Fast direct solvers for integral equations in complex geometries

Kenneth L. Ho
Joint work with Leslie Greengard

Courant Institute, New York University

NSF RTG Symposium (Sep 22, 2012)

Model problem

- Laplace's equation with Dirichlet boundary conditions:

$$
\Delta u=0 \quad \text { in } \Omega \quad, \quad u=f \quad \text { on } \partial \Omega
$$

- Fundamental to many areas of mathematical physics
- Solve using a Green's function representation (double-layer potential):

$$
u(\mathbf{r})=\int_{\partial \Omega} \frac{\partial G}{\partial \nu_{\mathbf{s}}}(\mathbf{r}, \mathbf{s}) \sigma(\mathbf{s}) d A_{\mathbf{s}} \quad \text { in } \Omega
$$

- Integral equation for unknown surface density σ :

$$
-\frac{1}{2} \sigma(\mathbf{r})+\int_{\partial \Omega} \frac{\partial G}{\partial \nu_{\mathbf{s}}}(\mathbf{r}, \mathbf{s}) \sigma(\mathbf{s}) d A_{\mathbf{s}}=f(\mathbf{r}) \quad \text { on } \partial \Omega
$$

- Discretize: $A x=b$
- Good: well-conditioned, high-order, dimensional reduction
- Bad: dense matrices, computational cost

Numerical considerations

If $A \in \mathbb{C}^{N \times N}$, then:

- Cost of applying $A: \mathcal{O}\left(N^{2}\right)$
- Cost of inverting $A: \mathcal{O}\left(N^{3}\right)$

Fast algorithms are required!
Fortunately, such matrices are often structured.

- Analysis: non-oscillatory Green's functions have smooth far fields
- Algebra: off-diagonal matrix blocks are numerically low-rank

- Exploit smoothness with a hierarchical decomposition of space
- $\mathcal{O}(N \log N)$ matrix-vector multiplication (treecode, FMM, panel clustering)
- Combine with Krylov methods for fast iterative solvers

Beyond iterative solvers

Fast iterative solvers have been very successful, but they can still be inefficient:

- When A is ill-conditioned (multiphysics, singular geometries)
- When $A x=b$ must be solved with many right-hand sides b or many perturbations of a base matrix A (optimization, design, time marching)

An alternative: fast direct solvers (construct A^{-1}).

- Robust: insensitive to conditioning, always works
- Fast solves and inverse updates following initial factorization

Various approaches in recent years:

- \mathscr{H}-matrices (Hackbusch, Börm, Grasedyck, Bebendorf et al.)
- HSS matrices (Chandrasekaran, Gu, Xia, Li et al.)
- Skeletonization (Martinsson, Rokhlin, Gillman, Greengard et al.)
- BIEs in 2D
- One-level BIEs in 3D

Fast direct solver for integral equations

Here, we describe a multilevel skeletonization-based solver in general dimension.

For BIEs:

	2 D	3 D
precomp	$\mathcal{O}(N)$	$\mathcal{O}\left(N^{3 / 2}\right)$
solve	$\mathcal{O}(N)$	$\mathcal{O}(N \log N)$

Main ideas/take-home messages :

- Kernel-independent: Laplace, Stokes, Yukawa, low-frequency Helmholtz
- Robust to geometry (e.g., boundary vs. volume, dimensionality)
- User-specified precision: trade accuracy for speed
- Naturally exposes the underlying sparsity of integral equation matrices
- Transparently takes advantage of sparse direct solver development
- Very fast solve times, beating the FMM by factors of 100-1000
- Simple framework: easy to analyze, implement, and optimize
- Can be improved (see Eduardo's talk coming up next)

