A fast direct solver for non-oscillatory integral equations

Kenneth L. Ho

Courant Institute, New York University

Argonne Lab, Jan 2012

KL Ho (NYU)

Fast direct solver for integral equations

ANL 2012 1 / 36

1 Integral equations

- 2 Fast iterative solvers
- 3 Fast direct solvers
- 4 Numerical results

Consider Laplace's equation with Dirichlet boundary conditions:

$$\Delta u = 0$$
 in $\Omega \subset \mathbb{R}^3$, $u = f$ on $\partial \Omega$.

How to find *u*?

Consider Laplace's equation with Dirichlet boundary conditions:

$$\Delta u = 0$$
 in $\Omega \subset \mathbb{R}^3$, $u = f$ on $\partial \Omega$.

How to find *u*? Use a double-layer potential representation

$$u(x) = \int_{\partial\Omega} \frac{\partial G}{\partial \nu(y)}(x, y) \sigma(y) ds(y) \text{ in } \Omega,$$

where $G(x, y) = 1/(4\pi|x - y|)$ is the Laplace Green's function, ν is the unit outer surface normal, and σ is an unknown surface density.

Consider Laplace's equation with Dirichlet boundary conditions:

$$\Delta u = 0$$
 in $\Omega \subset \mathbb{R}^3$, $u = f$ on $\partial \Omega$.

How to find u? Use a double-layer potential representation

$$u(x) = \int_{\partial\Omega} \frac{\partial G}{\partial \nu(y)}(x, y) \sigma(y) ds(y) \text{ in } \Omega,$$

where $G(x, y) = 1/(4\pi|x - y|)$ is the Laplace Green's function, ν is the unit outer surface normal, and σ is an unknown surface density. Then appeal to classical potential theory to derive the integral equation

$$-\frac{1}{2}\sigma\left(x\right)+\int_{\partial\Omega}\frac{\partial G}{\partial\nu\left(y\right)}\left(x,y\right)\sigma\left(y\right)ds\left(y\right)=f\left(x\right)\quad\text{on }\partial\Omega.$$

- Well-conditioned (second-kind Fredholm equation)
- Accurate derivatives (differentiate under the integral)
- High-order methods (quadrature)
- Adaptive (often with dimensional reduction)

- Well-conditioned (second-kind Fredholm equation)
- Accurate derivatives (differentiate under the integral)
- High-order methods (quadrature)
- Adaptive (often with dimensional reduction)

Mathematically, the "right" thing to do: try to write down as much of the solution as possible before turning to numerics.

Consider Poisson's equation with free-space boundary conditions:

$$-\Delta u = f$$
 in $\Omega \subset \mathbb{R}^3$, $u = \mathcal{O}\left(rac{1}{|x|}
ight)$ as $|x| o \infty$.

Consider Poisson's equation with free-space boundary conditions:

$$-\Delta u = f \quad \text{in } \Omega \subset \mathbb{R}^3 \quad , \quad u = \mathcal{O}\left(rac{1}{|x|}
ight) \quad \text{as } |x| o \infty.$$

Invert the differential operator:

$$u(x) = \left[(-\Delta)^{-1} f \right](x) = \int_{\Omega} G(x, y) f(y) \, dv(y) \, .$$

In this case, there is no integral equation; the solution is just an integral.

Consider Poisson's equation with free-space boundary conditions:

$$-\Delta u = f \quad \text{in } \Omega \subset \mathbb{R}^3 \quad , \quad u = \mathcal{O}\left(rac{1}{|x|}
ight) \quad \text{as } |x| o \infty.$$

Invert the differential operator:

$$u(x) = \left[(-\Delta)^{-1} f \right](x) = \int_{\Omega} G(x, y) f(y) dv(y).$$

In this case, there is no integral equation; the solution is just an integral.

Procedure for general boundary conditions

- Integrate volume term
- Solve for boundary correction

Let $A \in \mathbb{C}^{N \times N}$ be a matrix discretization of some Green's function integral operator. (How to discretize?) Observe that A is dense.

- Cost of applying A: $\mathcal{O}(N^2)$
- Cost of inverting A: $\mathcal{O}(N^3)$

Let $A \in \mathbb{C}^{N \times N}$ be a matrix discretization of some Green's function integral operator. (How to discretize?) Observe that A is dense.

- Cost of applying A: $\mathcal{O}(N^2)$
- Cost of inverting A: $\mathcal{O}(N^3)$

This is contrast to competing methods based on finite differences or finite elements, which yield sparse matrices. Historically, this relative expense was a primary cause for the dearth of integral equations in numerical computing (except where there was no choice).

