A method for designing impulsive low-energy transfers between the Earth and the Moon

Stephen DeSalvo¹, Jonathan Essen, Ken Ho, Gwenan Knight

IPAM-RIPS 2006: Jet Propulsion Laboratory team

August 18, 2006

¹Project manager

DeSalvo S, Essen J, Ho KL, Knight G (IPAM-RIPS JPL)

A method for low-energy Earth-Moon mission design

4 B 6 4 B

Outline

Introduction

- Project sponsor
- Low-energy Earth-Moon mission design

2 Approach

- Approximation as two coupled three-body systems
- Four-body mission design using three-body manifolds

3 Method

- Invariant manifold computation
- Transfers between Sun-Earth and Earth-Moon manifolds
- Mission design using invariant manifolds

4 Results

5 Conclusion

A 3 3 4 4

Project sponsor Low-energy transfers The interplanetary superhighway Objective: a method for low-energy Earth-Moon mission design Project deliverables

Introduction Project sponsor: Jet Propulsion Laboratory

• A NASA center, staffed and managed for the government by Caltech

DeSalvo S, Essen J, Ho KL, Knight G (IPAM-RIPS JPL) A method for low-energy Earth-Moon mission design

ntroduction	Project sponsor
Approach	Low-energy transfers
Method	The interplanetary superhighway
Results	Objective: a method for low-energy Earth-Moon mission design
Conclusion	

A (1) < A (1) < A (1) < A (1) </p>

Introduction Project sponsor: Martin Lo

• Industry liaison: Martin Lo

- JPL mission analyst
- Designer of the Genesis Discovery Mission
- Low-energy mission design using dynamical systems theory

Genesis Discovery Mission

Unique trajectory requiring only very small mid-course corrections!

Image from JPL: http://www.jpl.nasa.gov/.

Introduction	Project sponsor
Approach	Low-energy transfers
Method	The interplanetary superhighway
Results	Objective: a method for low-energy Earth-Moon mission design
Conclusion	

< ≣ > <

э

• Simple dynamics: the Hohmann transfer

troduction	Project sponsor
Approach	Low-energy transfers
Method	The interplanetary superhighway
Results	Objective: a method for low-energy Earth-Moon mission design
Conclusion	

• Simple dynamics: the Hohmann transfer

In

• The Δv cost function

< 日 > < 同 > < 三 > < 三 >

Introduction Low-energy transfers

- Simple dynamics: the Hohmann transfer
- The Δv cost function

Why do we want a low Δv ?

A lower Δv means a lower fuel requirement—a lower fuel requirement means more space for scientific equipment and other cargo!

< ロ > < 同 > < 回 > < 回 >

Introduction Low-energy transfers

- Simple dynamics: the Hohmann transfer
- The Δv cost function

Why do we want a low Δv ?

A lower Δv means a lower fuel requirement—a lower fuel requirement means more space for scientific equipment and other cargo!

• More complicated dynamics: invariant manifolds

< 日 > < 同 > < 三 > < 三 >

Introduction Low-energy transfers

- Simple dynamics: the Hohmann transfer
- The Δv cost function

Why do we want a low Δv ?

A lower Δv means a lower fuel requirement—a lower fuel requirement means more space for scientific equipment and other cargo!

• More complicated dynamics: invariant manifolds

What is an invariant manifold?

An invariant manifold is a "gravitational passageway" that connects possibly very distant regions of space and guides the behavior of nearby trajectories.

Introduction Low-energy transfers

- Simple dynamics: the Hohmann transfer
- The Δv cost function

Why do we want a low Δv ?

A lower Δv means a lower fuel requirement—a lower fuel requirement means more space for scientific equipment and other cargo!

• More complicated dynamics: invariant manifolds

What is an invariant manifold?

An invariant manifold is a "gravitational passageway" that connects possibly very distant regions of space and guides the behavior of nearby trajectories.

