Steady-state invariants for complex-balanced networks

Heather A. Harrington¹ Kenneth L. Ho²

¹Imperial College London

²Courant Institute, NYU

Aug 23, 2012

Driving problem

Given observed data and multiple candidate models for the process generating that data, which is the most appropriate model for that process?

Standard approach: fit parameters, minimize error, assess

- Typically involves optimization over parameter space
- Can be hard due to nonlinearities and high dimensionality

Can we get by without parameter fitting?

Summary of previous work

- Chemical reaction network: $\sum_{j=1}^{n} r_{ij}X_j \xrightarrow{\kappa_i} \sum_{j=1}^{n} p_{ij}X_j, \quad i = 1, \dots, R$
- Mass-action dynamics: $\dot{x}_j = \sum_{i=1}^R \kappa_i (p_{ij} r_{ij}) \prod_{k=1}^N x_i^{r_{ik}}, \quad j = 1, \dots, N$

Basic idea:

- □ Assume steady state, fix *j*, define $\alpha_i = \kappa_i (p_{ij} - r_{ij})$ and $\xi_i = \prod_{k=1}^N x_i^{r_{ik}}$
- Model compatibility implies $\sum_{i=1}^{R} \alpha_i \xi_i = 0$
- \Box 'Complex' concentrations $\xi \in \mathbb{R}^R$ are coplanar
- Test coplanarity of data without regard to parameter values (SVD)
- Can interpret coplanarity statistically

Harrington, Ho, Thorne, and Stumpf (2012) PNAS, in press

Technical details:

- Can often measure only a subset of species
- Eliminate all others using Gröbner bases
 - Nonlinear, multivariate generalization of Gaussian elimination
 - Treat rate parameters symbolically
- Resulting invariants:

$$\sum_{i=1}^{n} \alpha_i \xi_i, \quad \alpha_i(\kappa) \text{ nonlinear}$$

- 'Lifting' procedure linearizes in a higher-dimensional space
- Statistics via a chi distribution bound

Parameter-free statistical model discrimination

- Applied to models of multisite phosphorylation and cell death signaling
- Some success, reasonable rejection power

Complications:

- Choice of monomial ordering, convergence for Gröbner basis calculations
- Division by (symbolic) zero
- Existence of trivial invariants (α = 0)

Use chemical reaction network theory to reveal linearity:

$$\dot{x}_{j} = \sum_{i=1}^{R} \kappa_{i} (p_{ij} - r_{ij}) \prod_{k=1}^{N} x_{i}^{r_{ik}} \qquad \begin{array}{c} \mathbb{R}^{C} \xleftarrow{A_{\kappa}} \mathbb{R}^{C} \\ \mathbf{y} \downarrow \qquad \uparrow \mathbf{\psi} \\ \dot{x} = f(\mathbf{x}) = YA_{\kappa} \Psi(\mathbf{x}) \qquad \mathbb{R}^{S} \xleftarrow{f} \mathbb{R}^{S} \end{array}$$

$$\Box \text{ Species: } \mathcal{S} = \{X_j \mid j = 1, \dots, N\}$$

$$\Box \text{ Complexes: } \mathcal{C} = \left\{ \sum_{j=1}^{N} r_{ij} X_j, \sum_{j=1}^{N} p_{ij} X_j \mid i = 1, \dots, R \right\}$$

- \square Ψ : nonlinear species-to-complex map
- \Box A_{κ} : complex-to-complex rate matrix
- \Box Y : complex-to-species stoichiometric matrix
- Eliminate in complex space using linear methods
 - Related: Karp et al. (2012) J Theor Biol, in press
- Result: complex-linear invariants

Definition

A chemical reaction network is complex-balanced if $A_{\kappa}\Psi(x) = 0$ at any steady state $x \in \mathbb{R}^{S}$. A network is unconditionally complex-balanced if it is complex-balanced for all rates κ .

For complex-balanced networks:

- Complex-linear invariants in any subset $\mathcal{C}^* \subseteq \mathcal{C}$ can be computed
- Unconditionally nontrivial iff certain graph-theoretic conditions hold Operationally:
- Can tell if the complexes \mathcal{C}^* are coplanar "without any work"
- Measure data, check complex balancing, test coplanarity
 Graph conditions for complex balancing (deficiency zero by Feinberg)
- No ordering, convergence, division issues; correctness guaranteed

- For complex-balanced networks, can eliminate only on A_κ
- A_{κ} is highly structured (Laplacian)
 - Non-positive diagonal entries
 - Non-negative off-diagonal entries
 - Non-positive column sums
- Use structure to understand elimination procedure

Elimination on Laplacian graphs: a well-studied problem?

- May exist shorter, simpler proofs
- Any advice/perspective very much appreciated

Preliminaries

- Pick a subset $\mathcal{C}^* \subseteq \mathcal{C}$ and let $p = |\mathcal{C}^*|$, q = n p
- Assume first that the network is closed (no synthesis or degradation)
- Block partition of $A_{\kappa} \in \mathbb{R}^{n \times n}$:

$$A_{\kappa} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \stackrel{p}{q}$$

- Write in reduced form
 - Drop all complexes for which the corresponding column of *B* vanishes
 - Redefine all entities as appropriate
 - $\hfill\square$ Reorder $\mathcal{C}\setminus\mathcal{C}^*$ into irreducible components, D becomes block triangular
- If q = 0 (nothing left), then done (A provides invariant coefficients)
- Otherwise, coefficients given by Schur complement $A_{\kappa}/D = A BD^{-1}C$

Lemma

D is nonsingular (furthermore, a minus M-matrix).

