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Suppose I give you a structure.

What can you tell me about its function?

(What are the physics acting on it?)

Electromagnetism is the force of chemistry.

Davis ME, McCammon JA (1990) Chem Rev

I Charge complementarity

I Conformation and dynamics

I Long-range steering

I Polarization and ionization

In this talk, we focus on electrostatics.
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Molecular electrostatics

Molecule: discrete collection of charged atoms

Ω0: solvent

Ω1: (solvent-excluded) molecular volume

Σ: molecular surface

Explicit solvent:

I Discretize Ω0

I Coulomb’s law:

ϕ (r) = ke

∑
i

qi

|r − ri |

I Can be expensive!

Implicit solvent:

I Continuum dielectric

I Poisson equation:

−∇ · (ε∇ϕ) = ρ

For many applications, implicit solvation provides a good balance of physical
realism and computational efficiency.



Poisson-Boltzmann equation
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Electrostatic system

−
(
∆− κ2

)
ϕ = 0 in Ω0

−∆ϕ =
1

ε1

∑
i

qiδ (r − ri ) in Ω1

[ϕ] =

[
ε
∂ϕ

∂ν

]
= 0 on Σ

Many ways to solve: finite differences, finite elements

I Can be ill-conditioned

I Artificial domain truncation

We use instead boundary integral equation methods:

I Satisfies PDE exactly

I Provably well-conditioned

I Dimensional reduction



Boundary integral formulation

Green’s function: Gk (r, s) =
e−k|r−s|

4π |r − s|

Single-layer potential: Sk [σ] (r) =

∫
Σ

Gk (r, s)σ (s) dAs in Ω0,1

Double-layer potential: Dk [µ] (r) =

∫
Σ

∂Gk

∂νs
(r, s)µ (s) dAs in Ω0,1

Solution representation:

ϕ ≡

{
Sκσ + Dκµ in Ω0,

S0σ + αD0µ+ ϕs in Ω1,
α ≡ ε0

ε1
, ϕs (r) ≡ 1

ε1

∑
i

qiG0 (r, ri )

Boundary integral equation on Σ:

1

2
(1 + α)µ+ (Sκ − S0)σ + (Dκ − αD0)µ = ϕs ,

−1

2
(1 + α)σ + (αS ′κ − S ′0)σ + α (D ′κ − D ′0)µ =

∂ϕs

∂ν

Rewrite in block form: (I + λK )

[
µ
σ

]
= λ

[
ϕs

−ϕ′s

]
discretize−−−−−→ A (Σ) x = b (q)



Numerical considerations

Let A ∈ CN×N be a matrix discretization of some non-oscillatory Green’s function
integral operator. Note that A is dense.

I Cost of applying A: O(N2)

I Cost of inverting A: O(N3)

But Green’s function equation matrices are often structured.

I Hierarchical low-rank approximation of far-field interactions

I Matrix-vector multiplication in O(N log N) operations
• Treecode, FMM, panel clustering, pFFT, FFTSVD

I Fast iterative solvers when combined with GMRES, BiCG, CGR, etc.
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Protein pKa calculations

−⇀↽−

pKa ≡ − log10

[A] [H]

[AH]
= log10

[AH]

[A]
+ pH

Ionization behavior is important for many biomolecular phenomena

I Binding affinities

I Enzymatic activities

I Structural properties

Theoretical interest: Bashford and Karplus, Juffer et al., Alexov et al.



A single titrating site

pKa =
β

ln 10
∆G p

AH→A+H

∆G p
AH→A+H = ∆G s

AH→A+H + ∆G s→p
A −∆G s→p

AH

= ∆G s
AH→A+H︸ ︷︷ ︸

experiment

+ ∆G s
A→AH −∆G p

A→AH︸ ︷︷ ︸
electrostatic only

AsH
∆G s

AH→A+H−−−−−−−→ As + H

∆G s→p
AH

y y∆G s→p
A

ApH
∆G p

AH→A+H−−−−−−−→ Ap + H

pKa = pKmodel
a︸ ︷︷ ︸

experiment

− β

ln 10
∆∆G s→p

A→AH︸ ︷︷ ︸
electrostatic



Multiple titrating sites

Let θi ∈ {0, 1} denote the protonation state of each site i = 1, . . . ,M.

