]︸︷︷︸

Sij

[
× ×

]︸ ︷︷ ︸
Rj

, i 6= j .

Then

︸ ︷︷ ︸
A

=

︸ ︷︷ ︸
D

+

︸︷︷︸
L

︸︷︷︸
S

︸ ︷︷ ︸
R

,

so Ax = b is equivalent to the structured sparse systemD L
R −I
−I S

x
y
z

 =

b
0
0

with z ≡ Rx and y ≡ Sz . Factor using UMFPACK, SuperLU, WSMP, etc.

Hierarchically block separable matrices

Integral equation matrices are, in fact, hierarchically block separable, i.e., they are
block separable at every level of an octree-type ordering.

In this setting, much more powerful algorithms can be developed.

Interpolative decomposition

An interpolative decomposition of a rank-k matrix is a factorization

A︸︷︷︸
m×n

= B︸︷︷︸
m×k

P︸︷︷︸
k×n

,

where B is a column-submatrix of A (with ‖P‖ small).

I The ID compresses the column space; to compress the row space, apply the
ID to AT. We call the retained rows and columns skeletons.

I Adaptive algorithms can compute the ID to any specified precision ε > 0.

I Related factorizations: SVD, RRQR, pseudoskeleton (CUR), ACA

One-level matrix compression

I Compress the row space of each off-diagonal block row.
Let the Li be the corresponding row interpolation matrices.

I Compress the column space of each off-diagonal block column.
Let the Rj be the corresponding column interpolation matrices.

I Approximate the off-diagonal blocks by Aij ≈ LiSijRj for i 6= j .

I S is a skeleton submatrix of A

Skeletonization

Multilevel matrix compression

Recursive skeletonization

Data sparsification

G (r, s) = − 1

2π
log |r − s| , ε = 10−3

Accelerated compression for PDEs

I General compression algorithm is global and so at least O(N2)

I For potential fields, use Green’s theorem to accelerate

I Represent well-separated interactions via a local proxy surface

I Can be generalized to non-PDE kernels using sparse grids

Compressed matrix representation

I Telescoping formula:

A ≈ D(1) + L(1)
[
D(2) + L(2)

(
· · ·D(λ) + L(λ)SR(λ) · · ·

)
R(2)

]
R(1)

I Efficient storage, fast matrix-vector multiplication (generalized FMM)

I Structured sparse inversion:

D(1) L(1)

R(1) −I
−I D(2) L(2)

R(2) . . .
. . .

. . . D(λ) L(λ)

R(λ) −I
−I S

x
y (1)

z (1)

...

...
y (λ)

z (λ)

=

b
0
0
...
...
0
0

Laplace BIE solver

I Less memory-efficient than FMM/GMRES

I Each solve is extremely fast (in elements/sec)

ε 10−3 10−6 10−9

2D 3.3× 106 2.0× 106 1.7× 106

3D 6.0× 105 1.4× 105 6.2× 104

Poisson electrostatics

−∆ϕ = 0 in Ω0

−∆ϕ =
1

ε1

∑
i

qiδ (r − ri) in Ω1

[ϕ] =

[
ε
∂ϕ

∂ν

]
= 0 on Σ

N 7612 19752

FMM/GMRES 12.6 s 26.9 s
RS precomp 151 s 592 s
RS solve 0.03 s 0.08 s

Break-even point: 10–25 solves

Protein pKa calculations

−⇀↽−

I Characterizes free energy of ionization reaction

I Important for binding affinities, enzymatic activities, structural properties

I Main bottleneck: solving the same BIE with multiple right-hand sides

I Use recursive skeletonization with linearized Poisson-Boltzmann model

Results:

I DoFs: 10,000–30,000

I Precomp time: 1–2 hr

I Solve time: 10 s

I Speedup: 2–5×

name PDB ID residues atoms sites

BPTI 4PTI 58 891 18
OMTKY3 2OVO 56 813 15
HEWL 2LZT 129 1965 30
RNase A 3RN3 124 1865 34
RNase H 2RN2 155 2474 53

Multiple scattering

I Each object: 10λ[
A11 A12

A21 A22

] [
x1

x2

]
=

[
b1

b2

]
I FMM/GMRES with block

preconditioner via RS[
A−1

11

A−1
22

]
I Unprecon: 700 iterations

I Precon: 10 iterations

I 50× speedup

Helmholtz preconditioning

I N = 20480, 10λ

I Precondition with low-precision inverse (ε = 10−3)

I Iterate for full accuracy (ε = 10−12)

I Unprecon: 190 iterations

I Precon: 6 iterations

I 10× speedup

Summary

Complexities in d dimensions (BIEs in d + 1 dimensions):

precomp ∼

{
N if d = 1,

N3(1−1/d) if d > 1,
solve ∼

N if d = 1,

N log N if d = 2,

N2(1−1/d) if d > 2

I Mild assumptions: low-rank off-diagonal blocks, Green’s theorem

I Can generalize to asymptotically smooth kernels

I Very fast solves following precomputation (∼ 0.1 s)

I Highly effective for preconditioning

I Reveals connection with sparse matrices (Chandrasekaran, Gu et al.)

I Naturally parallelizable via block-sweep structure

I Extensions: low-rank updates, geometric perturbations, least squares

I Similar ideas also apply for PDE formulations (Xia, Gillman et al.)

Relevant publications

Published/in press:

I KL Ho, Fast direct methods for molecular electrostatics, PhD thesis, New
York University, 2012.

I KL Ho and L Greengard, A fast direct solver for structured linear systems by
recursive skeletonization, SIAM J Sci Comput, in press.

Submitted/in preparation:

I KL Ho and L Greengard, A fast direct least squares algorithm for
hierarchically block separable matrices, in preparation.

I KL Ho, S Jung, and L Greengard, Protein pKa calculations using a fast direct
boundary element solver, in preparation.

I KL Ho, J Sifuentes, Z Gimbutas, and L Greengard, Approximate inverse
preconditioning for integral equations on two-dimensional domains, in
preparation.

