A fast direct solver for non-oscillatory integral equations

Kenneth L. Ho
Courant Institute, New York University

Argonne Lab, Jan 2012

Outline

(1) Integral equations
(2) Fast iterative solvers
(3) Fast direct solvers
(4) Numerical results

A model problem

Consider Laplace's equation with Dirichlet boundary conditions:

$$
\Delta u=0 \quad \text { in } \Omega \subset \mathbb{R}^{3} \quad, \quad u=f \quad \text { on } \partial \Omega .
$$

How to find u ?

A model problem

Consider Laplace's equation with Dirichlet boundary conditions:

$$
\Delta u=0 \quad \text { in } \Omega \subset \mathbb{R}^{3} \quad, \quad u=f \quad \text { on } \partial \Omega
$$

How to find u ? Use a double-layer potential representation

$$
u(x)=\int_{\partial \Omega} \frac{\partial G}{\partial \nu(y)}(x, y) \sigma(y) d s(y) \quad \text { in } \Omega
$$

where $G(x, y)=1 /(4 \pi|x-y|)$ is the Laplace Green's function, ν is the unit outer surface normal, and σ is an unknown surface density.

A model problem

Consider Laplace's equation with Dirichlet boundary conditions:

$$
\Delta u=0 \quad \text { in } \Omega \subset \mathbb{R}^{3} \quad, \quad u=f \quad \text { on } \partial \Omega
$$

How to find u ? Use a double-layer potential representation

$$
u(x)=\int_{\partial \Omega} \frac{\partial G}{\partial \nu(y)}(x, y) \sigma(y) d s(y) \quad \text { in } \Omega
$$

where $G(x, y)=1 /(4 \pi|x-y|)$ is the Laplace Green's function, ν is the unit outer surface normal, and σ is an unknown surface density. Then appeal to classical potential theory to derive the integral equation

$$
-\frac{1}{2} \sigma(x)+\int_{\partial \Omega} \frac{\partial G}{\partial \nu(y)}(x, y) \sigma(y) d s(y)=f(x) \quad \text { on } \partial \Omega
$$

Why integral equations?

- Well-conditioned (second-kind Fredholm equation)
- Accurate derivatives (differentiate under the integral)
- High-order methods (quadrature)
- Adaptive (often with dimensional reduction)

Why integral equations?

- Well-conditioned (second-kind Fredholm equation)
- Accurate derivatives (differentiate under the integral)
- High-order methods (quadrature)
- Adaptive (often with dimensional reduction)

Mathematically, the "right" thing to do: try to write down as much of the solution as possible before turning to numerics.

An exaggerated example

Consider Poisson's equation with free-space boundary conditions:

$$
-\Delta u=f \quad \text { in } \Omega \subset \mathbb{R}^{3} \quad, \quad u=\mathcal{O}\left(\frac{1}{|x|}\right) \quad \text { as }|x| \rightarrow \infty
$$

An exaggerated example

Consider Poisson's equation with free-space boundary conditions:

$$
-\Delta u=f \quad \text { in } \Omega \subset \mathbb{R}^{3} \quad, \quad u=\mathcal{O}\left(\frac{1}{|x|}\right) \quad \text { as }|x| \rightarrow \infty
$$

Invert the differential operator:

$$
u(x)=\left[(-\Delta)^{-1} f\right](x)=\int_{\Omega} G(x, y) f(y) d v(y)
$$

In this case, there is no integral equation; the solution is just an integral.

An exaggerated example

Consider Poisson's equation with free-space boundary conditions:

$$
-\Delta u=f \quad \text { in } \Omega \subset \mathbb{R}^{3} \quad, \quad u=\mathcal{O}\left(\frac{1}{|x|}\right) \quad \text { as }|x| \rightarrow \infty
$$

Invert the differential operator:

$$
u(x)=\left[(-\Delta)^{-1} f\right](x)=\int_{\Omega} G(x, y) f(y) d v(y)
$$

In this case, there is no integral equation; the solution is just an integral.

Procedure for general boundary conditions

- Integrate volume term
- Solve for boundary correction

Numerical considerations

Let $A \in \mathbb{C}^{N \times N}$ be a matrix discretization of some Green's function integral operator. (How to discretize?) Observe that A is dense.

