Introduction	Model formulation	Results	Conclusion

Mathematical modeling of apoptosis: the death-inducing signaling complex

Kenneth L. Ho

Courant Institute, New York University

NYU Biomathematics Seminar (2009 Feb 3)

Introduction	Model formulation	Results	Conclusion
●00000	00	0000000	000
What is apoptosis	;?		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Model formulation	Results	Conclusion
00000			
\A/I . *			
What is and	ntosis (

- Involved in many physiological processes
- Dysregulation associated with pathological conditions
- Characteristic cell death morphology

Introduction	Model formulation	Results	Conclusion
00000			
What is anon	tosis?		

- Involved in many physiological processes
- Dysregulation associated with pathological conditions
- Characteristic cell death morphology

••••••	00	0000000	000
What is apo	ptosis?		

- Involved in many physiological processes
- Dysregulation associated with pathological conditions
- Characteristic cell death morphology

Introduction	Model formulation	Results	Conclusion
00000		0000000	000
Riochomistr	v of apontosis		

Hengartner (2000)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction Model formulation of Activity and Activity a

Previous models of apoptosis

Complete but unstable

Harrington et al. (2008) Hua et al. (2005) Okazaki et al. (2008)

Stable but incomplete

Bagci et al. (2006) Eissing et al. (2004) Legewie et al. (2006)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 Introduction
 Model formulation
 Results
 Conclusion

 00<000</td>
 00
 0000000
 000

Previous models of apoptosis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How to achieve a complete and stable model?

- Mechanistic description of oligomerization
- Inclusion of inhibitors (IAP, BAR, cFLIP)
- Synthesis and degradation

Introduction	Model formulation	Results	Conclusion
000000	00	0000000	000
Role of cFLIP: a	toy model		

• Toy model:

• Reactions:

$$\begin{split} \mathsf{DISC} + \mathsf{cFLIP} & \stackrel{k_1}{\underset{k_{-1}}{\longleftarrow}} \mathsf{DISC:cFLIP}, \\ \mathsf{DISC} + \mathsf{Casp8} & \stackrel{k_2}{\longrightarrow} \mathsf{DISC} + \mathsf{Casp8^*}, \\ \emptyset & \stackrel{\alpha}{\underset{\beta}{\longleftarrow}} \mathsf{Casp8} \quad , \quad \mathsf{Casp8^*} & \stackrel{\gamma}{\rightarrow} \emptyset \end{split}$$

• Steady state:

$$[\mathsf{Casp8}^*]_{ss} = \frac{\alpha/\gamma}{1+\beta/(k_2 [\mathsf{DISC}]_{ss})},$$

Role of cFLIP: a toy model

Sac

æ

Introduction	Model formulation	Results 0000000	Conclusion 000
Goals			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Focus on the extrinsic pathway of apoptosis

• DISC formation and its downstream interactions

Introduction	Model formulation	Results 0000000	Conclusion 000
Goals			

Focus on the extrinsic pathway of apoptosis

• DISC formation and its downstream interactions

Goals

- To construct a biologically relevant model
 - Bistability at physiological parameters
 - Meaningful input-output map (FasL \rightarrow Casp3*)

- To study the function of cFLIP
 - How does it affect the apoptotic threshold?
 - Does it confer robustness to the system?

Introduction	Model formulation	Results	Conclusion
000000	●○	0000000	000
DISC model			

Important features

- Fas trimerization
- Stepwise recruitment
- Regulation by cFLIP
- Pairwise Casp8 activation

Introduction	Model formulation	Results	Conclusion
000000	●○	0000000	000
DISC model			

Reactions [with $(i, j, k, l) \equiv$ FasL:Fas_i:FADD_j:cFLIP_k:Casp8_l]:

$$\begin{split} &(i,j,k,l) + \mathsf{Fas} \Longrightarrow (i+1,j,k,l) \\ &(i,j,k,l) + \mathsf{FADD} \Longrightarrow (i,j+1,k,l) \\ &(i,j,k,l) + \mathsf{cFLIP} \Longrightarrow (i,j,k+1,l) \\ &(i,j,k,l) + \mathsf{Casp8} \rightleftharpoons (i,j,k,l+1) \\ &(i,j,k,l) \longrightarrow (i,j,k,l-2) + 2\mathsf{Casp8}^* \end{split}$$