• The interplanetary superhighway

Project sponsor Low-energy transfers **The interplanetary superhighway** Objective: a method for low-energy Earth-Moon mission desigr Project deliverables

< □ > < 同 > < 三

Introduction The interplanetary superhighway

Image from JPL: http://www.jpl.nasa.gov/.

DeSalvo S, Essen J, Ho KL, Knight G (IPAM-RIPS JPL) A method for low-energy Earth-Moon mission design

Introduction Objective: a method for low-energy Earth-Moon mission design

 Low-energy Earth-Moon mission design using invariant manifolds

Introduction Project sponsor Approach Low-energy tran Method The interplanet Results Objective: a me Conclusion Project delivera

Project sponsor Low-energy transfers The interplanetary superhighway Objective: a method for low-energy Earth-Moon mission design Project deliverables

Introduction Objective: a method for low-energy Earth-Moon mission design

- Low-energy Earth-Moon mission design using invariant manifolds
 - No single manifold joining the Earth and the Moon
 - Transfer by traveling on connecting manifolds

▲ □ ▶ ▲ □ ▶ ▲

Introduction Proje Approach Low-o Method The i Results Objec Conclusion Proje

Project sponsor Low-energy transfers The interplanetary superhighway Objective: a method for low-energy Earth-Moon mission design Project deliverables

Introduction Objective: a method for low-energy Earth-Moon mission design

- Low-energy Earth-Moon mission design using invariant manifolds
 - No single manifold joining the Earth and the Moon
 - Transfer by traveling on connecting manifolds
- Study of manifold transfers

/⊒ > < ∃ >

- MATLAB toolbox
 - Compute invariant manifolds
 - Investigate manifold intersections
 - Construct end-to-end trajectories

/⊒ > < ∃ >

- MATLAB toolbox
 - Compute invariant manifolds
 - Investigate manifold intersections
 - Construct end-to-end trajectories
- Manifold database and visualization routines

duction	Project sponsor
pproach	Low-energy transfers
Method	The interplanetary superhighway
Results	Objective: a method for low-energy Earth-Moon mission design
nclusion	Project deliverables

- MATLAB toolbox
 - Compute invariant manifolds
 - Investigate manifold intersections
 - Construct end-to-end trajectories
- Manifold database and visualization routines

Intro

• Study of manifold transfers

duction	Project sponsor
pproach	Low-energy transfers
Method	The interplanetary superhighway
Results	Objective: a method for low-energy Earth-Moon mission design
nclusion	Project deliverables

- MATLAB toolbox
 - Compute invariant manifolds
 - Investigate manifold intersections
 - Construct end-to-end trajectories
- Manifold database and visualization routines

Intro

- Study of manifold transfers
- Sample trajectories designed with the method

duction	Project sponsor
oproach	Low-energy transfers
Method	The interplanetary superhighway
Results	Objective: a method for low-energy Earth-Moon mission design
nclusion	Project deliverables

- MATLAB toolbox
 - Compute invariant manifolds
 - Investigate manifold intersections
 - Construct end-to-end trajectories
- Manifold database and visualization routines

Intro

- Study of manifold transfers
- Sample trajectories designed with the method
- Recommendations for future research

Approximation as two coupled three-body systems The planar circular restricted three-body problem Four-body mission design using three-body manifolds

э

Approach Approximation as two coupled three body-systems

The four-body problem

Approximation as two coupled three-body systems The planar circular restricted three-body problem Four-body mission design using three-body manifolds

Approach Approximation as two coupled three body-systems

The four-body problem

Approximation as two coupled three-body problems

DeSalvo S, Essen J, Ho KL, Knight G (IPAM-RIPS JPL)

A method for low-energy Earth-Moon mission design

Approximation as two coupled three-body systems **The planar circular restricted three-body problem** Four-body mission design using three-body manifolds

< 4 → < 三

Approach The planar circular restricted three-body problem

• PCR3BP assumptions

Approximation as two coupled three-body systems **The planar circular restricted three-body problem** Four-body mission design using three-body manifolds