- Cost of applying $A: \mathcal{O}\left(N^{2}\right)$
- Cost of inverting $A: \mathcal{O}\left(N^{3}\right)$

Numerical considerations

Let $A \in \mathbb{C}^{N \times N}$ be a matrix discretization of some Green's function integral operator. (How to discretize?) Observe that A is dense.

- Cost of applying $A: \mathcal{O}\left(N^{2}\right)$
- Cost of inverting $A: \mathcal{O}\left(N^{3}\right)$

This is contrast to competing methods based on finite differences or finite elements, which yield sparse matrices. Historically, this relative expense was a primary cause for the dearth of integral equations in numerical computing (except where there was no choice).

Fast iterative solvers

In the 1980s, fast algorithms to apply A in only $\mathcal{O}(N)$ or $\mathcal{O}(N \log N)$ time were developed:

- Treecode (Barnes and Hut, 1986)
- Fast multipole method (Greengard and Rokhlin, 1987)
- Panel clustering (Hackbusch and Nowak, 1989)

Combined with Krylov methods (e.g., GMRES), such techniques enabled fast iterative solution with only $\mathcal{O}(N \log N)$ work in many situations.

Fast multipole (and related) methods

- Non-oscillatory Green's functions have smooth far fields
- Interactions between well-separated clusters are low-rank
- Exploit smoothness with a hierarchical decomposition of space

Still more work to do

Fast iterative solvers have been very successful, but they remain inefficient in certain important regimes:

- When A is ill-conditioned (e.g., multiphysics, singular geometries)
- When $A x=b$ must be solved with many right-hand sides b or many perturbations of a base matrix A (e.g., scattering, optimization, design, time marching)

Still more work to do

Fast iterative solvers have been very successful, but they remain inefficient in certain important regimes:

- When A is ill-conditioned (e.g., multiphysics, singular geometries)
- When $A x=b$ must be solved with many right-hand sides b or many perturbations of a base matrix A (e.g., scattering, optimization, design, time marching)
One solution: direct solvers.
- Robust: insensitive to conditioning, always works
- Fast solves and inverse updates following initial factorization

Still more work to do

Fast iterative solvers have been very successful, but they remain inefficient in certain important regimes:

- When A is ill-conditioned (e.g., multiphysics, singular geometries)
- When $A x=b$ must be solved with many right-hand sides b or many perturbations of a base matrix A (e.g., scattering, optimization, design, time marching)
One solution: direct solvers.
- Robust: insensitive to conditioning, always works
- Fast solves and inverse updates following initial factorization

Can we accelerate direct solvers to the same extent?

Fast direct solvers

Much active research in recent years:

- \mathcal{H}-matrices (Hackbusch et al., 1999, 2000, 2002)
- Lippmann-Schwinger in 2D (Chen, 2002)
- FMM structure (Pals, 2004)
- BIEs in 2D (Martinsson and Rokhlin, 2005)
- HSS matrices (Chandrasekaran et al., 2006)
- one-level BIE solver in 3D (Greengard et al., 2009)

Current state of the art			
	1 D	2 D	3 D
Precomp	$\mathcal{O}(N)$	$\mathcal{O}\left(N^{3 / 2}\right)$	$\mathcal{O}\left(N^{2}\right)$
Solve	$\mathcal{O}(N)$	$\mathcal{O}(N \log N)$	$\mathcal{O}\left(N^{4 / 3}\right)$

Block-separable matrices

Definition

A block matrix A is block-separable if

$$
\underbrace{\left[\begin{array}{cc}
\times & \times \\
\times \times
\end{array}\right]}_{A_{i j}}=\underbrace{\left[\begin{array}{c}
\times \\
\times
\end{array}\right]}_{L_{i}} \underbrace{[\times]}_{S_{i j}}[\underbrace{[\times \times \times]}_{R_{j}}, \quad i \neq j .
$$

Block-separable matrices

Definition

A block matrix A is block-separable if

$$
\underbrace{\left[\begin{array}{cc}
\times & \times \\
\times & \times
\end{array}\right]}_{A_{i j}}=\underbrace{\left[\begin{array}{c}
\times \\
\times
\end{array}\right]}_{L_{i}} \underbrace{[\times]}_{S_{i j}} \underbrace{[\times \times]}_{R_{j}}, i \neq j
$$

Integral equation matrices are block-separable.

