Fast direct methods for molecular electrostatics

Kenneth L. Ho
Joint work with Leslie Greengard

Courant Institute of Mathematical Sciences, NYU

Imperial College London, Aug 2012
(1) Boundary integral methods for molecular electrostatics
(2) Application: protein $\mathrm{p} K_{\mathrm{a}}$ calculations
(3) A fast direct solver for integral equations
(4) Results and conclusions

Suppose I give you a structure.

What can you tell me about its function?

Suppose I give you a structure.

What can you tell me about its function?
(What are the physics acting on it?)

Suppose I give you a structure.

What can you tell me about its function?
(What are the physics acting on it?)
Electromagnetism is the force of chemistry.
Davis ME, McCammon JA (1990) Chem Rev

- Charge complementarity
- Conformation and dynamics
- Long-range steering
- Polarization and ionization

Suppose I give you a structure.

What can you tell me about its function?
(What are the physics acting on it?)
Electromagnetism is the force of chemistry.
Davis ME, McCammon JA (1990) Chem Rev

- Charge complementarity
- Conformation and dynamics
- Long-range steering
- Polarization and ionization

In this talk, we focus on electrostatics.

Molecular electrostatics

Molecule: discrete collection of charged atoms
Ω_{0} : solvent
Ω_{1} : (solvent-excluded) molecular volume
Σ : molecular surface

Explicit solvent:

- Discretize Ω_{0}
- Coulomb's law:

$$
\varphi(\mathbf{r})=k_{e} \sum_{i} \frac{q_{i}}{\left|\mathbf{r}-\mathbf{r}_{i}\right|}
$$

- Can be expensive!

For many applications, implicit solvation provides a good balance of physical realism and computational efficiency.

Poisson-Boltzmann equation

$$
\text { Poisson equation: } \quad-\nabla \cdot(\varepsilon \nabla \varphi)=\rho
$$

Poisson-Boltzmann equation

$$
\text { Poisson equation: } \quad-\nabla \cdot(\varepsilon \nabla \varphi)=\rho
$$

In the molecule:

$$
-\Delta \varphi=\frac{1}{\varepsilon_{1}} \sum_{i} q_{i} \delta\left(\mathbf{r}-\mathbf{r}_{i}\right)
$$

Poisson-Boltzmann equation

Poisson equation: $\quad-\nabla \cdot(\varepsilon \nabla \varphi)=\rho$

In the molecule:

$$
-\Delta \varphi=\frac{1}{\varepsilon_{1}} \sum_{i} q_{i} \delta\left(\mathbf{r}-\mathbf{r}_{i}\right)
$$

In the solvent:

$$
\begin{aligned}
-\Delta \varphi & =\frac{1}{\varepsilon_{0}} \sum_{i} q_{i} c_{i} \\
& =\frac{1}{\varepsilon_{0}} \sum_{i} q_{i} c_{i}^{\infty} \exp \left(-\frac{q_{i} \varphi}{k_{B} T}\right) \\
& \approx \frac{1}{\varepsilon_{0}}\left(\sum_{i} q_{i} c_{i}^{\infty}-\sum_{i} \frac{q_{i}^{2} c_{i}^{\infty}}{k_{B} T} \varphi\right) \\
-\Delta \varphi & \equiv-\kappa^{2} \varphi
\end{aligned}
$$

linearized Poisson-Boltzmann equation

Electrostatic system

$$
\begin{aligned}
-\left(\Delta-\kappa^{2}\right) \varphi & =0 & & \text { in } \Omega_{0} \\
-\Delta \varphi & =\frac{1}{\varepsilon_{1}} \sum_{i} q_{i} \delta\left(\mathbf{r}-\mathbf{r}_{i}\right) & & \text { in } \Omega_{1} \\
{[\varphi] } & =\left[\varepsilon \frac{\partial \varphi}{\partial \nu}\right]=0 & & \text { on } \Sigma
\end{aligned}
$$

