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Motivation: model selection

Driving problem

Given observed data and multiple candidate models for the process
generating that data, which is the most appropriate model for that process?

Standard approach: fit parameters, minimize error, assess

� Typically involves optimization over parameter space

� Can be hard due to nonlinearities and high dimensionality

Can we get by without parameter fitting?
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Summary of previous work

� Chemical reaction network:
N∑

j=1

rijXj
κi−→

N∑
j=1

pijXj , i = 1, . . . ,R

� Mass-action dynamics: ẋj =
R∑

i=1

κi (pij − rij)
N∏

k=1

x rik
i , j = 1, . . . ,N

� Basic idea:

� Assume steady state, fix j , define
αi = κi (pij − rij) and ξi =

QN
k=1 x rik

i

� Model compatibility implies
PR

i=1 αiξi = 0

� ‘Complex’ concentrations ξ ∈ RR are coplanar

� Test coplanarity of data without regard to
parameter values (SVD)

� Can interpret coplanarity statistically

followed by cE00;11 and cF11;00 for the remaining cases. The
specific values for the example in Fig. 3 are listed in the
Mathematica notebook. Fig. 3 also shows the plane defined
by Eq. 6. As discussed above, this plane intersects the posi-
tive quadrant and does not contain the origin. The disposi-
tions of the four curves with respect to this plane follow the
limiting behavior summarized in Fig. 2. It can be seen that
processivity in either or both of the enzymes is clearly dis-
tinguished by the geometry of the corresponding curve.
The curves in Fig. 3 were generated from the rational pa-

rameterization which, as mentioned previously, makes no
distinction between stable and unstable steady states. If the
(y1, y2, y3) data were being obtained from an experiment, or if
they were being generated from a numerical simulation of the
equations, then only stable steady states would be found. We
undertook such numerical simulations using randomly se-
lected sets of parameter values, as previously, along with
randomly chosen initial conditions. We found that for each
set of parameter values, the (y1, y2, y3) values of the stable

states were distributed throughout the expected curves (data
not shown). In particular, the stable states were not confined
to any portion of the curve but were to be found everywhere
along the curve. There was no difficulty in interpolating, by
eye, the shape of the curve despite having a limited number of
points on it corresponding to only the stable steady states.

Experimental tests

The above results make clear predictions about existing
kinase-phosphatase-substrate systems. For instance, in the
Mek-MKP3-Erk system, the substrate Erk is doubly phos-
phorylated and both enzymes act distributively (10,11,13).
We therefore predict that this system satisfies the planarity
invariant (Eq. 6). This can be tested in vitro using purified
kinase, phosphatase, and substrate under conditions in which
ATP is not limiting. It is remarkable that such ‘‘systems
biochemistry’’ has rarely been attempted. Much has been
understood about individual kinases and phosphatases
through in vitro studies, but the two enzymes have rarely
been brought together to study their systems properties. Al-
though such experiments do not appear to be technically
challenging, several issues need discussion.
First, although the experimenter can control the total

amounts of substrate and enzymes and, to a lesser extent, the
initial phosphorylation state of the substrate, the amounts of
free enzymes at steady state are determined by the system’s
dynamics. The parameter t ¼ [E]/[F] is not within the ex-
perimenter’s direct control. However, it is not essential to
trace the curve generated by t in Fig. 3 in any monotonic
fashion. All that is required is to plot the (y1, y2, y3) points
defined by Eq. 7 as a set in R3. The t parameter can be ex-
ercised by varying the total amount of substrate and enzymes
over as broad a range as possible.
Second, any method for detecting the substrate phospho-

rylation state, whether antibodies or 2D gels or mass spec-
trometry, will not preserve transient enzyme-substrate
complexes. To avoid misquantifying the amounts of phos-
phoforms, it is necessary to maintain substrate in excess of
enzymes. In this regime, any error arising from breakdown of
enzyme-substrate complexes will be limited to no more than
the total amount of enzyme.
Third, it is necessary to distinguish and quantify each of

the four phosphoforms. Although antibodies and 2D gels
have often been used to detect phosphorylation state, it can be
difficult to distinguish intermediate phosphoforms (S01 and
S10) with these methods. For instance, although commercial
antibodies are available against all four phosphoforms of
Erk1/2, those against the intermediate phosphoforms show
poor specificity compared to the others (43). Mass spec-
trometry (MS) is a better option and has become the method
of choice for detecting protein posttranslational modifica-
tions (44). Mayya et al studied the cyclin-dependent kinases
CDK1/2, which are inhibited by double phosphorylation, and
usedMS to track all four phosphoforms dynamically over the