Approach The planar circular restricted three-body problem

- PCR3BP assumptions
- The rotating frame

Approximation as two coupled three-body systems **The planar circular restricted three-body problem** Four-body mission design using three-body manifolds

Approach The planar circular restricted three-body problem

- PCR3BP assumptions
- The rotating frame
- Parameterization: the Jacobi constant

Approximation as two coupled three-body systems **The planar circular restricted three-body problem** Four-body mission design using three-body manifolds

Approach The planar circular restricted three-body problem

- PCR3BP assumptions
- The rotating frame
- Parameterization: the Jacobi constant
- Two PCR3BPs: Sun-Earth-SC and Earth-Moon-SC

Approximation as two coupled three-body systems The planar circular restricted three-body problem Four-body mission design using three-body manifolds

・ 戸 ト ・ ヨ ト ・ ヨ

• Use invariant manifolds generated by three-body dynamics

Approximation as two coupled three-body systems The planar circular restricted three-body problem Four-body mission design using three-body manifolds

伺下 イヨト イヨ

- Use invariant manifolds generated by three-body dynamics
- Extensive previous studies of the manifolds of the PCR3BP (Poincaré, Conley, McGehee)

Approximation as two coupled three-body systems The planar circular restricted three-body problem Four-body mission design using three-body manifolds

伺 ト イヨ ト イヨ

- Use invariant manifolds generated by three-body dynamics
- Extensive previous studies of the manifolds of the PCR3BP (Poincaré, Conley, McGehee)
- Connect systems by manifold transfer

Approximation as two coupled three-body systems The planar circular restricted three-body problem Four-body mission design using three-body manifolds

- 4 同 1 4 日 1 4 日

- Use invariant manifolds generated by three-body dynamics
- Extensive previous studies of the manifolds of the PCR3BP (Poincaré, Conley, McGehee)
- Connect systems by manifold transfer
- Trajectories following three-body manifolds approximate trajectories in the full system

Approximation as two coupled three-body systems The planar circular restricted three-body problem Four-body mission design using three-body manifolds

- Use invariant manifolds generated by three-body dynamics
- Extensive previous studies of the manifolds of the PCR3BP (Poincaré, Conley, McGehee)
- Connect systems by manifold transfer
- Trajectories following three-body manifolds approximate trajectories in the full system
- Correct in four-body dynamics

Introduction Invariant manifold computation Approach Method Results

< ロ > < 同 > < 回 > < 回 >

Method overview

Computing invariant manifolds

- Lagrange points
- Periodic orbits
- Invariant manifolds

- Better manifolds: use continuation methods to find larger periodic orbits
- Getting onto a manifold: transfer to/from circular orbit
- Transferring between manifolds
- Putting it all together: mission design 6

Introduction	Invariant manifold computation
Approach	Continuation methods for periodic orbits
Method	
Results	Transfers between Sun-Earth and Earth-Moon manifolds
Conclusion	Mission design using invariant manifolds

A B > A B >

э

Method Invariant manifold computation: Lagrange points

• Equilibrium points

DeSalvo S, Essen J, Ho KL, Knight G (IPAM-RIPS JPL) A method for low-energy Earth-Moon mission design

L,

Introduction	Invariant manifold computation
Approach	Continuation methods for periodic orbits
Method	
Results	Transfers between Sun-Earth and Earth-Moon manifolds
Conclusion	Mission design using invariant manifolds

Method Invariant manifold computation: periodic orbits

• Linearize to approximate periodic orbits and correct

ntroduction	Invariant manifold computation
Approach	Continuation methods for periodic orbits
Method	
Results	
Conclusion	

