Fast direct solvers for integral equations in complex geometries

Kenneth L. Ho

Joint work with Leslie Greengard

Courant Institute, New York University

NSF RTG Symposium (Sep 22, 2012)

Model problem

Laplace's equation with Dirichlet boundary conditions:

$$\Delta u = 0$$
 in Ω , $u = f$ on $\partial \Omega$

- Fundamental to many areas of mathematical physics
- Solve using a Green's function representation (double-layer potential):

$$u(\mathbf{r}) = \int_{\partial\Omega} \frac{\partial G}{\partial\nu_{\mathbf{s}}}(\mathbf{r}, \mathbf{s}) \sigma(\mathbf{s}) \, dA_{\mathbf{s}} \quad \text{in } \Omega$$

• Integral equation for unknown surface density σ :

$$-\frac{1}{2}\sigma\left(\mathbf{r}\right)+\int_{\partial\Omega}\frac{\partial G}{\partial\nu_{\mathbf{s}}}\left(\mathbf{r},\mathbf{s}\right)\sigma\left(\mathbf{s}\right)dA_{\mathbf{s}}=f\left(\mathbf{r}\right)\quad\text{on }\partial\Omega$$

- Discretize: Ax = b
- Good: well-conditioned, high-order, dimensional reduction
- Bad: dense matrices, computational cost

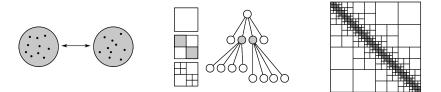
Numerical considerations

- If $A \in \mathbb{C}^{N \times N}$, then:
 - Cost of applying A: $\mathcal{O}(N^2)$
 - Cost of inverting A: $\mathcal{O}(N^3)$

Fast algorithms are required!

Fortunately, such matrices are often structured.

- > Analysis: non-oscillatory Green's functions have smooth far fields
- Algebra: off-diagonal matrix blocks are numerically low-rank



- Exploit smoothness with a hierarchical decomposition of space
- $O(N \log N)$ matrix-vector multiplication (treecode, FMM, panel clustering)
- Combine with Krylov methods for fast iterative solvers

Beyond iterative solvers

Fast iterative solvers have been very successful, but they can still be inefficient:

- ▶ When A is ill-conditioned (multiphysics, singular geometries)
- When Ax = b must be solved with many right-hand sides b or many perturbations of a base matrix A (optimization, design, time marching)

An alternative: fast direct solvers (construct A^{-1}).

- Robust: insensitive to conditioning, always works
- ▶ Fast solves and inverse updates following initial factorization

Various approaches in recent years:

- ▶ *H*-matrices (Hackbusch, Börm, Grasedyck, Bebendorf et al.)
- ▶ HSS matrices (Chandrasekaran, Gu, Xia, Li et al.)
- Skeletonization (Martinsson, Rokhlin, Gillman, Greengard et al.)
 - BIEs in 2D
 - One-level BIEs in 3D

Fast direct solver for integral equations

Here, we describe a multilevel skeletonization-based solver in general dimension.

	2D	3D
precomp solve	0(N) 0(N)	$\frac{\mathcal{O}(N^{3/2})}{\mathcal{O}(N\log N)}$

Main ideas/take-home messages :

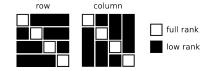
For BIFs:

- ► Kernel-independent: Laplace, Stokes, Yukawa, low-frequency Helmholtz
- Robust to geometry (e.g., boundary vs. volume, dimensionality)
- User-specified precision: trade accuracy for speed
- Naturally exposes the underlying sparsity of integral equation matrices
- Transparently takes advantage of sparse direct solver development
- ► Very fast solve times, beating the FMM by factors of 100–1000
- ▶ Simple framework: easy to analyze, implement, and optimize
- Can be improved (see Eduardo's talk coming up next)

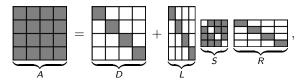
Block separable matrices

A block matrix A is block separable if

$$\underbrace{\begin{bmatrix} \times & \times \\ \times & \times \end{bmatrix}}_{A_{ij}} = \underbrace{\begin{bmatrix} \times \\ \times \end{bmatrix}}_{L_i} \underbrace{\begin{bmatrix} \times \end{bmatrix}}_{S_{ij}} \underbrace{\begin{bmatrix} \times & \times \end{bmatrix}}_{R_j} \quad , \quad i \neq j.$$



Then



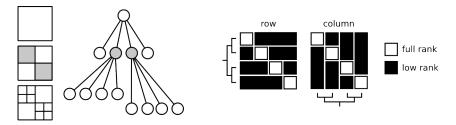
so Ax = b is equivalent to the structured sparse system

$$\begin{bmatrix} D & L \\ R & -I \\ & -I & S \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix}$$

with $z \equiv Rx$ and $y \equiv Sz$. Factor using UMFPACK, SuperLU, WSMP, etc.