A fast direct solver for block-separable matrices

If A is block-separable, then

A fast direct solver for block-separable matrices

If A is block-separable, then

and $A^{-1}=\mathcal{D}+\mathcal{L S} \mathcal{S}^{-1} \mathcal{R}$, where

$$
\mathcal{D}=D^{-1}-D^{-1} L \Lambda R D^{-1}, \quad \mathcal{L}=D^{-1} L \Lambda, \quad \mathcal{R}=\Lambda R D^{-1}, \quad \mathcal{S}=\Lambda+S
$$

with $\Lambda=\left(R D^{-1} L\right)^{-1}$. If A has $p \times p$ blocks and each $S_{i j} \in \mathbb{C}^{k \times k}$, then A^{-1} can be computed in $\mathcal{O}\left(p(N / p)^{3}+(p k)^{3}\right)$ operations.

A sparse matrix perspective

Consider the system

$$
A x=(D+L S R) x=b
$$

With $z=R x$ and $y=S z$, this is equivalent to the structured sparse system

$$
\left[\begin{array}{ccc}
D & L & \\
R & & -I \\
& -I & S
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
b \\
0 \\
0
\end{array}\right]
$$

Factor using UMFPACK, SuperLU, MUMPS, Pardiso, etc.

Hierarchically block-separable matrices

Integral equation matrices are, in fact, hierarchically block-separable, i.e., they are block-separable at every level of an octree-type ordering.

In this setting, much more powerful algorithms can be developed.

Interpolative decomposition

Definition

An interpolative decomposition of a rank- k matrix $A \in \mathbb{C}^{m \times n}$ is a representation $A=B P$, where $B \in \mathbb{C}^{m \times k}$ is a column-submatrix of A and $P \in \mathbb{C}^{k \times n}$ contains the $k \times k$ identity, such that $\|P\|$ is small.

- The ID compresses the column space; to compress the row space, apply the ID to A^{T}. We call the retained rows and columns skeletons.
- Adaptive algorithms exist to compute the ID to any precision $\epsilon>0$ in $\mathcal{O}(k m n)$ time (Cheng et al., 2005; Liberty et al., 2007).

One-level matrix compression

(1) Compress the row space of each off-diagonal block row with the ID. Let the L_{i} be the corresponding row projection matrices.
(2) Compress the column space of each off-diagonal block column with the ID. Let the R_{j} be the corresponding column projection matrices.
(3) Approximate the off-diagonal blocks by $A_{i j} \approx L_{i} S_{i j} R_{j}$ for $i \neq j$.

Skeletonization

Multilevel matrix compression

Recursive skeletonization

Data sparsification

$$
N_{0}=8192
$$

$$
N_{3}=1849
$$

$N_{1}=7134$

$$
N_{4}=776
$$

$N_{2}=4138$

$$
N_{5}=265
$$

$$
G(x, y)=-\frac{1}{2 \pi} \log |x-y|, \quad \epsilon=10^{-3}
$$

Proxy compression

- General compression algorithm is global and so at least $\mathcal{O}\left(N^{2}\right)$
- Use Green's theorem to accelerate:

$$
u(x)=\int_{\Gamma}\left[u(y) \frac{\partial G}{\partial \nu(y)}(x, y)-G(x, y) \frac{\partial u}{\partial \nu(y)}(y)\right] d s(y)
$$

- Represent well-separated points with a local proxy surface

Compressed matrix representation

Compressed telescoping matrix representation:

$$
A \approx D^{(1)}+L^{(1)}\left[D^{(2)}+L^{(2)}\left(\cdots D^{(\lambda)}+L^{(\lambda)} S R^{(\lambda)} \cdots\right) R^{(2)}\right] R^{(1)}
$$

Compressed matrix representation

Compressed telescoping matrix representation:

$$
A \approx D^{(1)}+L^{(1)}\left[D^{(2)}+L^{(2)}\left(\cdots D^{(\lambda)}+L^{(\lambda)} S R^{(\lambda)} \cdots\right) R^{(2)}\right] R^{(1)}
$$