FIGURE 3 (y1, y2, y3) curves for each of the four combinations of enzyme

mechanisms, in the positive quadrant of R3. The paired labels indicate

kinase/phosphatase, where D is distributive and P is processive. blue, D/D
curve; cyan, D/P curve; red, P/D curve; purple, P/P curve. Each of the curves

is based on the same core set of parameter values as in the D/D case. These

values were drawn randomly from the uniform distribution on [0.00, 5.00]

and are listed in the Mathematica notebook. The plane defined by Eq. 6 is
shown with the D/D curve lying on it. The D/P curve has, in addition to the

already chosen parameter values, cF11;00 ¼ 2:57; whereas the P/D curve has

cE00;11 ¼ 4:83: The D/P and P/D curves look similar but have different
behaviors for small and large t, as described in Fig. 2. The P/P curve has both

cF11;00 ¼ 2:57 and cE00;11 ¼ 4:83: The value of t¼ [E]/[F] was varied in [0.01,
100]. This example was representative of 100 similarly generated ones. The

Mathematica notebook allows the vantage point of the plot to be varied,
which reveals the shape of the curves more clearly.

Geometry of Multisite Phosphorylation 5541

Biophysical Journal 95(12) 5533–5543

Manrai and Gunawardena

(2008) Biophys J

Harrington, Ho, Thorne, and Stumpf (2012) PNAS, in press
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Summary of previous work

Technical details:

� Can often measure only a subset of species

� Eliminate all others using Gröbner bases
� Nonlinear, multivariate generalization of

Gaussian elimination
� Treat rate parameters symbolically

� Resulting invariants:

n∑
i=1

αiξi , αi (κ) nonlinear

� ‘Lifting’ procedure linearizes in a
higher-dimensional space

� Statistics via a chi distribution bound
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ẋ1 = . . . . . . . . . . . .

... . . . . . . . . . . . .
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Summary of previous work

Parameter-free statistical model discrimination

� Applied to models of multisite phosphorylation and cell death signaling

� Some success, reasonable rejection power

Complications:

� Choice of monomial ordering, convergence for Gröbner basis calculations

� Division by (symbolic) zero

� Existence of trivial invariants (α = 0)
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Beyond Gröbner bases

� Use chemical reaction network theory to reveal linearity:

ẋj =
R∑

i=1

κi (pij − rij)
N∏

k=1

x rik
i

ẋ = f (x) = YAκΨ(x)

RC Aκ←−−−− RC

Y

y xΨ

RS f←−−−− RS

� Species: S = {Xj | j = 1, . . . ,N}
� Complexes: C =

nPN
j=1 rijXj ,

PN
j=1 pijXj | i = 1, . . . ,R

o
� Ψ : nonlinear species-to-complex map
� Aκ: complex-to-complex rate matrix
� Y : complex-to-species stoichiometric matrix

� Eliminate in complex space using linear methods
� Related: Karp et al. (2012) J Theor Biol, in press

� Result: complex-linear invariants
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Main results

Definition

A chemical reaction network is complex-balanced if AκΨ(x) = 0 at any
steady state x ∈ RS . A network is unconditionally complex-balanced if it is
complex-balanced for all rates κ.

For complex-balanced networks:

� Complex-linear invariants in any subset C∗ ⊆ C can be computed

� Unconditionally nontrivial iff certain graph-theoretic conditions hold

Operationally:

� Can tell if the complexes C∗ are coplanar “without any work”

� Measure data, check complex balancing, test coplanarity
� Graph conditions for complex balancing (deficiency zero by Feinberg)

� No ordering, convergence, division issues; correctness guaranteed
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General approach

� For complex-balanced networks, can eliminate only on Aκ

� Aκ is highly structured (Laplacian)

� Non-positive diagonal entries

� Non-negative off-diagonal entries

� Non-positive column sums

� Use structure to understand elimination procedure

Elimination on Laplacian graphs: a well-studied problem?

