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Model construction
Steady-state abstraction

For an oligomer X with intermediate structures X1, . . . ,Xn and
dynamics

d [X ]

dt
= f ([X ] , [X ]1 , . . . , [X ]n)︸ ︷︷ ︸

synthesis

− µ [X ]︸ ︷︷ ︸
degradation

,

use the steady-state approximation f ≈ fss = µ [X ]ss.

Fit µ by
comparing full dynamics with reduced (first order) dynamics.

This is not correct but is useful!

Allows modularization of oligomerization kinetics
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Analogously define a crosslinking model of formation:

tBid + Bax
2kf−−⇀↽−−
kr

tBid-Bax, tBid-Bax + Bax
kf−−⇀↽−−
2kr

tBid-Bax2

Results are similar as for DISC
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Model parameters

Reaction rates taken from appropriate model in the literature

Rates appearing in more than one model are consistent

Order-of-magnitude or similarity estimates for unquantified
rates

Initial concentrations: HeLa (type I), Jurkat T (type II)

Philosophy: assume parameters are correct and study model
solutions



Introduction Model construction Analysis and results Conclusion

Model construction
Model parameters

Reaction rates taken from appropriate model in the literature

Rates appearing in more than one model are consistent

Order-of-magnitude or similarity estimates for unquantified
rates

Initial concentrations: HeLa (type I), Jurkat T (type II)

Philosophy: assume parameters are correct and study model
solutions



Introduction Model construction Analysis and results Conclusion

Model construction
Model parameters

Reaction rates taken from appropriate model in the literature

Rates appearing in more than one model are consistent

Order-of-magnitude or similarity estimates for unquantified
rates

Initial concentrations: HeLa (type I), Jurkat T (type II)

Philosophy: assume parameters are correct and study model
solutions



Introduction Model construction Analysis and results Conclusion

Analysis and results
Characteristic time course



Introduction Model construction Analysis and results Conclusion

Analysis and results
Regression analysis and model reduction

Define quantitative descriptors of caspase activation
1 Peak activation: maximum [Casp3∗] over time course
2 Activation time: time at which this peak is achieved

Sensitivity analysis

Generate locally perturbed parameters around baseline values
Simulate to collect synthetic data
Multiple linear regression on standardized data:

Y =
(
1 X

)
b

Model reduction based on identified key parameters
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Interestingly, both baseline HeLa and Jurkat T parameters
exhibit type I behavior

Define new cell parameters Jurkat T∗ by turning off the
reactions

Casp3∗ + Casp8 −−→ Casp3∗ + Casp8∗, (2)

Casp3∗ + XIAP −−→ Casp3∗, (5)

Casp3∗ + Casp9 −−→ Casp3∗ + Casp9∗, (12)

i.e., k2 = k5 = k12 = 0
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Cell stress, DNA damage, cytotoxicity causes mitochondria
permeabilization and release of Cytc and Smac

Functionally represent with input [tBid]0 > 0
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Analysis and results
Type II apoptosis prediction

Type II behavior only for Jurkat T∗ under low FasL induction

Can we predict cell-specific parameters (i.e., initial
concentrations) without omitting reactions that lead to type II
apoptosis even under high FasL induction?
Use Jurkat T∗ case and transform to equivalent conditions

1 Increase [XIAP]0
2 Decrease [FasR]0
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Constructed a model of apoptosis through module integration

Simplified dynamics by steady-state abstraction

Performed sensitivity analysis by linear regression

Obtained reduced models for several cases of interest

Clarified roles of molecular components
Validated findings of previous studies
Highlighted different modes of operation

Predicted cell parameters for type II apoptosis

Remarked on stability and caspase activation thresholds



Introduction Model construction Analysis and results Conclusion

Conclusion
Summary

Constructed a model of apoptosis through module integration

Simplified dynamics by steady-state abstraction

Performed sensitivity analysis by linear regression

Obtained reduced models for several cases of interest

Clarified roles of molecular components
Validated findings of previous studies
Highlighted different modes of operation

Predicted cell parameters for type II apoptosis

Remarked on stability and caspase activation thresholds



Introduction Model construction Analysis and results Conclusion

Conclusion
Summary

Constructed a model of apoptosis through module integration

Simplified dynamics by steady-state abstraction

Performed sensitivity analysis by linear regression

Obtained reduced models for several cases of interest

Clarified roles of molecular components
Validated findings of previous studies
Highlighted different modes of operation

Predicted cell parameters for type II apoptosis

Remarked on stability and caspase activation thresholds



Introduction Model construction Analysis and results Conclusion

Conclusion
Summary

Constructed a model of apoptosis through module integration

Simplified dynamics by steady-state abstraction

Performed sensitivity analysis by linear regression

Obtained reduced models for several cases of interest

Clarified roles of molecular components
Validated findings of previous studies
Highlighted different modes of operation

Predicted cell parameters for type II apoptosis

Remarked on stability and caspase activation thresholds



Introduction Model construction Analysis and results Conclusion

Conclusion
Summary

Constructed a model of apoptosis through module integration

Simplified dynamics by steady-state abstraction

Performed sensitivity analysis by linear regression

Obtained reduced models for several cases of interest

Clarified roles of molecular components
Validated findings of previous studies
Highlighted different modes of operation

Predicted cell parameters for type II apoptosis

Remarked on stability and caspase activation thresholds



Introduction Model construction Analysis and results Conclusion

Conclusion
Summary

Constructed a model of apoptosis through module integration

Simplified dynamics by steady-state abstraction

Performed sensitivity analysis by linear regression

Obtained reduced models for several cases of interest

Clarified roles of molecular components
Validated findings of previous studies
Highlighted different modes of operation

Predicted cell parameters for type II apoptosis

Remarked on stability and caspase activation thresholds



Introduction Model construction Analysis and results Conclusion

Conclusion
Summary

Constructed a model of apoptosis through module integration

Simplified dynamics by steady-state abstraction

Performed sensitivity analysis by linear regression

Obtained reduced models for several cases of interest

Clarified roles of molecular components
Validated findings of previous studies
Highlighted different modes of operation

Predicted cell parameters for type II apoptosis

Remarked on stability and caspase activation thresholds



Introduction Model construction Analysis and results Conclusion

Conclusion
Future directions

Methodology

Increase accuracy of steady-state abstraction by modulation
with time-dependent function

Develop more formal framework for systematic and automated
model reduction

Reach: integrate with model languages (e.g., SBML)

Biology

Apply reduction to full apoptosis model

Study transition of apoptotic behavior over cell parameters

Include regulators or delays for potential model stability

:
bistability and the point of no return
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