Steady-state invariants for complex-balanced networks

Heather A. Harrington ${ }^{1}$ Kenneth L. Ho ${ }^{2}$
${ }^{1}$ Imperial College London
${ }^{2}$ Courant Institute, NYU

Aug 23, 2012

Motivation: model selection

Driving problem

Given observed data and multiple candidate models for the process generating that data, which is the most appropriate model for that process?

Standard approach: fit parameters, minimize error, assess

- Typically involves optimization over parameter space
- Can be hard due to nonlinearities and high dimensionality

Can we get by without parameter fitting?

Summary of previous work

- Chemical reaction network: $\quad \sum_{j=1}^{N} r_{i j} X_{j} \xrightarrow{\kappa_{i}} \sum_{j=1}^{N} p_{i j} X_{j}, \quad i=1, \ldots, R$
- Mass-action dynamics: $\quad \dot{x}_{j}=\sum_{i=1}^{R} \kappa_{i}\left(p_{i j}-r_{i j}\right) \prod_{k=1}^{N} x_{i}^{r_{i k}}, \quad j=1, \ldots, N$
- Basic idea:
\square Assume steady state, fix j, define $\alpha_{i}=\kappa_{i}\left(p_{i j}-r_{i j}\right)$ and $\xi_{i}=\prod_{k=1}^{N} x_{i}^{r_{i k}}$
\square Model compatibility implies $\sum_{i=1}^{R} \alpha_{i} \xi_{i}=0$
\square 'Complex' concentrations $\xi \in \mathbb{R}^{R}$ are coplanar
\square Test coplanarity of data without regard to parameter values (SVD)
\square Can interpret coplanarity statistically

Harrington, Ho, Thorne, and Stumpf (2012) PNAS, in press

Summary of previous work

Technical details:

- Can often measure only a subset of species
- Eliminate all others using Gröbner bases
\square Nonlinear, multivariate generalization of Gaussian elimination
\square Treat rate parameters symbolically
- Resulting invariants:

Summary of previous work

Parameter-free statistical model discrimination

- Applied to models of multisite phosphorylation and cell death signaling
- Some success, reasonable rejection power

Complications:

- Choice of monomial ordering, convergence for Gröbner basis calculations
- Division by (symbolic) zero
- Existence of trivial invariants $(\alpha=0)$

Beyond Gröbner bases

- Use chemical reaction network theory to reveal linearity:

$$
\begin{aligned}
\dot{x}_{j} & =\sum_{i=1}^{R} \kappa_{i}\left(p_{i j}-r_{i j}\right) \prod_{k=1}^{N} x_{i}^{r_{i k}} \\
& \mathbb{R}^{\mathcal{C}} \stackrel{A_{\kappa}}{\longleftarrow} \mathbb{R}^{\mathcal{C}} \\
\dot{x} & =f(x)=Y A_{\kappa} \Psi(x)
\end{aligned}
$$

\square Species: $\mathcal{S}=\left\{X_{j} \mid j=1, \ldots, N\right\}$
\square Complexes: $\mathcal{C}=\left\{\sum_{j=1}^{N} r_{i j} X_{j}, \sum_{j=1}^{N} p_{i j} X_{j} \mid i=1, \ldots, R\right\}$
$\square \Psi$: nonlinear species-to-complex map
$\square A_{\kappa}$: complex-to-complex rate matrix
$\square Y$: complex-to-species stoichiometric matrix

- Eliminate in complex space using linear methods
\square Related: Karp et al. (2012) J Theor Biol, in press
- Result: complex-linear invariants

Main results

Definition

A chemical reaction network is complex-balanced if $A_{\kappa} \Psi(x)=0$ at any steady state $x \in \mathbb{R}^{\mathcal{S}}$. A network is unconditionally complex-balanced if it is complex-balanced for all rates κ.

For complex-balanced networks:

- Complex-linear invariants in any subset $\mathcal{C}^{*} \subseteq \mathcal{C}$ can be computed
- Unconditionally nontrivial iff certain graph-theoretic conditions hold Operationally:
- Can tell if the complexes \mathcal{C}^{*} are coplanar "without any work"
- Measure data, check complex balancing, test coplanarity
\square Graph conditions for complex balancing (deficiency zero by Feinberg)
- No ordering, convergence, division issues; correctness guaranteed

General approach

- For complex-balanced networks, can eliminate only on A_{κ}
- A_{κ} is highly structured (Laplacian)
\square Non-positive diagonal entries
\square Non-negative off-diagonal entries
\square Non-positive column sums

- Use structure to understand elimination procedure

Elimination on Laplacian graphs: a well-studied problem?

- May exist shorter, simpler proofs
- Any advice/perspective very much appreciated

Preliminaries

- Pick a subset $\mathcal{C}^{*} \subseteq \mathcal{C}$ and let $p=\left|\mathcal{C}^{*}\right|, q=n-p$
- Assume first that the network is closed (no synthesis or degradation)
- Block partition of $A_{\kappa} \in \mathbb{R}^{n \times n}$:

$$
A_{\kappa}=\underset{p}{\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]} \underset{q}{p}
$$

- Write in reduced form
\square Drop all complexes for which the corresponding column of B vanishes
\square Redefine all entities as appropriate
\square Reorder $\mathcal{C} \backslash \mathcal{C}^{*}$ into irreducible components, D becomes block triangular
- If $q=0$ (nothing left), then done (A provides invariant coefficients)
- Otherwise, coefficients given by Schur complement $A_{\kappa} / D=A-B D^{-1} C$

Elimination of complexes

Lemma

D is nonsingular (furthermore, a minus M-matrix).