In the 1980s, fast algorithms to apply A in only $\mathcal{O}(N)$ or $\mathcal{O}(N \log N)$ time were developed:

- Treecode (Barnes and Hut, 1986)
- Fast multipole method (Greengard and Rokhlin, 1987)
- Panel clustering (Hackbusch and Nowak, 1989)

Combined with Krylov methods (e.g., GMRES), such techniques enabled fast iterative solution with only $O(N \log N)$ work in many situations.

Fast multipole (and related) methods

- Non-oscillatory Green's functions have smooth far fields
- Interactions between well-separated clusters are low-rank
- Exploit smoothness with a hierarchical decomposition of space

Fast iterative solvers have been very successful, but they remain inefficient in certain important regimes:

- When A is ill-conditioned (e.g., multiphysics, singular geometries)
- When Ax = b must be solved with many right-hand sides b or many perturbations of a base matrix A (e.g., scattering, optimization, design, time marching)

Fast iterative solvers have been very successful, but they remain inefficient in certain important regimes:

- When A is ill-conditioned (e.g., multiphysics, singular geometries)
- When Ax = b must be solved with many right-hand sides b or many perturbations of a base matrix A (e.g., scattering, optimization, design, time marching)

One solution: direct solvers.

- Robust: insensitive to conditioning, always works
- Fast solves and inverse updates following initial factorization

Fast iterative solvers have been very successful, but they remain inefficient in certain important regimes:

- When A is ill-conditioned (e.g., multiphysics, singular geometries)
- When Ax = b must be solved with many right-hand sides b or many perturbations of a base matrix A (e.g., scattering, optimization, design, time marching)

One solution: direct solvers.

- Robust: insensitive to conditioning, always works
- Fast solves and inverse updates following initial factorization

Can we accelerate direct solvers to the same extent?

Much active research in recent years:

- *H*-matrices (Hackbusch et al., 1999, 2000, 2002)
- Lippmann-Schwinger in 2D (Chen, 2002)
- FMM structure (Pals, 2004)
- BIEs in 2D (Martinsson and Rokhlin, 2005)
- HSS matrices (Chandrasekaran et al., 2006)
- one-level BIE solver in 3D (Greengard et al., 2009)

Current state of the art					
	1D	2D	3D		
Precomp Solve	$\mathcal{O}(N)$ $\mathcal{O}(N)$		$\mathcal{O}(N^2)$ $\mathcal{O}(N^{4/3})$		

Block-separable matrices

Definition

A block matrix A is block-separable if

$$\underbrace{\begin{bmatrix} \times & \times \\ \times & \times \end{bmatrix}}_{A_{ij}} = \underbrace{\begin{bmatrix} \times \\ \times \end{bmatrix}}_{L_i} \underbrace{\begin{bmatrix} \times \\ S_{ij} \end{bmatrix}}_{S_{ij}} \underbrace{\begin{bmatrix} \times & \times \end{bmatrix}}_{R_j} \quad , \quad i \neq j.$$

Block-separable matrices

Definition

A block matrix A is block-separable if

$$\underbrace{\begin{bmatrix} \times & \times \\ \times & \times \end{bmatrix}}_{A_{ij}} = \underbrace{\begin{bmatrix} \times \\ \times \end{bmatrix}}_{L_i} \underbrace{\begin{bmatrix} \times \\ S_{ij} \end{bmatrix}}_{S_{ij}} \underbrace{\begin{bmatrix} \times & \times \end{bmatrix}}_{R_j} \quad , \quad i \neq j.$$

Integral equation matrices are block-separable.

KL Ho (NYU)

A fast direct solver for block-separable matrices

If A is block-separable, then

If A is block-separable, then

and $A^{-1} = \mathcal{D} + \mathcal{LS}^{-1}\mathcal{R}$, where

 $\mathcal{D} = D^{-1} - D^{-1} L \Lambda R D^{-1}, \quad \mathcal{L} = D^{-1} L \Lambda, \quad \mathcal{R} = \Lambda R D^{-1}, \quad \mathcal{S} = \Lambda + S,$

with $\Lambda = (RD^{-1}L)^{-1}$. If A has $p \times p$ blocks and each $S_{ij} \in \mathbb{C}^{k \times k}$, then A^{-1} can be computed in $\mathcal{O}(p(N/p)^3 + (pk)^3)$ operations.

Consider the system

$$Ax = (D + LSR)x = b.$$

With z = Rx and y = Sz, this is equivalent to the structured sparse system

$$\begin{bmatrix} D & L \\ R & -I \\ & -I & S \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix}$$

Factor using UMFPACK, SuperLU, MUMPS, Pardiso, etc.

Integral equation matrices are, in fact, hierarchically block-separable, i.e., they are block-separable at every level of an octree-type ordering.

In this setting, much more powerful algorithms can be developed.

