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Introduction
Background: Apoptosis

Apoptosis is a conserved, highly regulated form of programmed cell
death in multicellular organisms.

@ Involved in many physiological processes
@ Dysregulation associated with pathological conditions

@ Characteristic cell death morphology

Nuclear fragmentation

O@

@ Apoptotic body

Cell shrinkage

Nuclear condensation
N

Nucleus

Blebbing

Macrophage

adapted from Wikipedia
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Background: Signaling pathways
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Introduction
Approach

@ Model construction by integration of previous models from the
literature

@ Simplification of dynamics by steady-state abstraction of
oligomerization kinetics

@ Linear regression to identify essential reactions

@ Reduced models and validation
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Network integration: Apoptosome subnetwork
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Model construction

Steady-state abstraction

For an oligomer X with intermediate structures Xi,..., X, and
dynamics

d[X]

Tzf([X],[X]l,...,[X]")— /\L\[f-l,

synthesis degradation

use the steady-state approximation f = fss = 11 [X]sg. Fit p by
comparing full dynamics with reduced (first order) dynamics.

@ This is not correct but is useful!

@ Allows modularization of oligomerization kinetics
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Steady-state abstraction: DISC module

Homotrimeric
.ll +— ligand

i Receptors (3)

c, C,

= g+

Lai and Jackson (2004), Aguda and Friedman (2008)
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Model construction
Steady-state abstraction: DISC module
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Model construction
Steady-state abstraction: MAC module

@ Use tBid-Bax, as a functional surrogate of MAC, which
releases Cytc and Smac from mitochondria

@ Analogously define a crosslinking model of formation:

2k k
tBid + Bax —= tBid-Bax, tBid-Bax + Bax —= tBid-Baxy
ky 2k,

@ Results are similar as for DISC
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Steady-state abstraction: Apoptosome module

Acehan et al. (2002), Nakabayashi and Sasaki (2008)
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Steady-state abstraction: Apoptosome module

Inactive Apaf-1

Acehan et al. (2002), Nakabayashi and Sasaki (2008)
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Steady-state abstraction: Apoptosome module

Inactive Apaf-1

conversion efficiency
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Full model: Reaction network
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Full model: Model species

Species Diescription Svnthesis rate (nhl/s) Degradation rate (5 1) |
DISC DISC 8807 x 1077
Clasps procaspase-8 adjusted 6.5 % 1075 [62]
Claspi* caspase-S LG6T = IH 5 |62
Claspd procaspase3 adjusted 6.5 % 10

Claspd* caspase-3 LG6T = 10

XIAP XIAP sl justed 3

Crspd*-XIAP  Caspi*-XIAP complex

BAR B! L1111 x W ([BAR], = 66.67 nh [62]) 1667 % 10~ 2]
Crsp8*-BAR Caspi8*-BAR complex 1,943 % 1071 [ J]
Rid Bid 4168 % 1074 ([Bid], =25 nh [72.73]) 1667 % 1 * (ppag)
tBid truncated Bid 1667 % 107° (pmia)
tHid-Baxz t Bid-Baxa complex {0264

Cyte cytochrome ¢ (mitochondrial) 107 ([Cate]y, = 100 o [72, 73]} w*

vte® cytochrome ¢ (cytosolic) w*
Smac Smac (mitochondrial) (LOLGT ([Smac], = 100 nbd [72, 73]} LE67 x 10 : Hoar)
Smac* Smac (oytosolic) LAGT = IH * (s
Smac*-XIAP Smac-XIAP complex Lo3 x 1077 (pe L-upes--[]\l'{}
Apop Apoptosome 1487 x 1(¥
Casptl procaspase-i Lax 1077 ([Caspt], = 20 ol [72,73]) 6.0 % 107*
Claspi* caspase-{} DEHT x 10
Casp*-XIAP  Caspi*-XIAP complex 2883 % 107 {pcasp:
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Model construction

Full model: Model reactions

Number Reaction Forward rate (nM~Ts7T) Reverse rate (s 1)

DISC  (FhsL, FasR) — DISC foisc

1 DISC + L’lth — DIQL" + L’lhpﬂ" 10~ (ka)

2 asp 10~ [3]

3 5.8 x 10~1 [3]

4 3 % 1077 [3] 0.035 [3)

5 3% 1073 [3]

6 1sp8* + BAR — Casp8*-BAR 5% 1073 [3] 0.035 [3)

7 Casp8* +Bid — 8% +tDBid 5o 107 (est. [4])
MAC  (tBid, Bax) — tBid-Baxa fiBidBax,

8 tBid-Baxa + Cyte — tBid-Baxs + Cyte® 0~ 4]