Proof (nonsingularity).

If D is irreducible, then it is irreducibly diagonally dominant (since $B \neq 0$), hence nonsingular. Otherwise, induct on irreducible components by writing

$$
D=\left[\begin{array}{ll}
D_{11} & \\
D_{21} & D_{22}
\end{array}\right],
$$

where D_{11} is irreducible and D_{22} is nonsingular by hypothesis. Then D_{11} is irreducibly diagonally dominant and nonsingular, so D is nonsingular.

Theorem

The complexes $\mathcal{C} \backslash \mathcal{C}^{*}$ can always be eliminated.

Nontrivial invariants

- A_{κ} / D always exists but can vanish (trivial invariants)
- When is $A_{\kappa} / D \neq 0$ unconditionally?
\square Has a strictly positive entry unconditionally
\square Has a strictly negative entry unconditionally

Definition

Write $c \rightsquigarrow c^{\prime}$ if there exists a path from c to $c^{\prime}\left(c \rightarrow \cdots \rightarrow c^{\prime}\right)$.

Lemma
$-D^{-1} \geq 0$ and has positive diagonal entries.

Unconditional positive entry

Theorem

A_{κ} / D contains a positive entry iff there exist distinct $c, c^{\prime} \in \mathcal{C}^{*}$ such that $c \rightsquigarrow c^{\prime}$.

Proof (\Leftarrow).

Induct on path length. Base case: obvious. In general, let $c \rightsquigarrow c^{\prime \prime} \rightarrow c^{\prime}$ and eliminate $c \rightsquigarrow c^{\prime \prime}$. This introduces a positive entry corresponding to $c \rightarrow c^{\prime \prime}$ by hypothesis. Use $c^{\prime \prime} \rightarrow c^{\prime}$ and diagonal positivity of $-D^{-1}$ to deduce $\left(A_{\kappa} / D\right)_{i j}>0$, where i, j are the indices of c^{\prime}, c.

Unconditional positive entry

Theorem

A_{κ} / D contains a positive entry iff there exist distinct $c, c^{\prime} \in \mathcal{C}^{*}$ such that $c \rightsquigarrow c^{\prime}$.

Proof (\Rightarrow).

Induct on irreducible components. Base case: obvious. In general, write

$$
B=\left[\begin{array}{ll}
B_{1} & B_{2}
\end{array}\right], \quad C=\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right], \quad D=\left[\begin{array}{ll}
D_{11} & \\
D_{21} & D_{22}
\end{array}\right]
$$

with D_{11} irreducible, and let $\mathcal{C} \backslash \mathcal{C}^{*}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$. If $B_{2}, C_{2} \neq 0$, then $c \rightsquigarrow c^{\prime}$ through \mathcal{C}_{2} by induction; if $B_{1}, C_{1} \neq 0$, through \mathcal{C}_{1}; if $B_{2}, C_{1} \neq 0$, through \mathcal{C}_{1} then \mathcal{C}_{2}.

Unconditional negative entry

Theorem

A_{κ} / D contains a negative entry unconditionally iff there exists $c \in \mathcal{C}^{*}$ and c^{\prime} outside the irreducible component containing c in the subgraph on
$\mathcal{C} \backslash \mathcal{C}^{*} \cup\{c\}$ such that $c \rightsquigarrow c^{\prime}$.

Proof.

Take submatrix $A_{\kappa}(c)$ with the first block corresponding only to c. Clearly, A_{κ} / D has no negative entry iff $A_{\kappa}(c) / D=0$ for all c. If $A_{\kappa}(c) / D<0$, then $A_{\kappa}(c)$ is nonsingular since D is nonsingular. Reorder $A_{\kappa}(c)$ into irreducible components, and let $D_{i i}$ be the block of D corresponding to the irreducible component containing c in the subgraph. Then $A_{\kappa}(c) / D<0$ unconditionally iff $D_{i i}$ is strictly diagonally dominant in at least one column. Thus, we require an outgoing edge.

Some comments

- Necessary and sufficient conditions for unconditionally nontrivial complex-linear invariants
- Intuition:
\square Positive entry ($c \rightsquigarrow c^{\prime}$): think cascade, proportional by equilibrium constant
\square Negative entry ($c \rightsquigarrow$ out): has a sink, concentration goes to zero
- Extension to open systems: same conditions as above or
\square There exists $c \in \mathcal{C}^{*}$ such that $c \rightarrow \emptyset$ (strict diagonal dominance)
\square There exists $c \in \mathcal{C}^{*}$ such that $\emptyset \rightarrow c$ (if include constant term)
■ Can generalize to other kinetics (e.g., Michaelis-Menten)

Examples

$A+B \longrightarrow A B C A C$

$$
A+B \rightleftarrows A B \quad C+D \rightleftarrows C D
$$

Conclusions

- Graph-theoretic conditions for unconditionally nontrivial invariants
- Only fast graph algorithms required; elimination comes for free
- Applications to parameter-free model discrimination
- Possible extensions beyond complex-balanced networks
\square In general, have to eliminate on $Y A_{\kappa}$
\square Find $Z \in \mathbb{R}^{n \times N}$ such that $Z Y A_{\kappa}$ is "as Laplacian as possible"
- Preliminary work, can possibly still go further

Acknowledgements:

- Tom Thorne, Michael Stumpf, Anne Shiu
- ICL Theoretical Systems Biology group