Definition

An interpolative decomposition of a rank-k matrix $A \in \mathbb{C}^{m \times n}$ is a representation A = BP, where $B \in \mathbb{C}^{m \times k}$ is a column-submatrix of A and $P \in \mathbb{C}^{k \times n}$ contains the $k \times k$ identity, such that ||P|| is small.

- The ID compresses the column space; to compress the row space, apply the ID to A^{T} . We call the retained rows and columns skeletons.
- Adaptive algorithms exist to compute the ID to any precision $\epsilon > 0$ in $\mathcal{O}(kmn)$ time (Cheng et al., 2005; Liberty et al., 2007).

- Compress the row space of each off-diagonal block row with the ID.
 Let the L_i be the corresponding row projection matrices.
- Compress the column space of each off-diagonal block column with the ID. Let the R_j be the corresponding column projection matrices.
- Solution Approximate the off-diagonal blocks by $A_{ij} \approx L_i S_{ij} R_j$ for $i \neq j$.

Multilevel matrix compression

Recursive skeletonization

Fast direct solver for integral equations

▲ 注 ▶ 注 少 Q @
ANL 2012 17 / 36

- ₹ 🕨 🕨

Data sparsification

$$G(x,y)=-rac{1}{2\pi}\log|x-y|\;,\quad\epsilon=10^{-3}$$

KL Ho (NYU)

▶ ◀ Ē ▶ Ē ∽ ९. ANL 2012 18 / 36

<ロ> (日) (日) (日) (日) (日)

Proxy compression

- General compression algorithm is global and so at least $\mathcal{O}(N^2)$
- Use Green's theorem to accelerate:

$$u(x) = \int_{\Gamma} \left[u(y) \frac{\partial G}{\partial \nu(y)}(x, y) - G(x, y) \frac{\partial u}{\partial \nu(y)}(y) \right] ds(y).$$

• Represent well-separated points with a local proxy surface

Compressed telescoping matrix representation:

$$A \approx D^{(1)} + L^{(1)} \left[D^{(2)} + L^{(2)} \left(\cdots D^{(\lambda)} + L^{(\lambda)} S R^{(\lambda)} \cdots \right) R^{(2)} \right] R^{(1)}$$

Compressed telescoping matrix representation:

$$A \approx D^{(1)} + L^{(1)} \left[D^{(2)} + L^{(2)} \left(\cdots D^{(\lambda)} + L^{(\lambda)} S R^{(\lambda)} \cdots \right) R^{(2)} \right] R^{(1)}$$

• Efficient storage (data-sparse)

Storage (2D volume, $\epsilon=10^{-3})$				
	N	Uncompressed	Compressed	
	8192	537 MB	9.65 MB	
	131072	137 GB	184 MB	

Compressed telescoping matrix representation:

$$A \approx D^{(1)} + L^{(1)} \left[D^{(2)} + L^{(2)} \left(\cdots D^{(\lambda)} + L^{(\lambda)} S R^{(\lambda)} \cdots \right) R^{(2)} \right] R^{(1)}$$

- Efficient storage (data-sparse)
- Fast matrix-vector multiplication (generalized FMM)
- Fast matrix factorization and inverse application

Sto	Storage (2D volume, $\epsilon=10^{-3})$				
	N Uncompressed		Compressed		
	8192	537 MB	9.65 MB		
	131072	137 GB	184 MB		

Recursively expand in sparse form:

$$\begin{bmatrix} D^{(1)} & L^{(1)} & & & \\ R^{(1)} & -I & & \\ & -I & D^{(2)} & L^{(2)} & & \\ & R^{(2)} & \ddots & \ddots & \\ & & \ddots & D^{(\lambda)} & L^{(\lambda)} & \\ & & R^{(\lambda)} & -I & \\ & & & -I & S \end{bmatrix} \begin{bmatrix} x \\ y^{(1)} \\ z^{(1)} \\ \vdots \\ \vdots \\ y^{(\lambda)} \\ z^{(\lambda)} \end{bmatrix} = \begin{bmatrix} b \\ 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

Multilevel inversion formula:

$$A^{-1} \approx \mathcal{D}^{(1)} + \mathcal{L}^{(1)} \left[\mathcal{D}^{(2)} + \mathcal{L}^{(2)} \left(\cdots \mathcal{D}^{(\lambda)} + \mathcal{L}^{(\lambda)} \mathcal{S}^{-1} \mathcal{R}^{(\lambda)} \cdots \right) \mathcal{R}^{(2)} \right] \mathcal{R}^{(1)}.$$