Hierarchically block separable matrices

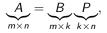
Integral equation matrices are, in fact, hierarchically block separable, i.e., they are block separable at every level of an octree-type ordering.



In this setting, much more powerful algorithms can be developed.

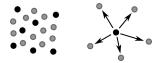
Interpolative decomposition

An interpolative decomposition of a rank-k matrix is a factorization



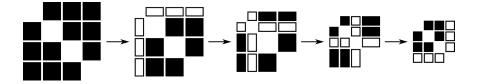
where B is a column-submatrix of A (with ||P|| small).

- The ID compresses the column space; to compress the row space, apply the ID to A^T. We call the retained rows and columns skeletons.
- Adaptive algorithms can compute the ID to any specified precision $\epsilon > 0$.
- Related factorizations: SVD, RRQR, pseudoskeleton (CUR), ACA



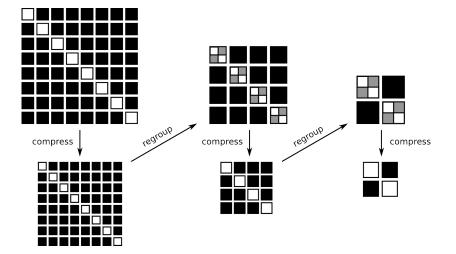
One-level matrix compression

- Compress the row space of each off-diagonal block row.
 Let the L_i be the corresponding row interpolation matrices.
- Compress the column space of each off-diagonal block column.
 Let the R_j be the corresponding column interpolation matrices.
- Approximate the off-diagonal blocks by $A_{ij} \approx L_i S_{ij} R_j$ for $i \neq j$.
- S is a skeleton submatrix of A



Skeletonization

Multilevel matrix compression



Recursive skeletonization

Data sparsification

 $N_0 = 8192$ $N_1 = 7134$ $N_2 = 4138$ $N_3 = 1849$ $N_4 = 776$ $N_5 = 265$ 1

$$G(\mathbf{r},\mathbf{s}) = -rac{1}{2\pi} \log |\mathbf{r}-\mathbf{s}| \, , \quad \epsilon = 10^{-3}$$

Accelerated compression for PDEs

- General compression algorithm is global and so at least $\mathcal{O}(N^2)$
- ▶ For potential fields, use Green's theorem to accelerate
- Represent well-separated interactions via a local proxy surface
- Can be generalized to non-PDE kernels using sparse grids



Compressed matrix representation

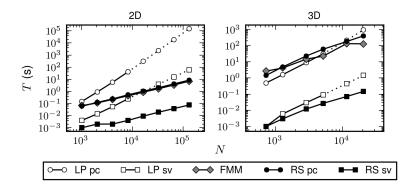
Telescoping formula:

$$A \approx D^{(1)} + L^{(1)} \left[D^{(2)} + L^{(2)} \left(\cdots D^{(\lambda)} + L^{(\lambda)} SR^{(\lambda)} \cdots \right) R^{(2)} \right] R^{(1)}$$

Efficient storage, fast matrix-vector multiplication (generalized FMM)
 Structured sparse inversion:

$$\begin{bmatrix} D^{(1)} & L^{(1)} & & & \\ R^{(1)} & -I & & \\ & -I & D^{(2)} & L^{(2)} & & \\ & & R^{(2)} & \ddots & \ddots & \\ & & & D^{(\lambda)} & L^{(\lambda)} & \\ & & & R^{(\lambda)} & -I \\ & & & & -I & S \end{bmatrix} \begin{bmatrix} x \\ y^{(1)} \\ z^{(1)} \\ \vdots \\ \vdots \\ y^{(\lambda)} \\ z^{(\lambda)} \end{bmatrix} = \begin{bmatrix} b \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

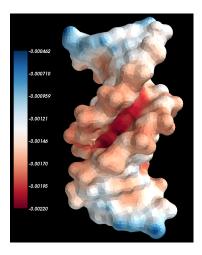
Laplace BIE solver



- Less memory-efficient than FMM/GMRES
- Each solve is extremely fast (in elements/sec)