- Efficient storage (data-sparse)

Storage (2D volume, $\epsilon=10^{-3}$)		
N	Uncompressed	Compressed
8192	537 MB	9.65 MB
131072	137 GB	184 MB

Compressed matrix representation

Compressed telescoping matrix representation:

$$
A \approx D^{(1)}+L^{(1)}\left[D^{(2)}+L^{(2)}\left(\cdots D^{(\lambda)}+L^{(\lambda)} S R^{(\lambda)} \cdots\right) R^{(2)}\right] R^{(1)}
$$

- Efficient storage (data-sparse)
- Fast matrix-vector multiplication (generalized FMM)
- Fast matrix factorization and inverse application

Storage (2D volume, $\epsilon=10^{-3}$)		
N	Uncompressed	Compressed
8192	537 MB	9.65 MB
131072	137 GB	184 MB

Sparse inverse embedding

Recursively expand in sparse form:

$$
\left[\begin{array}{ccccccc}
D^{(1)} & L^{(1)} & & & & & \\
R^{(1)} & & -I & & & & \\
& -I & D^{(2)} & L^{(2)} & & & \\
& & R^{(2)} & \ddots & \ddots & & \\
& & & \ddots & D^{(\lambda)} & L^{(\lambda)} & \\
& & & & R^{(\lambda)} & & -I \\
& & & & & -I & S
\end{array}\right]\left[\begin{array}{c}
x \\
y^{(1)} \\
z^{(1)} \\
\vdots \\
\vdots \\
y^{(\lambda)} \\
z^{(\lambda)}
\end{array}\right]=\left[\begin{array}{c}
b \\
0 \\
0 \\
\vdots \\
\vdots \\
0 \\
0
\end{array}\right]
$$

Multilevel inversion formula:

$$
A^{-1} \approx \mathcal{D}^{(1)}+\mathcal{L}^{(1)}\left[\mathcal{D}^{(2)}+\mathcal{L}^{(2)}\left(\cdots D^{(\lambda)}+\mathcal{L}^{(\lambda)} \mathcal{S}^{-1} \mathcal{R}^{(\lambda)} \ldots\right) \mathcal{R}^{(2)}\right] \mathcal{R}^{(1)}
$$

Some comments

- Mild assumptions: low-rank off-diagonal blocks, Green's theorem
- Based on numerical linear algebra rather than analytic expansions
- Kernel-independent (non-oscillatory, elliptic): Laplace, Stokes, Yukawa (screened Poisson), low-frequency Helmholtz, etc.
- Compressed ranks are optimal for the problem at hand
- Trade accuracy for speed: user-specified precision
- Naturally parallelizable via block-sweep structure
- Current limitation: optimal complexity only in 1D (e.g., BIEs in 2D, axisymmetric BIEs in 3D)
- Same ideas can produce an $\mathcal{O}(N)$ compression-based FMM
- Can also work for PDE formulations (Xia et al., 2009)

Laplace FMM

\bigcirc LP pc $\square \square$ LP mv \diamond FMM \bullet RS pc $\quad \square \mathrm{RS} \mathrm{mv}$

Laplace BIE solver

- Less memory-efficient than FMM/GMRES
- Solve times are extremely fast (in elements/sec)

ϵ	10^{-3}	10^{-6}	10^{-9}
2D	3.3×10^{6}	2.0×10^{6}	1.7×10^{6}
3D	6.0×10^{5}	1.4×10^{5}	6.2×10^{4}

Molecular electrostatics

- Piecewise constant dielectric Poisson with interior sources
- $N=19752, \epsilon=10^{-3}$
- FMM/GMRES: 27 s
- RS precomp: 578 s
- RS solve: 0.08 s
- Break-even: 25 solves

Helmholtz problems

- Interactions are full-rank at high frequency
- Asymptotically no acceleration (becomes $\mathcal{O}\left(N^{3}\right)$ scheme)
- However, remains surprisingly viable: 200λ in 2D, 10λ in 3D
- At low to moderate frequency, sometimes superior to FMM/GMRES due to high iteration counts
- Memory requirements can be a concern
- Effective preconditioners for iterative solvers