Method Invariant manifold computation: invariant manifolds

• Perturb in stable/unstable directions and integrate

 Introduction
 Invariant manifold computation

 Approach
 Continuation methods for periodic orbits

 Method
 Transfers between circular orbits and manifolds

 Results
 Transfers between Sun-Earth and Earth-Moon manifolds

 Conclusion
 Mission design using invariant manifolds

- ● ● ●

Method Invariant manifold computation: invariant manifolds

• Perturb in stable/unstable directions and integrate

 Introduction
 Invariant manifold computation

 Approach
 Continuation methods for periodic orbits

 Method
 Transfers between circular orbits and manifolds

 Results
 Transfers between Sun-Earth and Earth-Moon manifolds

 Conclusion
 Mission design using invariant manifolds

< ロ > < 同 > < 回 > < 回 >

Method overview

- Computing invariant manifolds
 - Lagrange points
 - Periodic orbits
 - Invariant manifolds
- Better manifolds: use continuation methods to find larger periodic orbits
- Setting onto a manifold: transfer to/from circular orbit
- Transferring between manifolds
- O Putting it all together: mission design
| Introduction | Invariant manifold computation |
|--------------|--|
| Approach | Continuation methods for periodic orbits |
| Method | Transfers between circular orbits and manifolds |
| Results | Transfers between Sun-Earth and Earth-Moon manifolds |
| Conclusion | Mission design using invariant manifolds |

Image: Image:

Method Continuation methods for periodic orbits I

• Linearization plus correction breaks down for large orbits

Introduction	Invariant manifold computation
Approach	Continuation methods for periodic orbits
Method	
Results	
Conclusion	

Image: Image:

- Linearization plus correction breaks down for large orbits
- Continuation methods

Introduction	Invariant manifold computation
Approach	Continuation methods for periodic orbits
Method	Transfers between circular orbits and manifolds
Results	Transfers between Sun-Earth and Earth-Moon manifolds
Conclusion	Mission design using invariant manifolds

Method Continuation methods for periodic orbits I

- Linearization plus correction breaks down for large orbits
- Continuation methods
 - Periodic orbits vary continuously
 - Extrapolate from initial conditions obtained by linearization
 - Correct extrapolations

Method Continuation methods for periodic orbits II

Earth-Moon-SC

- Linearization: $A_x = 0.04$
- Continuation: $A_x = 0.0742$
- Increase: $\Delta A_x = 0.0342$
- Percent increase: 86%

Sun-Earth-SC

- Linearization: $A_x = 0.00065$
- Continuation: $A_x = 0.001865$

イロン 不同 とくほう イロン

- Increase: $\Delta A_x = 0.001215$
- Percent increase: 187%

Significantly more powerful way of generating periodic orbits!

< ロ > < 同 > < 回 > < 回 >

Method overview

- Computing invariant manifolds
 - Lagrange points
 - Periodic orbits
 - Invariant manifolds
- Better manifolds: use continuation methods to find larger
- periodic orbitsGetting onto a manifold: transfer to/from circular orbit
- Transferring between manifolds
- Outting it all together: mission design

Method Transfers between circular orbits and manifolds

Sun-Earth rotating frame

Earth-Moon rotating frame

<ロ> <同> <同> < 同> < 同>

э

Introduction Invariant manifold computation Approach Continuation methods for periodic orbits Method Transfers between circular orbits and manifolds Results Transfers between Sun-Earth and Earth-Moon manifolds Conclusion Mission design using invariant manifolds

< ロ > < 同 > < 回 > < 回 >

Method Transfers between Sun-Earth and Earth-Moon manifolds

Method overview

- Computing invariant manifolds
 - Lagrange points
 - Periodic orbits
 - Invariant manifolds
- Better manifolds: use continuation methods to find larger periodic orbits
- **3** Getting onto a manifold: transfer to/from circular orbit
- Transferring between manifolds
- Outting it all together: mission design

< 日 > < 同 > < 三 > < 三 >

3

Method Transfers between Sun-Earth and Earth-Moon manifolds: Poincaré sections

Poincaré sections

DeSalvo S, Essen J, Ho KL, Knight G (IPAM-RIPS JPL) A method for low-energy Earth-Moon mission design