ϵ	10^{-3}	10^{-6}	10 ⁻⁹
		$\begin{array}{c} 2.0\times10^6\\ 1.4\times10^5\end{array}$	

Poisson electrostatics

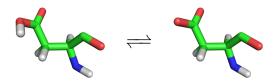


$$-\Delta \varphi = 0 \qquad \text{in } \Omega_0$$
$$-\Delta \varphi = \frac{1}{\varepsilon_1} \sum_i q_i \delta(\mathbf{r} - \mathbf{r}_i) \qquad \text{in } \Omega_1$$
$$[\varphi] = \left[\varepsilon \frac{\partial \varphi}{\partial \nu} \right] = 0 \qquad \text{on } \Sigma$$

N	7612	19752	
FMM/GMRES	12.6 s	26.9 s	
RS precomp	151 s	592 s	
RS solve	0.03 s	0.08 s	

Break-even point: 10-25 solves

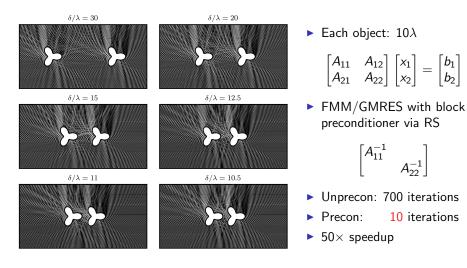
Protein pK_a calculations



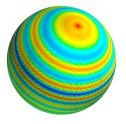
- Characterizes free energy of ionization reaction
- Important for binding affinities, enzymatic activities, structural properties
- ► Main bottleneck: solving the same BIE with multiple right-hand sides
- Use recursive skeletonization with linearized Poisson-Boltzmann model

Results:		name	PDB ID	residues	atoms	sites
DoFs: 10,000-	-30,000	BPTI	4PTI	58	891	18
Precomp time	: 1–2 hr	OMTKY3	20V0	56	813	15
•		HEWL	2LZT	129	1965	30
Solve time:	10 s	RNase A	3RN3	124	1865	34
Speedup:	2–5×	RNase H	2RN2	155	2474	53

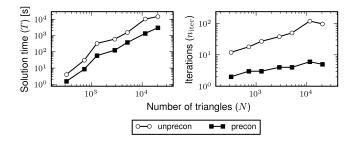
Multiple scattering



Helmholtz preconditioning



- ▶ *N* = 20480, 10*λ*
- Precondition with low-precision inverse ($\epsilon = 10^{-3}$)
- Iterate for full accuracy ($\epsilon = 10^{-12}$)
- Unprecon: 190 iterations
- Precon: 6 iterations
- ▶ 10× speedup



Summary

Complexities in *d* dimensions (BIEs in d + 1 dimensions):

$$\mathsf{precomp} \sim \begin{cases} \mathsf{N} & \text{if } d = 1, \\ \mathsf{N}^{3(1-1/d)} & \text{if } d > 1, \end{cases} \quad \mathsf{solve} \sim \begin{cases} \mathsf{N} & \text{if } d = 1, \\ \mathsf{N} \log \mathsf{N} & \text{if } d = 2, \\ \mathsf{N}^{2(1-1/d)} & \text{if } d > 2 \end{cases}$$

- Mild assumptions: low-rank off-diagonal blocks, Green's theorem
- Can generalize to asymptotically smooth kernels
- Very fast solves following precomputation ($\sim 0.1 \text{ s}$)
- Highly effective for preconditioning
- Reveals connection with sparse matrices (Chandrasekaran, Gu et al.)
- Naturally parallelizable via block-sweep structure
- Extensions: low-rank updates, geometric perturbations, least squares
- Similar ideas also apply for PDE formulations (Xia, Gillman et al.)

Relevant publications

Published/in press:

- KL Ho, Fast direct methods for molecular electrostatics, PhD thesis, New York University, 2012.
- KL Ho and L Greengard, A fast direct solver for structured linear systems by recursive skeletonization, SIAM J Sci Comput, in press.

Submitted/in preparation:

- KL Ho and L Greengard, A fast direct least squares algorithm for hierarchically block separable matrices, in preparation.
- ► KL Ho, S Jung, and L Greengard, Protein pK_a calculations using a fast direct boundary element solver, in preparation.
- KL Ho, J Sifuentes, Z Gimbutas, and L Greengard, Approximate inverse preconditioning for integral equations on two-dimensional domains, in preparation.