Block separable matrices

A block matrix A is block separable if

$$
\underbrace{\left[\begin{array}{cc}
\times & \times \\
\times \times
\end{array}\right]}_{A_{i j}}=\underbrace{\left[\begin{array}{c}
\times \\
\times
\end{array}\right]}_{L_{i}} \underbrace{[\times]}_{S_{i j}} \underbrace{\left[\begin{array}{l}
\times \times]
\end{array}\right.}_{R_{j}}, \quad i \neq j .
$$

Then

so $A x=b$ is equivalent to the structured sparse system

$$
\left[\begin{array}{ccc}
D & L & \\
R & & -I \\
& -I & S
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
b \\
0 \\
0
\end{array}\right]
$$

with $z \equiv R x$ and $y \equiv S z$. Factor using UMFPACK, SuperLU, WSMP, etc.

Hierarchically block separable matrices

Integral equation matrices are, in fact, hierarchically block separable, i.e., they are block separable at every level of an octree-type ordering.

full rank
low rank

In this setting, much more powerful algorithms can be developed.

Interpolative decomposition

An interpolative decomposition of a rank- k matrix is a factorization

$$
\underbrace{A}_{m \times n}=\underbrace{B}_{m \times k} \underbrace{P}_{k \times n}
$$

where B is a column-submatrix of A (with $\|P\|$ small).

- The ID compresses the column space; to compress the row space, apply the ID to A^{\top}. We call the retained rows and columns skeletons.
- Adaptive algorithms can compute the ID to any specified precision $\epsilon>0$.
- Related factorizations: SVD, RRQR, pseudoskeleton (CUR), ACA

One-level matrix compression

- Compress the row space of each off-diagonal block row. Let the L_{i} be the corresponding row interpolation matrices.
- Compress the column space of each off-diagonal block column. Let the R_{j} be the corresponding column interpolation matrices.
- Approximate the off-diagonal blocks by $A_{i j} \approx L_{i} S_{i j} R_{j}$ for $i \neq j$.
- S is a skeleton submatrix of A

Skeletonization

Multilevel matrix compression

Recursive skeletonization

Data sparsification

Accelerated compression for PDEs

- General compression algorithm is global and so at least $\mathcal{O}\left(N^{2}\right)$
- For potential fields, use Green's theorem to accelerate
- Represent well-separated interactions via a local proxy surface
- Can be generalized to non-PDE kernels using sparse grids

Compressed matrix representation

- Telescoping formula:

$$
A \approx D^{(1)}+L^{(1)}\left[D^{(2)}+L^{(2)}\left(\cdots D^{(\lambda)}+L^{(\lambda)} S R^{(\lambda)} \cdots\right) R^{(2)}\right] R^{(1)}
$$

- Efficient storage, fast matrix-vector multiplication (generalized FMM)
- Structured sparse inversion:

$$
\left[\begin{array}{ccccccc}
D^{(1)} & L^{(1)} & & & & & \\
R^{(1)} & & -I & & & & \\
& -I & D^{(2)} & L^{(2)} & & & \\
& & R^{(2)} & \ddots & \ddots & & \\
& & & \ddots & D^{(\lambda)} & L^{(\lambda)} & \\
& & & & R^{(\lambda)} & & -I \\
& & & & & -I & S
\end{array}\right]\left[\begin{array}{c}
x \\
y^{(1)} \\
z^{(1)} \\
\vdots \\
\vdots \\
y^{(\lambda)} \\
z^{(\lambda)}
\end{array}\right]=\left[\begin{array}{c}
b \\
0 \\
0 \\
\vdots \\
\vdots \\
0 \\
0
\end{array}\right]
$$

Laplace BIE solver

- Less memory-efficient than FMM/GMRES
- Each solve is extremely fast (in elements/sec)

ϵ	10^{-3}	10^{-6}	10^{-9}
2 D	3.3×10^{6}	2.0×10^{6}	1.7×10^{6}
3D	6.0×10^{5}	1.4×10^{5}	6.2×10^{4}

