
Fast direct solvers by multilevel matrix compression
Kenneth L. Ho

Courant Institute of Mathematical Sciences and Program in Computational Biology
New York University, New York, NY, USA

ho@courant.nyu.edu

Introduction

Current state-of-the-art solvers for large dense structured
linear systems, e.g., as arising from boundary integral dis-
cretizations of many partial differential equations in physics,
are typically iterative, coupling Krylov methods with algo-
rithms to apply the system matrix rapidly. Such tech-
niques are “fast”, often with O(kN) complexity, where k
is the number of iterations required and N is the or-
der of the system, and have enabled enormous break-
throughs in computational science and engineering; how-
ever, several severe shortfalls remain. Here, we present
instead a fast direct solver that overcomes these limita-
tions. The core algorithm compresses the system matrix via
the multilevel application of the interpolative decomposition.

Advantages of direct solvers

• Insensitivity to ill conditioning.

• Fast inverse applications.

• Efficient low-rank updates.

The compressed repre-
sentation allows efficient
storage, fast matrix-vector
multiplication, and fast
matrix factorization and
inverse application via
embedding into a highly
structured sparse matrix. For boundary integral equations,
the solver typically has complexity O(N) in 2D and O(N3/2)
in 3D.

This is joint work with Leslie Greengard.

Low-rank structures

We assume that the system matrix can be block-partitioned
such that each row or column block, with the diagonal portion
deleted, is low-rank (Figure 1). This structure is common to
many physical problems. As an example, consider Laplace’s
equation in 3D with Dirichlet boundary conditions:

∆u = 0 in Ω, u = f on ∂Ω.

Figure 1: Matrix rank structure.

Potential theory suggests the double-layer representation

u (x) =

∫
∂Ω

∂G

∂ny
(x, y)σ (y) dSy, x ∈ Ω,

where

G (x, y) =
1

4π |x− y|

is the Green’s function, ny is the unit outer normal at y ∈ ∂Ω,
and σ is an unknown surface charge density. As x→ ξ ∈ ∂Ω,

u (x)→ −1

2
σ (ξ) +

∫
∂Ω

∂G

∂ny
(ξ, y)σ (y) dSy,

so enforcing the boundary condition gives the second-kind
integral equation

−1

2
σ (ξ) +

∫
∂Ω

∂G

∂ny
(ξ, y)σ (y) dSy = f (ξ) ,

or, upon discretization, the linear system Aijσj = fi. Sorted
according to an octree ordering so that nearby discretization
nodes are grouped together, the matrix A has precisely the
rank structure shown in Figure 1 due to the smoothness of
the far field.

Matrix compression

We compress each low-rank matrix block by using the in-
terpolative decomposition (ID), resulting in a skeleton matrix
of dimension K � N (Figure 2). Since the cost of direct

ID A = BP

• B is a submatrix of A.

• P is a projection matrix
containing the identity.

inversion is cubic in the ma-
trix dimension, this provides a
significant acceleration. If the
matrix is endowed with a tree
such that the low-rank struc-
ture holds at each level, e.g.,
via an octree, then we can
further compress the matrix by repeating this procedure hi-
erarchically (Figure 3). The multilevel compression algorithm

Figure 2: Compression of low-rank matrix blocks.

Figure 3: Multilevel matrix compression.

computes a representation of the form

A = Aii + LiSijRj,

where Aii is the block-diagonal part of A; Li and Rj are
block-diagonal row and column interpolation matrices, con-
sisting of ID projection matrices; and Sij is the skeleton ma-
trix, which itself is compressed recursively in the same form.

Observe that the compressed representation admits fast
matrix-vector multiplication; thus, the current work may also
be regarded as a kernel-independent fast multipole method
(FMM).

Matrix inversion

To compute a compressed matrix inverse, we note that the
compressed system Ax = b can be written as

bi = Aiixi +
∑
j 6=i

Aijxj = Aiixi + Li
∑
j 6=i

SijRjxj,

which is equivalent to the expanded system

Aiixi + Liyi = bi, Rjxj = zj,
∑
j 6=i

Sijzj = yj,

i.e., A L
R −I
−I S

xy
z

 =

b0
0

 ,

where the linear system with matrix S can itself be ex-
panded in the same form. The resulting matrix is sparse and
highly structured, and can be factored rapidly using standard
sparse techniques. Once the factors have been computed,
any given system can be solved at minimal cost.