Many ways to solve: finite differences, finite elements

- Can be ill-conditioned
- Artificial domain truncation

We use instead boundary integral equation methods:

- Satisfies PDE exactly
- Provably well-conditioned
- Dimensional reduction

Boundary integral formulation

Green's function:

$$
G_{k}(\mathbf{r}, \mathbf{s})=\frac{e^{-k|\mathbf{r}-\mathbf{s}|}}{4 \pi|\mathbf{r}-\mathbf{s}|}
$$

Single-layer potential:
$S_{k}[\sigma](\mathbf{r})=\int_{\Sigma} G_{k}(\mathbf{r}, \mathbf{s}) \sigma(\mathbf{s}) d A_{\mathbf{s}} \quad$ in $\Omega_{0,1}$
Double-layer potential:

$$
D_{k}[\mu](\mathbf{r})=\int_{\Sigma} \frac{\partial G_{k}}{\partial \nu_{\mathbf{s}}}(\mathbf{r}, \mathbf{s}) \mu(\mathbf{s}) d A_{\mathbf{s}} \quad \text { in } \Omega_{0,1}
$$

Solution representation:

$$
\varphi \equiv\left\{\begin{array}{ll}
S_{\kappa} \sigma+D_{\kappa} \mu & \text { in } \Omega_{0}, \\
S_{0} \sigma+\alpha D_{0} \mu+\varphi_{s} & \text { in } \Omega_{1},
\end{array} \quad \alpha \equiv \frac{\varepsilon_{0}}{\varepsilon_{1}}, \quad \varphi_{s}(\mathbf{r}) \equiv \frac{1}{\varepsilon_{1}} \sum_{i} q_{i} G_{0}\left(\mathbf{r}, \mathbf{r}_{i}\right)\right.
$$

Boundary integral equation on Σ :

$$
\begin{aligned}
\frac{1}{2}(1+\alpha) \mu+\left(S_{\kappa}-S_{0}\right) \sigma+\left(D_{\kappa}-\alpha D_{0}\right) \mu & =\varphi_{s} \\
-\frac{1}{2}(1+\alpha) \sigma+\left(\alpha S_{\kappa}^{\prime}-S_{0}^{\prime}\right) \sigma+\alpha\left(D_{\kappa}^{\prime}-D_{0}^{\prime}\right) \mu & =\frac{\partial \varphi_{s}}{\partial \nu}
\end{aligned}
$$

Rewrite in block form: $\quad(I+\lambda K)\left[\begin{array}{l}\mu \\ \sigma\end{array}\right]=\lambda\left[\begin{array}{r}\varphi_{s} \\ -\varphi_{s}^{\prime}\end{array}\right] \xrightarrow{\text { discretize }} A(\Sigma) x=b(q)$

Numerical considerations

Let $A \in \mathbb{C}^{N \times N}$ be a matrix discretization of some non-oscillatory Green's function integral operator. Note that A is dense.

- Cost of applying $A: \mathcal{O}\left(N^{2}\right)$
- Cost of inverting $A: \mathcal{O}\left(N^{3}\right)$

Numerical considerations

Let $A \in \mathbb{C}^{N \times N}$ be a matrix discretization of some non-oscillatory Green's function integral operator. Note that A is dense.

- Cost of applying $A: \mathcal{O}\left(N^{2}\right)$
- Cost of inverting $A: \mathcal{O}\left(N^{3}\right)$

But Green's function equation matrices are often structured.

- Hierarchical low-rank approximation of far-field interactions
- Matrix-vector multiplication in $\mathcal{O}(N \log N)$ operations
- Treecode, FMM, panel clustering, pFFT, FFTSVD
- Fast iterative solvers when combined with GMRES, BiCG, CGR, etc.