9 tBid-Baxs + Smac — tBid-Baxs + Smac® = [4|

10 Smac” + XIAP == Smac™-XIAP 7 1079 [4) 2.21 % 1079 [4]
Apop  (Cyte™, Apaf) — Apop Fapop

11 Apop + Casp — Apop + Caspd® 25 107 (est. [8])

12 Casp3® + Casp) — Caspd® 4+ Casp9*® 2% 1071 [8)

13 Caspd” + Caspd — Casp9* 4+ Caspd® 5 107% [8]

14 Caspll* + XIAP = Casp¥*-XIAP 106G = 107 [4] 10— 4]
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Full model: Dynamical equations

[ Differential equations

Reaction velocities

| d[DISC] fdi = pouscl foscl[FasL],, . [FasR], : Kpisc) — [DISC])
d [Casps| fdt
: o [Casps*| fdt
| d[Caspd| fdi = — — pteaspa [Caspd]
| d[Casp3*| fdt — Uy + Uy — Poaspae [Caspd’]
| d[XIAP] jdt = —va — w5 — w10 — v1a + axear — pxap [KIAT]
| d[Caspd”-XIAP] [dt = w1 — poaepas_xiae [Caspd - XIAP]
| d[BAR]|/dt = —us + anar — pnar [BAR|
| d[CaspS*-BAR] fdt = vg — Mowepssnar [Caspd’-BAR|
| d[Bid] fdt i+ anid — pmia [Bid]
d [tBid| /dt junia [tBid]
: d [tBid-Baxa| [dt = jtpia pase
| (fipia-mass ([EBI] L [Bax] ) Kipig paxa ) — [(Bid-Bax,|)
| d[Cyte] fdt = —vs + topre — fioye (O
| d[Cyte*] fdt - [C
: o [Smae| fdt = — it
| d[Smac*] fdt = w9 —vio — psmace [S
: o [Smae®-XIAP] fdt = vy — p X1 u‘[‘mm( -NIAT
[ Apop] /4t = inpont Fanon([C¥te-] / (Apa], : Anpop) — [Apop)
d [Casph] /et = —vi1 — V12 + OCaspe — jroasps [Caspll]
| d[Casp*] fdt = w1 + w12 — 014 — poaspee [Caspd’]
| df [Caspi*-XIAP] = 014 — powspes xiap [Caspd*-XIAP|

—U = U2+ oasps — poasps [Casps
e [Casps*|

(Rl Rk U 1 s

— M3 F ECasp

— oy
T S,

1 = b [DISC] [Conpd)

k2 [Caspd® | [Casps|

ka [Casps® | [Casp3)|

= kea [Caspi® | [XIAP] — ks [Casp3*-XIAP|
kg [Caspd™ | [XIAP|

wg = ke [Casps” | [BAR| — k—y [Casp8*-BAR|
Kz [Casp8™ | [Bid]

vs = ks [tBid-Baxz| [Cyte]

g = kg [tBid-Baxy| [Smad]

g

ur

vip = ko [Smac’ | [XIAP] — k-0 [Smac’-XIAP|
w11 = ki [Apop| [Caspt)|
viz = kiz [Caspd*| [Casph)

t1a [Caspt*| [Casp3)|
s14 [CaspD | [XIAP] — ki [Casp®-XIAP|

iy

Yy =
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Model parameters

@ Reaction rates taken from appropriate model in the literature
@ Rates appearing in more than one model are consistent

@ Order-of-magnitude or similarity estimates for unquantified
rates
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Model construction

Model parameters

@ Reaction rates taken from appropriate model in the literature
@ Rates appearing in more than one model are consistent

@ Order-of-magnitude or similarity estimates for unquantified
rates

e Initial concentrations: Hela (type I), Jurkat T (type II)

Initial concentration (nM) ‘

Species HelLa Jurkat T Parameter Value
Casp8 | 216.67 [62] 33.33 [72,73] || [FasL], 2 nM [72, 73]
Caspd 35 [62] 200 [72, 73] [FasR], 10 oM [72,7:
XIAP | 6667 (52 30 (72,73 Kpise | 1.032 oM [?
BAR [)(1 47 [[1’| [Bax], 8333 nM [T
Bid 3] K\Bid-Baxa 100 nM [Tt
Cyte [Apaf], 100 nM [T
Smac Apap 1 (70

Caspd 20 (72, 73]
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Model construction

Model parameters

@ Reaction rates taken from appropriate model in the literature

@ Rates appearing in more than one model are consistent

@ Order-of-magnitude or similarity estimates for unquantified

rates

e Initial concentrations: Hela (type I), Jurkat T (type II)

Initial concentration (nM)