Introduction Invariant manifold computation Approach Continuation methods for periodic orbits Method Transfers between circular orbits and manifolds Results Transfers between Sun-Earth and Earth-Moon manifolds Conclusion Mission design using invariant manifolds

ロト ・ 同ト ・ ヨト ・ ヨト

Method Transfers between Sun-Earth and Earth-Moon manifolds: Poincaré sections

Poincaré sections

- Advantage: simple visualization of manifold intersections
- Disadvantage: arbitrariness of hyperplane cut

DeSalvo S, Essen J, Ho KL, Knight G (IPAM-RIPS JPL) A method for low-energy Earth-Moon mission design

Introduction Invariant manifold computation Approach Continuation methods for periodic orbits Method Transfers between circular orbits and manifolds Results Transfers between Sun-Earth and Earth-Moon manifolds Conclusion Mission design using invariant manifolds

Method Transfers between Sun-Earth and Earth-Moon manifolds: transfer region boundaries I

Our approach: transfer region boundaries

- Find regions of low-energy transfer
- Spatial intersections of trajectories
- Project into velocity space
- Types of transfer regions
- More complete view of Δv

< 日 > < 同 > < 三 > < 三 >

< 日 > < 同 > < 三 > < 三 >

Method Transfers between Sun-Earth and Earth-Moon manifolds: transfer region boundaries II

• Automated transfer analysis

DeSalvo S, Essen J, Ho KL, Knight G (IPAM-RIPS JPL) A method for low-energy Earth-Moon mission design

Method Transfers between Sun-Earth and Earth-Moon manifolds: transfer region boundaries II

- Automated transfer analysis
- Database analysis

- - E + - E +

A 10

Method Transfers between Sun-Earth and Earth-Moon manifolds: transfer region boundaries II

- Automated transfer analysis
- Database analysis
 - Metrics: areas of regions
 - Ranking of manifold pairs

4 3 6 4 3

Method Transfers between Sun-Earth and Earth-Moon manifolds: transfer region boundaries II

- Automated transfer analysis
- Database analysis
 - Metrics: areas of regions
 - Ranking of manifold pairs
- Design of potential manifold transfer

Method Transfers between Sun-Earth and Earth-Moon manifolds: transfer region boundaries II

- Automated transfer analysis
- Database analysis
 - Metrics: areas of regions
 - Ranking of manifold pairs
- Design of potential manifold transfer

Example

- Find manifold pair with large transfer region
- **2** Intersection of minimal Δv : guess for transfer point

< ロ > < 同 > < 回 > < 回 >

Method overview

- Computing invariant manifolds
 - Lagrange points
 - Periodic orbits
 - Invariant manifolds
- Better manifolds: use continuation methods to find larger
 - periodic orbits
- Getting onto a manifold: transfer to/from circular orbit
- Transferring between manifolds
- Putting it all together: mission design

ntroduction	Invariant manifold computation
Approach	Continuation methods for periodic orbits
Method	
Results	
Conclusion	Mission design using invariant manifolds

同 ト イ ヨ ト イ ヨ ト

э

Method Mission design using invariant manifolds

• Use manifold transfers to design a trajectory piecewise

ntroduction	Invariant manifold computation
Approach	Continuation methods for periodic orbits
Method	
Results	
Conclusion	Mission design using invariant manifolds

- - E - - E

Method Mission design using invariant manifolds

• Use manifold transfers to design a trajectory piecewise

- Low Earth orbit to Sun-Earth periodic orbit
- Sun-Earth periodic orbit to Earth-Moon periodic orbit
- Sarth-Moon periodic orbit to lunar orbit

ntroduction	Invariant manifold computation
Approach	Continuation methods for periodic orbits
Method	
Results	
Conclusion	Mission design using invariant manifolds