Protein $\mathrm{p} K_{\mathrm{a}}$ calculations

$$
\mathrm{p} K_{\mathrm{a}} \equiv-\log _{10} \frac{[\mathrm{~A}][\mathrm{H}]}{[\mathrm{AH}]}=\log _{10} \frac{[\mathrm{AH}]}{[\mathrm{A}]}+\mathrm{pH}
$$

Ionization behavior is important for many biomolecular phenomena

- Binding affinities
- Enzymatic activities
- Structural properties

Theoretical interest: Bashford and Karplus, Juffer et al., Alexov et al.

A single titrating site

$$
\begin{gathered}
\mathrm{p} K_{\mathrm{a}}=\frac{\beta}{\ln 10} \Delta G_{\mathrm{AH} \rightarrow \mathrm{~A}+\mathrm{H}}^{\mathrm{p}} \\
\Delta G_{\mathrm{AH} \rightarrow \mathrm{~A}+\mathrm{H}}^{\mathrm{p}}
\end{gathered}=\Delta G_{\mathrm{AH} \rightarrow \mathrm{~A}+\mathrm{H}}^{\mathrm{s}}+\Delta G_{\mathrm{A}}^{\mathrm{s} \rightarrow \mathrm{p}}-\Delta G_{\mathrm{AH}}^{\mathrm{s} \rightarrow \mathrm{p}}, ~(\underbrace{\Delta G_{\mathrm{AH} \rightarrow \mathrm{~A}+\mathrm{H}}^{\mathrm{s}}}_{\text {experiment }}+\underbrace{\Delta G_{\mathrm{A} \rightarrow \mathrm{AH}}^{\mathrm{s}}-\Delta G_{\mathrm{A} \rightarrow \mathrm{AH}}^{\mathrm{p}}}_{\text {electrostatic only }} .
$$

$$
\mathrm{p} K_{\mathrm{a}}=\underbrace{\mathrm{p} K_{\mathrm{a}}^{\text {model }}}_{\text {experiment }}-\frac{\beta}{\ln 10} \underbrace{\Delta \Delta G_{\mathrm{A} \rightarrow \mathrm{AH}}^{\mathrm{s} \rightarrow \mathrm{p}}}_{\text {electrostatic }}
$$

Multiple titrating sites

Let $\theta_{i} \in\{0,1\}$ denote the protonation state of each site $i=1, \ldots, M$.

$$
\begin{aligned}
\mathrm{p} K_{i}^{\text {intr }} & \equiv \mathrm{p} K_{i}^{\text {model }}-\frac{\beta}{\ln 10} \Delta \Delta G_{\mathrm{A} \rightarrow \mathrm{~A}\left(e_{i}\right)}^{\mathrm{s} \rightarrow \mathrm{p}} \\
\Delta G_{\mathrm{A} \rightarrow \mathrm{~A}\left(e_{i}\right)}(\mathrm{pH}) & =-R T \ln 10\left(\mathrm{p} K_{i}^{\text {intr }}-\mathrm{pH}\right) \\
\Delta G_{\mathrm{A} \rightarrow \mathrm{~A}(\theta)}(\mathrm{pH}) & =-R T \ln 10 \sum_{i} \theta_{i}\left(\mathrm{p} K_{i}^{\text {intr }}-\mathrm{pH}\right)+\frac{1}{2} \sum_{i} \theta_{i} \sum_{j \neq i} \theta_{j} \Delta G_{i j}
\end{aligned}
$$

Sample mean site protonation using Markov chain Monte Carlo:

$$
\left\langle\theta_{i}\right\rangle(\mathrm{pH})=\frac{1}{Z} \sum_{\theta} \theta_{i} e^{-\beta \Delta G_{\mathrm{A} \rightarrow \mathrm{~A}(\theta)}(\mathrm{pH})}, \quad \mathrm{p} K_{i}=\underset{\mathrm{pH}}{\arg }\left\langle\theta_{i}\right\rangle(\mathrm{pH})=\frac{1}{2}
$$

Bottleneck: interaction energies in protein

- Calculate φ_{j} for each j : solve $A(\Sigma) x=b\left(q_{j}\right)$
- Compute $\Delta G_{i j}=q_{i}^{\top} \varphi_{j}$ for each i
- Requires M solves with the same matrix