Poisson electrostatics

$$
\begin{array}{ll}
-\Delta \varphi=0 & \text { in } \Omega_{0} \\
-\Delta \varphi=\frac{1}{\varepsilon_{1}} \sum_{i} q_{i} \delta\left(\mathbf{r}-\mathbf{r}_{i}\right) & \text { in } \Omega_{1} \\
{[\varphi]=\left[\varepsilon \frac{\partial \varphi}{\partial \nu}\right]=0} & \text { on } \Sigma \\
& \\
\hline N & 7612
\end{array}
$$

Break-even point: 10-25 solves

Protein $\mathrm{p} K_{\mathrm{a}}$ calculations

- Characterizes free energy of ionization reaction
- Important for binding affinities, enzymatic activities, structural properties
- Main bottleneck: solving the same BIE with multiple right-hand sides
- Use recursive skeletonization with linearized Poisson-Boltzmann model

Results:

- DoFs: 10,000-30,000
- Precomp time: 1-2 hr
- Solve time: 10 s
- Speedup: 2-5×

name	PDB ID	residues	atoms	sites
BPTI	4PTI	58	891	18
OMTKY3	2OVO	56	813	15
HEWL	2LZT	129	1965	30
RNase A	3RN3	124	1865	34
RNase H	2RN2	155	2474	53

Multiple scattering

$\delta / \lambda=15$

$\delta / \lambda=11$

$\delta / \lambda=20$

$\delta / \lambda=12.5$

$\delta / \lambda=10.5$

- Each object: 10λ

$$
\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

- FMM/GMRES with block preconditioner via RS

$$
\left[\begin{array}{ll}
A_{11}^{-1} & \\
& A_{22}^{-1}
\end{array}\right]
$$

- Unprecon: 700 iterations
- Precon: 10 iterations
- $50 \times$ speedup

Helmholtz preconditioning

- $N=20480,10 \lambda$
- Precondition with low-precision inverse $\left(\epsilon=10^{-3}\right)$
- Iterate for full accuracy $\left(\epsilon=10^{-12}\right)$
- Unprecon: 190 iterations
- Precon: 6 iterations
- $10 \times$ speedup

\bigcirc unprecon $\square-$ precon

Summary

Complexities in d dimensions (BIEs in $d+1$ dimensions):

$$
\text { precomp } \sim\left\{\begin{array} { l l }
{ N } & { \text { if } d = 1 , } \\
{ N ^ { 3 (1 - 1 / d) } } & { \text { if } d > 1 , }
\end{array} \quad \text { solve } \sim \left\{\begin{array}{ll}
N & \text { if } d=1, \\
N \log N & \text { if } d=2, \\
N^{2(1-1 / d)} & \text { if } d>2
\end{array}\right.\right.
$$

- Mild assumptions: low-rank off-diagonal blocks, Green's theorem
- Can generalize to asymptotically smooth kernels
- Very fast solves following precomputation ($\sim 0.1 \mathrm{~s}$)
- Highly effective for preconditioning
- Reveals connection with sparse matrices (Chandrasekaran, Gu et al.)
- Naturally parallelizable via block-sweep structure
- Extensions: low-rank updates, geometric perturbations, least squares
- Similar ideas also apply for PDE formulations (Xia, Gillman et al.)

Relevant publications

Published/in press:

- KL Ho, Fast direct methods for molecular electrostatics, PhD thesis, New York University, 2012.
- KL Ho and L Greengard, A fast direct solver for structured linear systems by recursive skeletonization, SIAM J Sci Comput, in press.
Submitted/in preparation:
- KL Ho and L Greengard, A fast direct least squares algorithm for hierarchically block separable matrices, in preparation.
- KL Ho, S Jung, and L Greengard, Protein $p K_{a}$ calculations using a fast direct boundary element solver, in preparation.
- KL Ho, J Sifuentes, Z Gimbutas, and L Greengard, Approximate inverse preconditioning for integral equations on two-dimensional domains, in preparation.