Proof (nonsingularity).

If D is irreducible, then it is irreducibly diagonally dominant (since $B \neq 0$), hence nonsingular. Otherwise, induct on irreducible components by writing

$$\mathsf{D} = \begin{bmatrix} \mathsf{D}_{11} & \\ \mathsf{D}_{21} & \mathsf{D}_{22} \end{bmatrix},$$

where D_{11} is irreducible and D_{22} is nonsingular by hypothesis. Then D_{11} is irreducibly diagonally dominant and nonsingular, so D is nonsingular.

Theorem

The complexes $\mathcal{C} \setminus \mathcal{C}^*$ can always be eliminated.

mperial College

- A_{κ}/D always exists but can vanish (trivial invariants)
- When is $A_{\kappa}/D \neq 0$ unconditionally?
 - Has a strictly positive entry unconditionally
 - Has a strictly negative entry unconditionally

Definition

Write $c \rightsquigarrow c'$ if there exists a path from c to c' $(c \rightarrow \cdots \rightarrow c')$.

Lemma

$$-D^{-1} \ge 0$$
 and has positive diagonal entries.

Theorem

 A_{κ}/D contains a positive entry iff there exist distinct $c, c' \in C^*$ such that $c \rightsquigarrow c'$.

Proof (\Leftarrow).

Induct on path length. Base case: obvious. In general, let $c \rightsquigarrow c'' \rightarrow c'$ and eliminate $c \rightsquigarrow c''$. This introduces a positive entry corresponding to $c \rightarrow c''$ by hypothesis. Use $c'' \rightarrow c'$ and diagonal positivity of $-D^{-1}$ to deduce $(A_{\kappa}/D)_{ij} > 0$, where i, j are the indices of c', c.

Theorem

 A_{κ}/D contains a positive entry iff there exist distinct $c, c' \in C^*$ such that $c \rightsquigarrow c'$.

Proof (\Rightarrow).

Induct on irreducible components. Base case: obvious. In general, write

$$B = \begin{bmatrix} B_1 & B_2 \end{bmatrix}, \quad C = \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}, \quad D = \begin{bmatrix} D_{11} & D_{22} \\ D_{21} & D_{22} \end{bmatrix}$$

with D_{11} irreducible, and let $C \setminus C^* = C_1 \cup C_2$. If $B_2, C_2 \neq 0$, then $c \rightsquigarrow c'$ through C_2 by induction; if $B_1, C_1 \neq 0$, through C_1 ; if $B_2, C_1 \neq 0$, through C_1 then C_2 .

Theorem

 A_{κ}/D contains a negative entry unconditionally iff there exists $c \in C^*$ and c' outside the irreducible component containing c in the subgraph on $C \setminus C^* \cup \{c\}$ such that $c \rightsquigarrow c'$.

Proof.

Take submatrix $A_{\kappa}(c)$ with the first block corresponding only to c. Clearly, A_{κ}/D has no negative entry iff $A_{\kappa}(c)/D = 0$ for all c. If $A_{\kappa}(c)/D < 0$, then $A_{\kappa}(c)$ is nonsingular since D is nonsingular. Reorder $A_{\kappa}(c)$ into irreducible components, and let D_{ii} be the block of D corresponding to the irreducible component containing c in the subgraph. Then $A_{\kappa}(c)/D < 0$ unconditionally iff D_{ii} is strictly diagonally dominant in at least one column. Thus, we require an outgoing edge.

- Necessary and sufficient conditions for unconditionally nontrivial complex-linear invariants
- Intuition:
 - □ Positive entry ($c \rightsquigarrow c'$): think cascade, proportional by equilibrium constant
 - Negative entry ($c \rightsquigarrow$ out): has a sink, concentration goes to zero
- Extension to open systems: same conditions as above or
 - \Box There exists $c \in C^*$ such that $c \to \emptyset$ (strict diagonal dominance)
 - \Box There exists $c \in \mathcal{C}^*$ such that $\emptyset \to c$ (if include constant term)
- Can generalize to other kinetics (e.g., Michaelis-Menten)

Examples

$$E + A \longrightarrow E + B$$

$$F + B \longrightarrow FB \longrightarrow F + A$$

- Graph-theoretic conditions for unconditionally nontrivial invariants
- Only fast graph algorithms required; elimination comes for free
- Applications to parameter-free model discrimination
- Possible extensions beyond complex-balanced networks
 - \Box In general, have to eliminate on $Y\!A_{\kappa}$
 - \Box Find $Z \in \mathbb{R}^{n \times N}$ such that ZYA_{κ} is "as Laplacian as possible"
- Preliminary work, can possibly still go further

Acknowledgements:

- Tom Thorne, Michael Stumpf, Anne Shiu
- ICL Theoretical Systems Biology group