Solving systems with multiple right-hand sides
Standard iterative solvers for $A x=b$:

- Sequence of operations depends on b
- Can be inefficient for multiple right-hand sides
- cf. blocking, projection, deflation, subspace recycling

An alternative: direct solvers

- Compute A^{-1} (factor A)
- Reuse factors for each solve
- Robust, always works
- Accelerate using similar low-rank ideas

Various approaches in recent years:

- \mathscr{H}-matrices (Hackbusch, Börm, Grasedyck, Bebendorf et al.)
- HSS matrices (Chandrasekaran, Gu, Xia, Li et al.)
- Skeletonization (Martinsson, Rokhlin, Greengard, Gillman et al.)
- BIEs in 2D
- One-level BIEs in 3D

A fast direct solver for integral equations

Here, we present a multilevel skeletonization-based fast direct solver in general dimension. For BIEs:

	2 D	3 D
precomp	$\mathcal{O}(N)$	$\mathcal{O}\left(N^{3 / 2}\right)$
solve	$\mathcal{O}(N)$	$\mathcal{O}(N \log N)$

Main ideas/take-home messages :

- Kernel-independent: Laplace, Stokes, Yukawa, low-frequency Helmholtz, etc.
- Robust to geometry (e.g., boundary vs. volume, dimensionality)
- User-specified precision: trade accuracy for speed
- Naturally exposes the data-sparsity of integral equation matrices
- Very fast solve times, beating the FMM by factors of 100-1000
- Simple framework: easy to analyze, implement, and optimize
- Somewhat similar in flavor to nested dissection
- Can also apply to PDE formulations (Xia, Gillman et al.)

Block separable matrices

A block matrix A is block separable if

$$
\underbrace{\left[\begin{array}{cc}
\times & \times \\
\times & \times
\end{array}\right]}_{A_{i j}}=\underbrace{\left[\begin{array}{c}
\times \\
\times
\end{array}\right]}_{L_{i}} \underbrace{[\times]}_{S_{i j}} \underbrace{[\times \times]}_{R_{j}}, \quad i \neq j
$$

row

\square full rank low rank

Then

so $A x=b$ is equivalent to the structured sparse system

$$
\left[\begin{array}{ccc}
D & L & \\
R & & -I \\
& -I & S
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
b \\
0 \\
0
\end{array}\right]
$$

with $z \equiv R x$ and $y \equiv S z$. Factor using UMFPACK, SuperLU, WSMP, etc.

Hierarchically block separable matrices

Integral equation matrices are, in fact, hierarchically block separable, i.e., they are block separable at every level of an octree-type ordering.

full rank
low rank

In this setting, much more powerful algorithms can be developed.

Interpolative decomposition

An interpolative decomposition of a rank- k matrix is a factorization

$$
\underbrace{A}_{m \times n}=\underbrace{B}_{m \times k} \underbrace{P}_{k \times n},
$$

where B is a column-submatrix of A (with $\|P\|$ small).

- The ID compresses the column space; to compress the row space, apply the ID to A^{\top}. We call the retained rows and columns skeletons.
- Adaptive algorithms can compute the ID to any specified precision $\epsilon>0$.
- Related factorizations: SVD, RRQR, pseudoskeleton (CUR), ACA

One-level matrix compression

- Compress the row space of each off-diagonal block row. Let the L_{i} be the corresponding row interpolation matrices.
- Compress the column space of each off-diagonal block column. Let the R_{j} be the corresponding column interpolation matrices.
- Approximate the off-diagonal blocks by $A_{i j} \approx L_{i} S_{i j} R_{j}$ for $i \neq j$.
- S is a skeleton submatrix of A