Numerical results

As examples, we compressed the unscaled Laplace poten-
tial interaction matrices

Aij =
(
1− δij

)
log rij in 2D, Aij =

(
1− δij

)
rij

in 3D

between surface points to an accuracy of ε = 10−6, and com-
pared the application and solve times against using LAPACK
and the FMM, where appropriate (Tables 1 and 2). Sparse
matrix factorization and inverse application were performed
with UMFPACK. All computations were run on a single core
of a 2.66 GHz processor.

The data reflect the O(N) and O(N3/2) scalings in 2D
and 3D, respectively. Furthermore, for the problem sizes
considered, the breakeven point against using the FMM is
quite small, on the order of fifty matrix applications, or about
ten solves.

Conclusion

We have constructed a fast direct solver based on multilevel
matrix compression that achieves optimal or near-optimal
scalings for boundary integral equations in 2D and 3D. We
expect that our method will have significant impact in the
context of optimization and design, where the large costs
of matrix compression and factorization can be amortized
against the many systems to be solved.

Acknowledgments

We thank Zydrunas Gimbutas for the sparse inverse formula-
tion, and Mark Tygert for the many helpful discussions. KLH
acknowledges support from the NYU MacCracken and NSF
IGERT (DGE 0333389) programs.

Table 1: Data for Aij = (1− δij) log rij on the unit circle at ε = 10−6.

N
k

tcm (s) tmv (s) tLU (s) tinv (s) storage (MB)
row col uncomp comp FMM uncomp comp uncomp comp uncomp comp

4096 77 77 0.24E+00 0.23E-01 0.10E-02 0.49E-01 0.49E+01 0.15E+00 0.58E-01 0.30E-02 134.22 2.59
8192 83 83 0.50E+00 0.96E-01 0.20E-02 0.87E-01 0.39E+02 0.28E+00 0.23E+00 0.50E-02 536.87 4.42
16384 87 87 0.98E+00 (0.38E+00) 0.60E-02 0.18E+00 (0.31E+03) 0.49E+00 (0.91E+00) 0.11E-01 2147.48 8.80
32768 94 93 0.20E+01 (0.15E+01) 0.12E-01 0.37E+00 (0.25E+04) 0.98E+00 (0.36E+01) 0.21E-01 8589.93 17.46
65536 99 100 0.42E+01 (0.61E+01) 0.25E-01 0.76E+00 (0.20E+05) 0.20E+01 (0.15E+02) 0.43E-01 34359.74 34.56

131072 102 102 0.79E+01 (0.25E+02) 0.44E-01 0.14E+01 (0.16E+06) 0.41E+01 (0.58E+02) 0.82E-01 137438.95 68.46

Table 2: Data for Aij = (1− δij)/rij on the unit sphere at ε = 10−6.

N
k

tcm (s) tmv (s) tLU (s) tinv (s) storage (MB)
row col uncomp comp FMM uncomp comp uncomp comp uncomp comp

4096 1580 1583 0.47E+01 0.25E-01 0.80E-02 0.45E+00 0.49E+01 0.21E+01 0.55E-01 0.14E-01 134.22 38.50
8192 2294 2289 0.16E+02 0.12E+00 0.21E-01 0.91E+00 0.38E+02 0.68E+01 0.26E+00 0.37E-01 536.87 94.52

16384 3221 3226 0.40E+02 (0.49E+00) 0.44E-01 0.20E+01 (0.30E+03) 0.20E+02 (0.10E+01) 0.92E-01 2147.48 219.87
32768 4469 4477 0.11E+03 (0.20E+01) 0.99E-01 0.37E+01 (0.24E+04) 0.51E+02 (0.41E+01) 0.22E+00 8589.93 499.78
65536 6256 6234 0.31E+03 (0.79E+01) 0.21E+00 0.10E+02 (0.19E+05) (0.15E+03) (0.17E+02) (0.47E+00) 34359.74 1132.28
131072 8682 8729 0.85E+03 (0.31E+02) 0.48E+00 0.18E+02 (0.15E+06) (0.46E+03) (0.66E+02) (0.11E+01) 137438.95 2497.66

Courant 75th, Courant Institute 75th Anniversary, May 7, 2011, New York University