Value ‘

Species HelLa Jurkat T Parameter

Casps | 216.67 [62] 3333 [72,73 [FasL] 2 nM [72, 73]
Caspd 35 [62] 200 [72, 73] [FasR], 10 oM [72,73]
XIAP | 6667 (52 30 (72,73 Kpse | 1032 M [72,73)
BAR (36 67 [62 [Bax], | 83.33 uM [72,73]
Bid 95 [72, 7] Kipia g, | 100 nM [72,73]
Cyte 100 72, 73] [Apaf], 100 nM (72, 73)
Smac 100 [72. '.'r"]| Apap 1 ['.'r'{]|
Caspd 20 (72, 73]

@ Philosophy: assume parameters are correct and study model

solutions
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Caspd® time course

zoo T T

1401 |

1z0f I
- Hela
1o |r - ——=JurkatT
Jurkat T*

[Caspid’] inkd)

40

amp A

| 1 1 1
3000 4000 5000 OO0 70OO @000
Time (s}

L
3000 10000

o
0 1000 Zooo



Analysis and results
[ Jelelolole}

Analysis and results

Regression analysis and model reduction

@ Define quantitative descriptors of caspase activation

@ Peak activation: maximum [Casp3*] over time course
@ Activation time: time at which this peak is achieved



Analysis and results
[ Jelelolole}

Analysis and results
Regression analysis and model reduction

@ Define quantitative descriptors of caspase activation
@ Peak activation: maximum [Casp3*] over time course
@ Activation time: time at which this peak is achieved

@ Sensitivity analysis
o Generate locally perturbed parameters around baseline values

e Simulate to collect synthetic data
o Multiple linear regression on standardized data:

Y=(1 X)b

e Model reduction based on identified key parameters
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Regression analysis and model reduction: Jurkat T induced by FasL

Peak [Caspa]
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Regression analysis and model reduction: Jurkat T* induced by low FasL

@ Interestingly, both baseline HelLa and Jurkat T parameters
exhibit type | behavior

@ Define new cell parameters Jurkat T* by turning off the

reactions
Casp3* + Casp8 — Casp3™ + Casp8™, (2)
Casp3™ + XIAP — Casp3™, (5)
Casp3* + Casp9 — Casp3™ + Casp9*, (12)

i.e., k2 = k5 = k12 =0
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Regression analysis and model reduction: Jurkat T* induced by low FasL

Peak [Caspa’]
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Analysis and results

Regression analysis and model reduction: Hela induced by tBid

@ Can also consider mitochondrial apoptosis through the
intrinsic pathway

@ Cell stress, DNA damage, cytotoxicity causes mitochondria
permeabilization and release of Cytc and Smac

e Functionally represent with input [tBid], > 0
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Regression analysis and model reduction: Hela induced by tBid
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1 — tBid-Bax, T- Cyt ¢ — Apop

Smac
a
= Casp9
E BAR XIAP p
=
5 1 : : : : ' 1 l-|- /
3 10 20 an 40 a0 Casp8 & Casp3
=
2 activation time
205 40 full
o —
T = — — ~reduced
=
. e B k, =
= no Smac
= |
_05 1 1 1 1 1 D 1 1
10 Z0 30 40 50 a 2000 4000 ©000 &000 10000

Parameter index Time (5



Analysis and results
00000®

Analysis and results

Regression analysis and model reduction: Jurkat T* induced by tBid

Feak [Caspid”
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Analysis and results
Type |l apoptosis prediction

@ Type Il behavior only for Jurkat T* under low FasL induction

e Can we predict cell-specific parameters (i.e., initial
concentrations) without omitting reactions that lead to type I
apoptosis even under high FasL induction?

@ Use Jurkat T* case and transform to equivalent conditions

@ Increase [XIAP],
@ Decrease [FasR],

Type |l prediction time course
T T T T T T

150 T
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——~notBid

=
=
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Activation thresholds

Receptor-mediated apoptosis Mitachondrial apoptosis
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Summary

Constructed a model of apoptosis through module integration
Simplified dynamics by steady-state abstraction
Performed sensitivity analysis by linear regression

Obtained reduced models for several cases of interest

o Clarified roles of molecular components
e Validated findings of previous studies
o Highlighted different modes of operation

Predicted cell parameters for type |l apoptosis

Remarked on stability and caspase activation thresholds
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Future directions

Methodology

@ Increase accuracy of steady-state abstraction by modulation
with time-dependent function

@ Develop more formal framework for systematic and automated
model reduction

@ Reach: integrate with model languages (e.g., SBML)
Biology

@ Apply reduction to full apoptosis model

@ Study transition of apoptotic behavior over cell parameters

@ Include regulators or delays for potential model stability:
bistability and the point of no return
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