- Mild assumptions: low-rank off-diagonal blocks, Green's theorem
- Based on numerical linear algebra rather than analytic expansions
- Kernel-independent (non-oscillatory, elliptic): Laplace, Stokes, Yukawa (screened Poisson), low-frequency Helmholtz, etc.
- Compressed ranks are optimal for the problem at hand
- Trade accuracy for speed: user-specified precision
- Naturally parallelizable via block-sweep structure
- Current limitation: optimal complexity only in 1D (e.g., BIEs in 2D, axisymmetric BIEs in 3D)
- Same ideas can produce an $\mathcal{O}(N)$ compression-based FMM
- Can also work for PDE formulations (Xia et al., 2009)

Laplace FMM

Laplace BIE solver

- Less memory-efficient than FMM/GMRES
- Solve times are extremely fast (in elements/sec)

ε	10^{-3}	10^{-6}	10 ⁻⁹
2D	$3.3 imes10^6$	$2.0 imes10^{6}$	$1.7 imes10^{6}$
3D	$6.0 imes10^5$	$1.4 imes10^5$	$6.2 imes10^4$

KL Ho (NYU)

Molecular electrostatics

- Piecewise constant dielectric Poisson with interior sources
- $N = 19752, \ \epsilon = 10^{-3}$
- FMM/GMRES: 27 s
- RS precomp: 578 s
- RS solve: 0.08 s
- Break-even: 25 solves

- Interactions are full-rank at high frequency
- Asymptotically no acceleration (becomes $\mathcal{O}(N^3)$ scheme)
- However, remains surprisingly viable: 200 λ in 2D, 10 λ in 3D
- At low to moderate frequency, sometimes superior to FMM/GMRES due to high iteration counts
- Memory requirements can be a concern
- Effective preconditioners for iterative solvers

Multiple scattering

- Each object: 10λ
- Block inverse preconditioner
- Unpreconditioned: 700 iterations
- Preconditioned: 10 iterations
- $50 \times$ speedup

- **(** 🗇

- ₹ 🕨 🕨

ANL 2012 27 / 36

-

Approximate inverse preconditioning

- N = 20480, 10λ
- Precondition with low-precision inverse ($\epsilon = 10^{-3}$)
- Iterate for full accuracy ($\epsilon = 10^{-12}$)
- Unpreconditioned: 190 iterations
- Preconditioned: 6 iterations
- $10 \times$ speedup

- Towards a near-optimal direct solverTowards a direct solver for oscillatory kernels
- Concluding remarks

★ ∃ →

- In 2D and above, the number of skeletons grows with the box size
- Need more compression: skeletonize the skeletons
- Recall that skeletons line up along box boundaries
- Simple idea: cluster according to boundaries and re-compress
- Multiple rounds of compression at each level
- Recurse down on dimensionality: reduce to 1D case
- Expect $\mathcal{O}(N)$ or $\mathcal{O}(N \log N)$ complexity

Recompression schematic

• = • •

Previous work:

- BIEs on elongated objects in 2D (Michielssen et al., 1996; Martinsson and Rokhlin, 2007)
- Lippmann-Schwinger in 2D (Chen, 2002)
- BIEs on quasi-planar objects in 3D (Winebrand and Boag, 2009)

No results yet for general BIEs!

Previous work:

- BIEs on elongated objects in 2D (Michielssen et al., 1996; Martinsson and Rokhlin, 2007)
- Lippmann-Schwinger in 2D (Chen, 2002)
- BIEs on quasi-planar objects in 3D (Winebrand and Boag, 2009)

No results yet for general BIEs!

A key observation: at high frequency, the interaction rank between:

- two large boxes is large
- one large box and one small box is small

Exploit with the butterfly algorithm (Michielssen and Boag, 1996).

Butterfly algorithm

- Blocks of constant "area" have constant rank
- Opposite tree traversal
- Assume no singularities: e.g., consider Fourier integral operators (Candès et al., 2009; Ying, 2009; O'Neil et al., 2010)

KL Ho (NYU)

Inverting the butterfly

At each level:

Inverse: $A^{-1} = R^{-1}S^{-1}L^{-1}$, or use sparse embedding without D matrix

- Multilevel and multidimensional extensions are straightforward
- Preliminary experiments suggest fast inversion
- Expect $O(N \log N)$ for Fourier integral operators (proxy also available)
- As yet unclear how to treat Helmholtz case (diagonal extraction?)
- Fame, fortune, and glory: revolutionize electromagnetics and imaging

- Fast direct solver for non-oscillatory integral equations (Poisson, Stokes, low-frequency Helmholtz, etc.)
- Based on multilevel matrix compression: pure numerical linear algebra
- Following precomputation, solve times are very fast
- Applications: optimization, design, evolution of time-dependent processes in fixed geometries, preconditioning
- Further work: more efficient algorithms, direct solvers for oscillatory kernels, other matrix factorizations