Skeletonization

Recursive skeletonization

Data sparsification

$N_{0}=8192$

$N_{3}=1849$

$N_{1}=7134$

$N_{4}=776$

$N_{2}=4138$

$N_{5}=265$

$$
G(\mathbf{r}, \mathbf{s})=-\frac{1}{2 \pi} \log |\mathbf{r}-\mathbf{s}|, \quad \epsilon=10^{-3}
$$

Accelerated compression for PDEs

- General compression algorithm is global and so at least $\mathcal{O}\left(N^{2}\right)$
- For potential fields, use Green's theorem to accelerate
- Represent well-separated interactions via a local proxy surface
- Can be generalized to non-PDE kernels using sparse grids

Compressed matrix representation

- Telescoping formula:

$$
A \approx D^{(1)}+L^{(1)}\left[D^{(2)}+L^{(2)}\left(\cdots D^{(\lambda)}+L^{(\lambda)} S R^{(\lambda)} \cdots\right) R^{(2)}\right] R^{(1)}
$$

- Efficient storage, fast matrix-vector multiplication (generalized FMM)
- Structured sparse inversion:

$$
\left[\begin{array}{ccccccc}
D^{(1)} & L^{(1)} & & & & & \\
R^{(1)} & & -I & & & & \\
& -I & D^{(2)} & L^{(2)} & & & \\
& & R^{(2)} & \ddots & \ddots & & \\
& & & \ddots & D^{(\lambda)} & L^{(\lambda)} & \\
& & & & R^{(\lambda)} & & -I \\
& & & & & -I & S
\end{array}\right]\left[\begin{array}{c}
x \\
y^{(1)} \\
z^{(1)} \\
\vdots \\
\vdots \\
y^{(\lambda)} \\
z^{(\lambda)}
\end{array}\right]=\left[\begin{array}{c}
b \\
0 \\
0 \\
\vdots \\
\vdots \\
0 \\
0
\end{array}\right]
$$

Laplace BIE solver

- Less memory-efficient than FMM/GMRES
- Each solve is extremely fast (in elements/sec)

ϵ	10^{-3}	10^{-6}	10^{-9}
2 D	3.3×10^{6}	2.0×10^{6}	1.7×10^{6}
3D	6.0×10^{5}	1.4×10^{5}	6.2×10^{4}

$$
\begin{array}{ll}
-\Delta \varphi=0 & \text { in } \Omega_{0} \\
-\Delta \varphi=\frac{1}{\varepsilon_{1}} \sum_{i} q_{i} \delta\left(\mathbf{r}-\mathbf{r}_{i}\right) & \text { in } \Omega_{1} \\
{[\varphi]=\left[\varepsilon \frac{\partial \varphi}{\partial \nu}\right]=0} & \text { on } \Sigma \\
& \\
\hline N & 7612
\end{array} \quad 19752 .
$$

Break-even point: 10-25 solves

Multiple scattering

$\delta / \lambda=15$

$\delta / \lambda=11$

$\delta / \lambda=20$

$\delta / \lambda=12.5$

$\delta / \lambda=10.5$

- Each object: 10λ

$$
\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

- FMM/GMRES with block preconditioner via RS

$$
\left[\begin{array}{ll}
A_{11}^{-1} & \\
& A_{22}^{-1}
\end{array}\right]
$$

- Unprecon: 700 iterations
- Precon: 10 iterations
- $50 \times$ speedup

Rigid-body "docking"

Summary

Main results:

- After precomputation, very fast solves (sub-second)
- Complexities in d dimensions (BIEs in $d+1$ dimensions):

$$
\text { precomp } \sim\left\{\begin{array} { l l }
{ N } & { \text { if } d = 1 , } \\
{ N ^ { 3 (1 - 1 / d) } } & { \text { if } d > 1 , }
\end{array} \quad \text { solve } \sim \left\{\begin{array}{ll}
N & \text { if } d=1, \\
N \log N & \text { if } d=2, \\
N^{2(1-1 / d)} & \text { if } d>2
\end{array}\right.\right.
$$

- Useful for systems involving many right-hand sides

Extensions:

