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Motivation: model selection

Driving problem

Given observed data and multiple candidate models for the process
generating that data, which is the most appropriate model for that process?

Standard approach: fit parameters, minimize error, assess
m Typically involves optimization over parameter space
® Can be hard due to nonlinearities and high dimensionality

Can we get by without parameter fitting?
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Summary of previous work

N N
® Chemical reaction network: Zr’JXJ il E piX;, i=1,.
=1 =1

R N
® Mass-action dynamics: X = Zli,'(p,'j — rij) H x* j=1,...,N
i=1 k=1

® Basic idea:
0 Assume steady state, fix j, define
a; = wi(py — ry) and & = [T} X"
O Model compatibility implies 25:1 ai& =0
O ‘Complex’ concentrations £ € RF are coplanar

0 Test coplanarity of data without regard to
parameter values (SVD)

0 Can interpret coplanarity statistically

Manrai and Gunawardena
(2008) Biophys J

Harrington, Ho, Thorne, and Stumpf (2012) PNAS, in press
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Summary of previous work

Tech nica | deta i IS Models Observed Data

Model 1 Model L (Steady state measurements)
£

® Can often measure only a subset of species "

iy

® Eliminate all others using Grobner bases =

O Nonlinear, multivariate generalization of
Gaussian elimination

Reduce number of variables
to include only observables

Characterize steady

O Treat rate parameters symbolically i ozmode's
® Resultin g invariants: Transform model variables, parameters, and data
Assess c:planari:y
n /\
E a;&, «i(k) nonlinear e e G
i=1

T

® ‘Lifting’ procedure linearizes in a A ]
higher-dimensional space

m Statistics via a chi distribution bound Mocel chmpa ot ink
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Summary of previous work

Parameter-free statistical model discrimination
® Applied to models of multisite phosphorylation and cell death signaling

® Some success, reasonable rejection power
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Complications:
® Choice of monomial ordering, convergence for Grobner basis calculations
m Division by (symbolic) zero

m Existence of trivial invariants (« = 0)
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Beyond Grobner bases

® Use chemical reaction network theory to reveal linearity:

R N A
- W R A R
=Y rilpy —rg) [ [
k=1

i v| v

X =f(x) = YA.V(x) RS f S

U Speciess  S={Xj|j=1,...,N}
N N .
O Complexes: C = {ijl Xis 2 PiXi [ i =1,..., R}
O W : nonlinear species-to-complex map
0 Ak: complex-to-complex rate matrix
0 Y : complex-to-species stoichiometric matrix

= Eliminate in complex space using linear methods
O Related: Karp et al. (2012) J Theor Biol, in press

B Result: complex-linear invariants
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Main results

Definition

A chemical reaction network is complex-balanced if A,W(x) =0 at any
steady state x € R®. A network is unconditionally complex-balanced if it is
complex-balanced for all rates k.

For complex-balanced networks:

= Complex-linear invariants in any subset C* C C can be computed

® Unconditionally nontrivial iff certain graph-theoretic conditions hold
Operationally:

® Can tell if the complexes C* are coplanar “without any work”

® Measure data, check complex balancing, test coplanarity
O Graph conditions for complex balancing (deficiency zero by Feinberg)

® No ordering, convergence, division issues; correctness guaranteed
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General approach

® For complex-balanced networks, can eliminate only on A,
m A, is highly structured (Laplacian)

O Non-positive diagonal entries 0 @&
E)

0 Non-negative off-diagonal entries

O Non-positive column sums @ m e

m Use structure to understand elimination procedure
Elimination on Laplacian graphs: a well-studied problem?

® May exist shorter, simpler proofs

® Any advice/perspective very much appreciated
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Preliminaries

m Pick asubset C* CCandlet p=|C*|,g=n—p
m Assume first that the network is closed (no synthesis or degradation)
® Block partition of A, € R™":
A B
SN
P q
® Write in reduced form

0 Drop all complexes for which the corresponding column of B vanishes
O Redefine all entities as appropriate

O Reorder C \ C* into irreducible components, D becomes block triangular
m If g = 0 (nothing left), then done (A provides invariant coefficients)
= Otherwise, coefficients given by Schur complement A,/D = A— BD™1C
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Elimination of complexes

Lemma

D is nonsingular (furthermore, a minus M-matrix).