Important features

- Fas trimerization
- Stepwise recruitment
- Regulation by cFLIP
- Pairwise Casp8 activation

Introduction	Model formulation	Results	Conclusion
000000	●○	0000000	000
DISC model			

Reactions [with $(i, j, k, l) \equiv$ FasL:Fas_i:FADD_j:cFLIP_k:Casp8_l]:

$$\begin{split} &(i,j,k,l) + \mathsf{Fas} \Longrightarrow (i+1,j,k,l) \\ &(i,j,k,l) + \mathsf{FADD} \Longrightarrow (i,j+1,k,l) \\ &(i,j,k,l) + \mathsf{cFLIP} \rightleftharpoons (i,j,k+1,l) \\ &(i,j,k,l) + \mathsf{Casp8} \rightleftharpoons (i,j,k,l+1) \\ &(i,j,k,l) \longrightarrow (i,j,k,l-2) + 2\mathsf{Casp8}^* \end{split}$$

Important features

- Fas trimerization
- O Stepwise recruitment
- 8 Regulation by cFLIP
- Pairwise Casp8 activation

Model parameters $(\delta, \sigma_{cFLIP}, \sigma_{Casp8})$: Death domain clustering $(\delta = 1, 2, 3)$ CFLIP stoichiometry $(\sigma_{cFLIP} = 1, 2, 3)$ Casp8 stoichiometry $(\sigma_{Casp8} = 2, 3)$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Introduction	Model formulation	Results	Conclusion
000000	○●	0000000	
Extrinsic caspase	model		

 \bullet Couple to DISC model, map from Casp8 \rightarrow Casp3:

• Reactions:

$$Casp8^* + Casp3 \longrightarrow Casp8^* + Casp3^*$$
$$Casp3^* + Casp8 \longrightarrow Casp3^* + Casp8^*$$
$$Casp8^* + BAR \rightleftharpoons Casp8^*:BAR$$
$$Casp3^* + IAP \rightleftharpoons Casp3^*:IAP$$

596

æ

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

 Introduction
 Model formulation
 Results
 Conclusic

 Ocoupled extrinsic caspase model (3,3,3)

Introduction	Model formulation	Results	Conclusion
000000		○○○●○○○	000
A			

Apoptotic threshold

◆□> ◆□> ◆三> ◆三> ・三 のへの

DICC market time			
000000	00	0000000	000
Introduction	Model formulation	Results	Conclusion

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Introduction	Model formulation	Results	Conclusion
000000	00	○○○○○●○	000
Robustness with I	FasL		

- $\beta:$ minimum fractional inhibitor reduction for apoptosis
 - $[\mathsf{IAP}]_0 \mapsto (1 \beta) [\mathsf{IAP}]_0$ and $[\mathsf{BAR}]_0 \mapsto (1 \beta) [\mathsf{BAR}]_0$
 - β is a measure of robustness

Introduction	Model formulation	Results	Conclusion
000000	00	○○○○○●○	000
Robustness with	FasL		

- $\beta:$ minimum fractional inhibitor reduction for apoptosis
 - $[\mathsf{IAP}]_0 \mapsto (1 \beta) [\mathsf{IAP}]_0$ and $[\mathsf{BAR}]_0 \mapsto (1 \beta) [\mathsf{BAR}]_0$
 - β is a measure of robustness

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

000000	00		000
Introduction	Model form	ulation Results	Conclusion

Robustness with cFLIP

◆□> ◆□> ◆三> ◆三> ● 三 のへの

Introduction	Model formulation	Results	Conclusion
000000		0000000	●○○
Conclusion			

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Model exhibits irreversible bistability

- Mechanistic description
- Synthesis and degradation

Introduction	Model formulation	Results	Conclusion
000000		0000000	●○○
Conclusion			

Model exhibits irreversible bistability

- Mechanistic description
- Synthesis and degradation

② Only significant parameter is $\sigma_{\rm cFLIP}$; otherwise, degenerate

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Model formulation	Results	Conclusion
000000	00	0000000	●○○
Conclusion			