- Preconditioning, least squares
- Local geometric perturbations:

$$
\left[\begin{array}{lll}
A & B_{+} & B_{-} \\
C_{+} & D_{+} & D_{*} \\
C_{-} & & I
\end{array}\right]\left[\begin{array}{l}
x \\
x_{+} \\
x_{-}
\end{array}\right]=\left[\begin{array}{c}
b \\
b_{+} \\
0
\end{array}\right]
$$

- Protein preparation
- Matrix precomputation
- Compress/factor
- Energy calculation
- Monte Carlo sampling
- Reduced site approximation
- Multi-site cluster moves
- Estimate p K_{i}
- Error bars

Apply delta method.

- Link sites by interaction energy
- Clusters: connected components
- Modify one cluster at random
- Pick move distance from geometric distribution
$\mathrm{p} K_{\mathrm{a}}$ results: computational

name	PDB ID	residues	atoms	sites
BPTI	4PTI	58	891	18
OMTKY3	2OVO	56	813	15
HEWL	2LZT	129	1965	30
RNase A	3RN3	124	1865	34
RNase H	2RN2	155	2474	53

- DoFs: 10,000-30,000
- Precomp time: 1-2 hr
- Energy calc time: 10 s
- Much less memory than classical direct methods
- Much faster solves than iterative methods
- Precomp still expensive

$\mathrm{p} K_{\mathrm{a}}$ results: biological

RMSD	protein dielectric		
	4	8	20
BPTI	1.47	0.96	0.82
OMTKY3	1.77	1.07	1.09
HEWL	2.52	1.49	0.79
RNase A	3.22	2.25	0.85
RNase H	4.53	2.53	1.36

type	err ≤ 1	RMSD
Arg	$12 / 18$	1.23
Glu	$17 / 24$	1.00
His	$8 / 11$	0.92
Lys	$11 / 14$	0.79
Tyr	$7 / 9$	1.24
all	$55 / 76$	1.05

Conclusions

Main $\mathrm{p} K_{\mathrm{a}}$ results:

- Can efficiently treat large numbers of titrating sites
- Similar accuracy as other Poisson-Boltzmann methods

Future work:

- Faster $\mathcal{O}(N \log N)$ direct solvers (forthcoming)
- Model conformational flexibility (Gunner et al.)
- Treat with perturbative techniques

Generalizations:

- Structure prediction: fixed backbone, rotamer optimization
- Docking: like multiple scattering
- Charge optimization, molecular dynamics
- Inhomogeneous dielectrics, nonlocal electrostatics, etc.

References

$\mathrm{p} K_{\mathrm{a}}$ calculations:

- Alexov E, Mehler EL, Baker N, Baptista AM, Huang Y, Milletti F, Nielsen JE, Farrell D, Carstensen T, Olsson MHM, Shen JK, Warwicker J, Williams S, Word JM (2011) Progress in the prediction of $\mathrm{p} K_{\mathrm{a}}$ values in proteins. Proteins 79: 3260-3275.
- Bashford D, Karplus M (1990) p K_{a} 's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29: 10219-10225.
- Juffer AH, Argos P, Vogel HJ (1997) Calculating acid-dissociation constants of proteins using the boundary element method. J Phys Chem B 101: 7664-7673.
Fast solvers:
- Greengard L, Gueyffier D, Martinsson P-G, Rokhlin V (2009) Fast direct solvers for integral equations in complex three-dimensional domains. Acta Numer 18: 243-275.
- Ho KL, Greengard L (2012) A fast direct solver for structured linear systems by recursive skeletonization. SIAM J Sci Comput, to appear.
- Zhang B, Lu B, Cheng X, Huang J, Pitsianis N, Sun X, McCammon JA (2012) Mathematical and numerical aspects of the adaptive fast multipole Poisson-Boltzmann solver. Commun Comput Phys, in press.

Ho KL (2012) Fast direct methods for molecular electrostatics. PhD thesis, New York Univ.