Proof (nonsingularity).

If D is irreducible, then it is irreducibly diagonally dominant (since B # 0),
hence nonsingular. Otherwise, induct on irreducible components by writing

D1y
D= ,
{Dn Dzz}

where Dy is irreducible and Dy, is nonsingular by hypothesis. Then Di; is
irreducibly diagonally dominant and nonsingular, so D is nonsingular.

O

v

Theorem

The complexes C \ C* can always be eliminated.
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Nontrivial invariants

m A, /D always exists but can vanish (trivial invariants)
® When is A, /D # 0 unconditionally?

0 Has a strictly positive entry unconditionally
0 Has a strictly negative entry unconditionally

Definition

Write ¢ ~» ¢’ if there exists a path from c to ¢’ (¢ — ---

— ).

Lemma

—D~! >0 and has positive diagonal entries.
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Unconditional positive entry

Theorem

Ay /D contains a positive entry iff there exist distinct c, ¢’ € C* such that
/
c~c.

Proof («=).

Induct on path length. Base case: obvious. In general, let ¢ ~ ¢/ — ¢’ and
eliminate ¢ ~ ¢”. This introduces a positive entry corresponding to ¢ — ¢”
by hypothesis. Use ¢’ — ¢’ and diagonal positivity of —D~! to deduce

(A./D);j > 0, where i, are the indices of ¢, c. O]

o
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Unconditional positive entry

Theorem
Ay /D contains a positive entry iff there exist distinct c, ¢’ € C* such that

c~c.
V.

Proof (=).
Induct on irreducible components. Base case: obvious. In general, write

G D11
B=|B; B = D =
[Br &), C [Cz]’ [DZI Dzz}

with Dy irreducible, and let C\ C* = C; UCy. If By, G # 0, then ¢ ~~ ¢’
through C; by induction; if By, C; # 0, through Cy; if B, C; # 0, through Cy
then C». ]

4
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Unconditional negative entry

Theorem

A /D contains a negative entry unconditionally iff there exists ¢ € C* and ¢’
outside the irreducible component containing c in the subgraph on
C\ C*U{c} such that c ~ ¢’

Proof.

Take submatrix A, (c) with the first block corresponding only to c. Clearly,
Ai/D has no negative entry iff A,(c)/D =0 for all c. If A.(c)/D < 0, then
A (c) is nonsingular since D is nonsingular. Reorder A,(c) into irreducible
components, and let D;; be the block of D corresponding to the irreducible
component containing ¢ in the subgraph. Then A, (c)/D <0
unconditionally iff D;; is strictly diagonally dominant in at least one column.
Thus, we require an outgoing edge. O

v
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Some comments

® Necessary and sufficient conditions for unconditionally nontrivial
complex-linear invariants
B |ntuition:

O Positive entry (¢ ~» ¢): think cascade, proportional by equilibrium constant
U Negative entry (c ~» out): has a sink, concentration goes to zero

® Extension to open systems: same conditions as above or

O There exists ¢ € C* such that ¢ — () (strict diagonal dominance)
O There exists ¢ € C* such that ) — ¢ (if include constant term)

m Can generalize to other kinetics (e.g., Michaelis-Menten)
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Examples

A+B AB C+D cD
A A
AL -B—=C___D
E+A____EA——E+B F+B____FB——>F+A
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Conclusions

Graph-theoretic conditions for unconditionally nontrivial invariants

Only fast graph algorithms required; elimination comes for free

Applications to parameter-free model discrimination

Possible extensions beyond complex-balanced networks

0 In general, have to eliminate on YA,
O Find Z € R™" such that ZYA, is “as Laplacian as possible”

® Preliminary work, can possibly still go further
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