pK intr
i ≡ pKmodel

i − β

ln 10
∆∆G s→p

A→A(ei )

∆GA→A(ei ) (pH) = −RT ln 10
(
pK intr

i − pH
)

∆GA→A(θ) (pH) = −RT ln 10
∑

i

θi
(
pK intr

i − pH
)

+
1

2

∑
i

θi
∑
j 6=i

θj∆Gij

Sample mean site protonation using Markov chain Monte Carlo:

〈θi 〉 (pH) =
1

Z

∑
θ

θie
−β∆GA→A(θ)(pH), pKi = arg

pH
〈θi 〉 (pH) =

1

2

Bottleneck: interaction energies in protein

I Calculate ϕj for each j : solve A(Σ)x = b(qj)

I Compute ∆Gij = qT
i ϕj for each i

I Requires M solves with the same matrix



Solving systems with multiple right-hand sides

Standard iterative solvers for Ax = b:

I Sequence of operations depends on b

I Can be inefficient for multiple right-hand sides

I cf. blocking, projection, deflation, subspace recycling

An alternative: direct solvers

I Compute A−1 (factor A)

I Reuse factors for each solve

I Robust, always works

I Accelerate using similar low-rank ideas

Various approaches in recent years:

I H -matrices (Hackbusch, Börm, Grasedyck, Bebendorf et al.)

I HSS matrices (Chandrasekaran, Gu, Xia, Li et al.)

I Skeletonization (Martinsson, Rokhlin, Greengard, Gillman et al.)
• BIEs in 2D
• One-level BIEs in 3D



A fast direct solver for integral equations

Here, we present a multilevel skeletonization-based fast direct solver in general
dimension. For BIEs:

2D 3D

precomp O(N) O(N3/2)
solve O(N) O(N log N)

Main ideas/take-home messages :

I Kernel-independent: Laplace, Stokes, Yukawa, low-frequency Helmholtz, etc.

I Robust to geometry (e.g., boundary vs. volume, dimensionality)

I User-specified precision: trade accuracy for speed

I Naturally exposes the data-sparsity of integral equation matrices

I Very fast solve times, beating the FMM by factors of 100–1000

I Simple framework: easy to analyze, implement, and optimize

I Somewhat similar in flavor to nested dissection

I Can also apply to PDE formulations (Xia, Gillman et al.)



Block separable matrices

A block matrix A is block separable if[
× ×
× ×

]
︸ ︷︷ ︸

Aij

=

[
×
×

]
︸︷︷︸

Li

[
×
]︸︷︷︸

Sij

[
× ×

]︸ ︷︷ ︸
Rj

, i 6= j .

Then

︸ ︷︷ ︸
A

=

︸ ︷︷ ︸
D

+

︸︷︷︸
L

︸︷︷︸
S

︸ ︷︷ ︸
R

,

so Ax = b is equivalent to the structured sparse systemD L
R −I
−I S

x
y
z

 =

b
0
0


with z ≡ Rx and y ≡ Sz . Factor using UMFPACK, SuperLU, WSMP, etc.



Hierarchically block separable matrices

Integral equation matrices are, in fact, hierarchically block separable, i.e., they are
block separable at every level of an octree-type ordering.

In this setting, much more powerful algorithms can be developed.



Interpolative decomposition

An interpolative decomposition of a rank-k matrix is a factorization

A︸︷︷︸
m×n

= B︸︷︷︸
m×k

P︸︷︷︸
k×n

,

where B is a column-submatrix of A (with ‖P‖ small).

I The ID compresses the column space; to compress the row space, apply the
ID to AT. We call the retained rows and columns skeletons.

I Adaptive algorithms can compute the ID to any specified precision ε > 0.

I Related factorizations: SVD, RRQR, pseudoskeleton (CUR), ACA



One-level matrix compression

I Compress the row space of each off-diagonal block row.
Let the Li be the corresponding row interpolation matrices.

I Compress the column space of each off-diagonal block column.
Let the Rj be the corresponding column interpolation matrices.

I Approximate the off-diagonal blocks by Aij ≈ LiSijRj for i 6= j .