Model exhibits irreversible bistability

- Mechanistic description
- Synthesis and degradation
- **②** Only significant parameter is $\sigma_{\rm cFLIP}$; otherwise, degenerate

- cFLIP protects cell survival and robustness ($\sigma_{cFLIP} > 1$)
 - Increases apoptotic threshold
 - Maintains robustness of bistability

Introduction	Model formulation	Results	Conclusion
000000		0000000	●○○
Conclusion			

Model exhibits irreversible bistability

- Mechanistic description
- Synthesis and degradation
- **②** Only significant parameter is $\sigma_{\rm cFLIP}$; otherwise, degenerate
- **③** cFLIP protects cell survival and robustness ($\sigma_{cFLIP} > 1$)
 - Increases apoptotic threshold
 - Maintains robustness of bistability

But the only truly significant result is **bistability**; the rest is just minor details if we're interested in bigger questions...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Model formulation	Results	Conclusion
000000	00	0000000	○●○
Ideas!			

What are the determinants of cell survival or death?

- Linear classifier: $y = \theta(\sum_i w_i x_i)$
- SVD (principal components)
- GSVD as a comparison tool (Alter et al., 2003)

Introduction	Model formulation	Results	Conclusion
000000	00	0000000	○●○
Ideas!			

What are the determinants of cell survival or death?

- Linear classifier: $y = \theta(\sum_i w_i x_i)$
- SVD (principal components)
- GSVD as a comparison tool (Alter et al., 2003)
- Similarly, study how bistability is maintained

Introduction	Model formulation	Results	Conclusion
000000	00	0000000	○●○
Ideas!			

- What are the determinants of cell survival or death?
 - Linear classifier: $y = \theta(\sum_i w_i x_i)$
 - SVD (principal components)
 - GSVD as a comparison tool (Alter et al., 2003)
- Similarly, study how bistability is maintained
- What controls the apoptotic threshold?
 - Linear regression

Introduction	Model formulation	Results	Conclusion
000000	00	0000000	○●○
Ideas!			

- What are the determinants of cell survival or death?
 - Linear classifier: $y = \theta(\sum_i w_i x_i)$
 - SVD (principal components)
 - GSVD as a comparison tool (Alter et al., 2003)
- Similarly, study how bistability is maintained
- What controls the apoptotic threshold?
 - Linear regression

Any suggestions?

Introduction	Model formulation	Results	Conclusion
			000
References			

- Alter O, Brown PO, Botstein D (2003) Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proc Natl Acad Sci USA 100(6):3351–3356.
- Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I (2006) Bistability in Apoptosis: Roles of Bax, Bcl-2, and Mitochondrial Permeability Transition Pores. Biophys J 90(5):1546–1559.
- Eissing T, Conzelmann H, Gilles ED, Allgöwer F, Bullinger E, Scheurich P (2004) Bistability Analyses of a Caspase Activation Model for Receptor-induced Apoptosis. J Biol Chem 279(35):36892–36897.
- Harrington HA, Ho KL, Ghosh S, Tung KC (2008) Construction and analysis of a modular model of caspase activation in apoptosis. Theor Biol Med Model 5(1):26.
- Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776.
- Hua F, Cornejo MG, Cardone MH, Stokes CL, Lauffenburger DA (2005) Effects of Bcl-2 Levels on Fas Signaling-Induced Caspase-3 Activation: Molecular Genetic Tests of Computational Model Predictions. J Immunol 175(2):985–995.
- Lai R, Jackson TL (2004) A Mathematical Model of Receptor-Mediated Apoptosis: Dying to Know Why FasL is a Trimer. Math Biosci Eng 11(2):325–338.
- Legewie S, Blüthgen N, Herzel H (2006) Mathematical Modeling Identifies Inhibitors of Apoptosis as Mediators of Positive Feedback and Bistability. PLoS Comput Biol 2(9):e120.
- Okazaki N, Asano R, Kinoshita T, Chuman H (2008) Simple computational models of type I/type II cells in Fas signaling-induced apoptosis. J Theor Biol 250(4):621–633.