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Introduction

Electrostatic interactions are well-known to play an impor-
tant role in determining protein structure and function, with
charge interaction energies reaching the order of 10–100
times the characteristic energy kT . The electrostatic poten-
tial describing the effect of such interactions is therefore an
important quantity to consider in the analysis of proteins,
whether arising through the study of natural biomolecules or
through the design and engineering of synthetic ones.

The calculation of the electrostatic potential of a sol-
vated biomolecule is computationally intensive, and its
cost increases very quickly with the size of the pro-
tein under consideration. Thus, fast algorithms are
necessary to make the electrostatic analysis of macro-
molecules feasible. Current state-of-the-art methods
are typically iterative, coupling fast matrix-vector multi-
plication routines with conjugate gradient-type schemes.

Direct solvers of Ax = b

(1) Reduced sensitivity to the con-
ditioning of A.

(2) Fast application of A−1, once
computed, to multiple vectors
b.

(3) Efficiency at handling low-rank
perturbations of A.

Here, we consider instead
direct methods, which en-
joy several significant ad-
vantages over their iterative
counterparts, and describe
our recent progress in the
development of fast direct
solvers for molecular electro-
statics.

This is joint work with Leslie Greengard and Zydrunas
Gimbutas.

Potential equations

Σ molecular surface
Ω1 protein interior
Ω2 ionic solution
ν unit normal to Σ
ϕ electrostatic potential

ε =

{
ε1 in Ω1

ε2 in Ω2
dielectric permittivity

qi charge strengths
ri charge locations

λ =

√
2Ie2

ε2kT
inverse Debye length

KL =
1

4πr
Laplace potential

KY =
e−λr

4πr
Yukawa potential

f ∗ g convolution on Σ
σ inner charge density
µ outer charge density

The electrostatic potential is
assumed to satisfy Poisson’s
equation in the protein inte-
rior, with sources given by
the fixed charges of the pro-
tein; and the linearized Poisson-
Boltzmann equation in the sur-
rounding ionic solution, which
describes the effect of ionic
screening in the solvent. Thus,
we have the interface potential
problem

∇2ϕ (r) =

{
− (1/ε1)

∑n
i=1 qiδ (r − ri) , r ∈ Ω1

λ2ϕ (r) , r ∈ Ω2

with the jump conditions [ϕ] = [ε(∂ϕ/∂ν)] = 0 on Σ.

We use the single-layer potential solution representation

ϕ (r) =

{
(KL ∗ σ) (r) + ϕ0 (r) , r ∈ Ω1

(KY ∗ µ) (r) , r ∈ Ω2

Figure 1: Potential equations and solution represenation.

where

ϕ0 (r) =

n∑
i=1

qiKL (r − ri)

Boundary integral systems

(1) Dimensional reduction from
volume to surface

(2) High accuracy from faithful rep-
resentation of geometry

is the potential due to the
fixed charges, to obtain a
boundary integral system in
the unknown surface charge
densities σ and µ. The jump
conditions then become

KL ∗ σ −KY ∗ µ = ϕ0,

ε1

(
σ

2
+
∂KL

∂ν
∗ σ
)
− ε2

(
−µ

2
+
∂KY

∂ν
∗ µ
)

= −ε1
∂ϕ0

∂ν
.

On discretizing using collocation, with the convolution inte-
grals evaluated by quadrature over a triangle mesh of Σ, we
obtain a linear system Ax = b, where x is a vector of the
inner and outer surface charge densities at the collocation
points.

Accelerated solution

We now deal with the linear algebraic problem of solving
Ax = b. In general, the N × N system matrix A is dense.
However, smoothness of the integral operators allows the
high-accuracy representation of well-separated interactions
by low-rank approximations. We exploit this by compressing
A to obtain a K×K skeleton matrix, where typically K � N .
Since direct inversion of an m×m matrix takes O(m3) opera-
tions, this dramatically reduces the work required to compute
A−1.

Figure 2: One-level matrix compression.

Figure 3: Surface skeletonization.

Figure 4: Multilevel matrix compression.

This process can be applied recursively by compressing the
skeleton after a suitable reordering of the variables by clus-
tering. This leads to a multilevel matrix inversion scheme.

Once the surface charge densities have been determined,
the electrostatic potential may be evaluated at any point in
space by using the single-layer potential representations.
This step may be accelerated as well by using the fast multi-
pole method (FMM) to apply the discretized integral operator.

The overall computational cost of the algorithm is expected
to scale as O(N log2N).

Table 1: Memory requirements.

Matrix Dimensions Memory use

Full 200, 000× 200, 000 320 Gb
Compressed 2, 000× 2, 000 32 Mb

Application to pKa calculations

As an illustration of the power of direct methods, we outline
the problem of computing the pKa of a titratable residue in a
protein. Briefly, the pKa measures the strength of an acid in
solution by assessing its protonation state. The pKa of key
residues, like Asp, Glu, Lys, Arg, and His, often give insight
into the stability and reactivity of a protein.

Figure 5: Protonation of aspartate.

pKa acid dissociation constant
pK intr

i shifted pKa of ith site
θ protonation state of protein

θi =

{
1 if HA
0 if A – protonation state of ith site

〈·〉 state average
p(θ) probability of θ
W (θ) electrostatic energy of θ
k Boltzmann’s constant
T temeprature
Z partition function

The pKa of an acid
can be calculated from
the Henderson-Hasselbalch
equation as the pH at which
the acid is half-protonated on
average. This involves taking
a Boltzmann sum

〈θi〉 =
∑
θ

θip (θ) ,

where

p (θ) =
1

Z
exp

ln 10
∑
i

θi

(
pK intr

i − pH
)
−W (θ)

kT


is the probability of protonation state θ of the protein.

Protonation state sampling

(1) Assume only electrostatic in-
teractions

(2) Boltzmann average has 2N

contributions

(3) Use Monte Carlo methods to
break dimensionality barrier

Since a protein typically has
multiple titrating sites, the cal-
culation of the titration curve
〈θi〉 as a function of the pH,
from which the pKa may be
derived, requires the sam-
pling of many different proto-
nation states θ. While an iter-
ative solver must solve each
case essentially independently, a direct solver can take ad-
vantage of the fact that θ only changes the vector b in the
system Ax = b, so once A−1 has been computed, each
solve x = A−1b may be obtained at minimal cost by applying
A−1, which requires onlyO(N) operations by using the FMM.

Furthermore, protein conformations are dependent on the
electrostatic environment. Thus, different choices of θ are
expected to induce local deformations of the surface geom-
etry. This constitutes a low-rank perturbation of A, which a
direct method can handle very efficiently, given A−1, by form-
ing the Schur complement.

Table 2: Fast application of matrix inverse.

Tolerance Skeletons Factorization Application

ε = 10−2 K = 7, 049 20 min 0.3 s
ε = 10−1 K = 1, 596 10 min 0.1 s

Molecular surface triangulation with
N = 20, 600. Times are for a single-
processor 1.9 GHz workstation. For
comparision, a FMM-based iterative al-
gorithm requires several seconds for
each solve.

Current progress

We currently have an implementation of the Pois-
son/linearized Poisson-Boltzmann solver in Fortran, as well
as an interface to the matrix compression libraries. Multilevel
matrix compression is under development, as is an interface
to UMFPACK for fast matrix factorization.
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