� May exist shorter, simpler proofs

� Any advice/perspective very much appreciated
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Preliminaries

� Pick a subset C∗ ⊆ C and let p = |C∗|, q = n − p

� Assume first that the network is closed (no synthesis or degradation)

� Block partition of Aκ ∈ Rn×n: [ ]
Aκ =

A B p

C D q

p q

� Write in reduced form
� Drop all complexes for which the corresponding column of B vanishes
� Redefine all entities as appropriate
� Reorder C \ C∗ into irreducible components, D becomes block triangular

� If q = 0 (nothing left), then done (A provides invariant coefficients)

� Otherwise, coefficients given by Schur complement Aκ/D = A− BD−1C
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Elimination of complexes

Lemma

D is nonsingular (furthermore, a minus M-matrix).

Proof (nonsingularity).

If D is irreducible, then it is irreducibly diagonally dominant (since B 6= 0),
hence nonsingular. Otherwise, induct on irreducible components by writing

D =

[
D11

D21 D22

]
,

where D11 is irreducible and D22 is nonsingular by hypothesis. Then D11 is
irreducibly diagonally dominant and nonsingular, so D is nonsingular.

Theorem

The complexes C \ C∗ can always be eliminated.
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Nontrivial invariants

� Aκ/D always exists but can vanish (trivial invariants)

� When is Aκ/D 6= 0 unconditionally?
� Has a strictly positive entry unconditionally
� Has a strictly negative entry unconditionally

Definition

Write c  c ′ if there exists a path from c to c ′ (c → · · · → c ′).

Lemma

−D−1 ≥ 0 and has positive diagonal entries.
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Unconditional positive entry

Theorem

Aκ/D contains a positive entry iff there exist distinct c, c ′ ∈ C∗ such that
c  c ′.

Proof (⇐).

Induct on path length. Base case: obvious. In general, let c  c ′′ → c ′ and
eliminate c  c ′′. This introduces a positive entry corresponding to c → c ′′

by hypothesis. Use c ′′ → c ′ and diagonal positivity of −D−1 to deduce
(Aκ/D)ij > 0, where i , j are the indices of c ′, c .
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Unconditional positive entry

Theorem

Aκ/D contains a positive entry iff there exist distinct c, c ′ ∈ C∗ such that
c  c ′.

Proof (⇒).

Induct on irreducible components. Base case: obvious. In general, write

B =
[
B1 B2

]
, C =

[
C1

C2

]
, D =

[
D11

D21 D22

]
with D11 irreducible, and let C \ C∗ = C1 ∪ C2. If B2,C2 6= 0, then c  c ′

through C2 by induction; if B1,C1 6= 0, through C1; if B2,C1 6= 0, through C1

then C2.
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Unconditional negative entry

Theorem

Aκ/D contains a negative entry unconditionally iff there exists c ∈ C∗ and c ′

outside the irreducible component containing c in the subgraph on
C \ C∗ ∪ {c} such that c  c ′.

Proof.

Take submatrix Aκ(c) with the first block corresponding only to c . Clearly,
Aκ/D has no negative entry iff Aκ(c)/D = 0 for all c . If Aκ(c)/D < 0, then
Aκ(c) is nonsingular since D is nonsingular. Reorder Aκ(c) into irreducible
components, and let Dii be the block of D corresponding to the irreducible
component containing c in the subgraph. Then Aκ(c)/D < 0
unconditionally iff Dii is strictly diagonally dominant in at least one column.
Thus, we require an outgoing edge.
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Some comments

� Necessary and sufficient conditions for unconditionally nontrivial
complex-linear invariants

� Intuition:
� Positive entry (c  c ′): think cascade, proportional by equilibrium constant
� Negative entry (c  out): has a sink, concentration goes to zero

� Extension to open systems: same conditions as above or
� There exists c ∈ C∗ such that c → ∅ (strict diagonal dominance)
� There exists c ∈ C∗ such that ∅ → c (if include constant term)

� Can generalize to other kinetics (e.g., Michaelis-Menten)
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Examples

A + B
**
ABll // A + C

++
ACllff

A + B
**
ABll C + D

++
CDmm

A
))
Bhh // C

((
Dhh

E + A
**
EAll // E + B F + B

**
FBll // F + A
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Conclusions

� Graph-theoretic conditions for unconditionally nontrivial invariants

� Only fast graph algorithms required; elimination comes for free

� Applications to parameter-free model discrimination

� Possible extensions beyond complex-balanced networks
� In general, have to eliminate on YAκ

� Find Z ∈ Rn×N such that ZYAκ is “as Laplacian as possible”

� Preliminary work, can possibly still go further
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