Multiple scattering

$\delta / \lambda=15$

$\delta / \lambda=11$

$\delta / \lambda=20$

$\delta / \lambda=12.5$

$\delta / \lambda=10.5$

- Each object: 10λ
- Block inverse preconditioner
- Unpreconditioned: 700 iterations
- Preconditioned: 10 iterations
- $50 \times$ speedup

Approximate inverse preconditioning

- $N=20480,10 \lambda$
- Precondition with low-precision inverse $\left(~ \epsilon=10^{-3}\right)$
- Iterate for full accuracy $\left(\epsilon=10^{-12}\right)$
- Unpreconditioned: 190 iterations
- Preconditioned: 6 iterations
- $10 \times$ speedup

Choose your own adventure

(1) Towards a near-optimal direct solver
(2) Towards a direct solver for oscillatory kernels
(3) Concluding remarks

Towards a near-optimal direct solver

- In 2D and above, the number of skeletons grows with the box size
- Need more compression: skeletonize the skeletons
- Recall that skeletons line up along box boundaries
- Simple idea: cluster according to boundaries and re-compress
- Multiple rounds of compression at each level
- Recurse down on dimensionality: reduce to 1D case
- Expect $\mathcal{O}(N)$ or $\mathcal{O}(N \log N)$ complexity

Recompression schematic

$$
\text { compress } \downarrow
$$

$$
{ }^{\circ} 0
$$

$$
00_{0}^{0} 0 \quad 0
$$

$$
\begin{array}{llc}
0 & 0 & 0 \\
0 & 0^{\circ} & 0
\end{array}
$$

$$
000^{\circ}
$$

Towards a direct solver for oscillatory kernels

Previous work:

- BIEs on elongated objects in 2D (Michielssen et al., 1996; Martinsson and Rokhlin, 2007)
- Lippmann-Schwinger in 2D (Chen, 2002)
- BIEs on quasi-planar objects in 3D (Winebrand and Boag, 2009) No results yet for general BIEs!

Towards a direct solver for oscillatory kernels

Previous work:

- BIEs on elongated objects in 2D (Michielssen et al., 1996; Martinsson and Rokhlin, 2007)
- Lippmann-Schwinger in 2D (Chen, 2002)
- BIEs on quasi-planar objects in 3D (Winebrand and Boag, 2009) No results yet for general BIEs!

A key observation: at high frequency, the interaction rank between:

- two large boxes is large
- one large box and one small box is small

Exploit with the butterfly algorithm (Michielssen and Boag, 1996).

Butterfly algorithm

- Blocks of constant "area" have constant rank
- Opposite tree traversal
- Assume no singularities: e.g., consider Fourier integral operators (Candès et al., 2009; Ying, 2009; O'Neil et al., 2010)

Inverting the butterfly

At each level:

$$
A=\left[\begin{array}{ll}
L_{1}^{(1)} S_{11} R_{1}^{(1)} & L_{1}^{(2)} S_{12} R_{2}^{(1)} \\
L_{2}^{(1)} S_{21} R_{1}^{(2)} & L_{2}^{(2)} S_{22} R_{2}^{(2)}
\end{array}\right]
$$

Inverse: $A^{-1}=R^{-1} S^{-1} L^{-1}$, or use sparse embedding without D matrix

Butterfly comments

- Multilevel and multidimensional extensions are straightforward
- Preliminary experiments suggest fast inversion
- Expect $\mathcal{O}(N \log N)$ for Fourier integral operators (proxy also available)
- As yet unclear how to treat Helmholtz case (diagonal extraction?)
- Fame, fortune, and glory: revolutionize electromagnetics and imaging

Concluding remarks

- Fast direct solver for non-oscillatory integral equations (Poisson, Stokes, low-frequency Helmholtz, etc.)
- Based on multilevel matrix compression: pure numerical linear algebra
- Following precomputation, solve times are very fast
- Applications: optimization, design, evolution of time-dependent processes in fixed geometries, preconditioning
- Further work: more efficient algorithms, direct solvers for oscillatory kernels, other matrix factorizations