I S is a skeleton submatrix of A

Skeletonization



Multilevel matrix compression

Recursive skeletonization



Data sparsification

G (r, s) = − 1

2π
log |r − s| , ε = 10−3



Accelerated compression for PDEs

I General compression algorithm is global and so at least O(N2)

I For potential fields, use Green’s theorem to accelerate

I Represent well-separated interactions via a local proxy surface

I Can be generalized to non-PDE kernels using sparse grids



Compressed matrix representation

I Telescoping formula:

A ≈ D(1) + L(1)
[
D(2) + L(2)

(
· · ·D(λ) + L(λ)SR(λ) · · ·

)
R(2)

]
R(1)

I Efficient storage, fast matrix-vector multiplication (generalized FMM)

I Structured sparse inversion:

D(1) L(1)

R(1) −I
−I D(2) L(2)

R(2) . . .
. . .

. . . D(λ) L(λ)

R(λ) −I
−I S





x
y (1)

z (1)

...

...
y (λ)

z (λ)


=



b
0
0
...
...
0
0





Laplace BIE solver

I Less memory-efficient than FMM/GMRES

I Each solve is extremely fast (in elements/sec)

ε 10−3 10−6 10−9

2D 3.3× 106 2.0× 106 1.7× 106

3D 6.0× 105 1.4× 105 6.2× 104



Poisson electrostatics

−∆ϕ = 0 in Ω0

−∆ϕ =
1

ε1

∑
i

qiδ (r − ri ) in Ω1

[ϕ] =

[
ε
∂ϕ

∂ν

]
= 0 on Σ

N 7612 19752

FMM/GMRES 12.6 s 26.9 s
RS precomp 151 s 592 s
RS solve 0.03 s 0.08 s

Break-even point: 10–25 solves



Multiple scattering

I Each object: 10λ[
A11 A12

A21 A22

] [
x1

x2

]
=

[
b1

b2

]
I FMM/GMRES with block

preconditioner via RS[
A−1

11

A−1
22

]
I Unprecon: 700 iterations

I Precon: 10 iterations

I 50× speedup

Rigid-body “docking”



Summary

Main results:

I After precomputation, very fast solves (sub-second)

I Complexities in d dimensions (BIEs in d + 1 dimensions):

precomp ∼

{
N if d = 1,

N3(1−1/d) if d > 1,
solve ∼


N if d = 1,

N log N if d = 2,

N2(1−1/d) if d > 2

I Useful for systems involving many right-hand sides

Extensions:

I Preconditioning, least squares

I Local geometric perturbations:A B+ B−
C+ D+ D∗
C− I

x
x+

x−

 =

b
b+

0





pKa algorithm

I Protein preparation

I Matrix precomputation
• Compress/factor

I Energy calculation

I Monte Carlo sampling
• Reduced site approximation
• Multi-site cluster moves

I Estimate pKi

• Error bars
Apply delta method.

I Link sites by interaction energy

I Clusters: connected components

I Modify one cluster at random

I Pick move distance from geometric distribution



pKa results: computational

name PDB ID residues atoms sites

BPTI 4PTI 58 891 18
OMTKY3 2OVO 56 813 15
HEWL 2LZT 129 1965 30
RNase A 3RN3 124 1865 34
RNase H 2RN2 155 2474 53

I DoFs: 10,000–30,000

I Precomp time: 1–2 hr

I Energy calc time: 10 s

I Much less memory than
classical direct methods

I Much faster solves than
iterative methods

I Precomp still expensive



pKa results: biological

RMSD
protein dielectric
4 8 20

BPTI 1.47 0.96 0.82
OMTKY3 1.77 1.07 1.09
HEWL 2.52 1.49 0.79
RNase A 3.22 2.25 0.85
RNase H 4.53 2.53 1.36

type err ≤ 1 RMSD

Arg 12 / 18 1.23
Glu 17 / 24 1.00
His 8 / 11 0.92
Lys 11 / 14 0.79
Tyr 7 / 9 1.24
all 55 / 76 1.05



Conclusions

Main pKa results:

I Can efficiently treat large numbers of titrating sites

I Similar accuracy as other Poisson-Boltzmann methods

Future work:

I Faster O(N log N) direct solvers (forthcoming)

I Model conformational flexibility (Gunner et al.)
• Treat with perturbative techniques

Generalizations:

I Structure prediction: fixed backbone, rotamer optimization

I Docking: like multiple scattering

I Charge optimization, molecular dynamics

I Inhomogeneous dielectrics, nonlocal electrostatics, etc.
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