Method Mission design using invariant manifolds

• Use manifold transfers to design a trajectory piecewise

- Low Earth orbit to Sun-Earth periodic orbit
- Sun-Earth periodic orbit to Earth-Moon periodic orbit
- Sarth-Moon periodic orbit to lunar orbit
 - Trajectory pieces: initial guess for a mission

troduction	Invariant manifold computation
Approach	Continuation methods for periodic orbits
Method	
Results	
Conclusion	Mission design using invariant manifolds

Method Mission design using invariant manifolds

• Use manifold transfers to design a trajectory piecewise

- Low Earth orbit to Sun-Earth periodic orbit
- Sun-Earth periodic orbit to Earth-Moon periodic orbit
- Sarth-Moon periodic orbit to lunar orbit
 - Trajectory pieces: initial guess for a mission
 - More realistic mission: correct in four-body system

Invariant manifold computation
Continuation methods for periodic orbits
Mission design using invariant manifolds

A 3 1 1 4

Method Mission design using invariant manifolds

• Use manifold transfers to design a trajectory piecewise

- Low Earth orbit to Sun-Earth periodic orbit
- Sun-Earth periodic orbit to Earth-Moon periodic orbit
- Sarth-Moon periodic orbit to lunar orbit
 - Trajectory pieces: initial guess for a mission
 - More realistic mission: correct in four-body system
 - Sample points from patched trajectory
 - Formulation as an optimization problem

MATLAB toolbox Approximate trajectories in the four-body system

Results MATLAB toolbox

Manifold computation

- PCR3BP equations
- Lagrange points
- Periodic orbits
 - Linearization
 - Continuation methods
 - Differential correction
- Stability directions
- Manifold propagation
 - High-order integration
 - Adaptive perturbation

Manifold transfer

- Coordinate transformations
- Intersection interpolation
- Poincaré section
- Transfer region boundaries

Trajectory correction

- Four-body equations
- Optimization corrector

DeSalvo S, Essen J, Ho KL, Knight G (IPAM-RIPS JPL)

A method for low-energy Earth-Moon mission design

< 日 > < 同 > < 三 > < 三 >

э

MATLAB toolbox Approximate trajectories in the four-body system

Results Approximate trajectories in the four-body system

DeSalvo S, Essen J, Ho KL, Knight G (IPAM-RIPS JPL)

A method for low-energy Earth-Moon mission design

э

Discussion Future research

- Summary of study
 - Periodic orbit extensions
 - Transfers between circular orbits and manifolds
 - Transfers between Sun-Earth and Earth-Moon manifolds

伺 ト く ヨ ト く ヨ ト

3

Discussion Future research

- Summary of study
 - Periodic orbit extensions
 - Transfers between circular orbits and manifolds
 - Transfers between Sun-Earth and Earth-Moon manifolds
- Provides a method to generate initial guesses for real low-energy Earth-Moon trajectories

伺 ト イ ヨ ト イ ヨ ト

Discussion Future research

- Summary of study
 - Periodic orbit extensions
 - Transfers between circular orbits and manifolds
 - Transfers between Sun-Earth and Earth-Moon manifolds
- Provides a method to generate initial guesses for real low-energy Earth-Moon trajectories
- More systematic than previous methods

- 4 E K 4 E K

Discussion Future research

- Summary of study
 - Periodic orbit extensions
 - Transfers between circular orbits and manifolds
 - Transfers between Sun-Earth and Earth-Moon manifolds
- Provides a method to generate initial guesses for real low-energy Earth-Moon trajectories
- More systematic than previous methods
- Still need efficient correction routines

.

Discussion Future research

Conclusion Future research: characterization of the Δv surface

э

Discussion Future research

- Manifold layers
 - Separate for smooth variation in Δv
 - Statistical clustering

- 4 同 6 4 日 6 4 日 6

э

Discussion Future research

- Manifold layers
 - Separate for smooth variation in Δv
 - Statistical clustering
- Geometry of low-energy transfer regions

□ ▶ < □ ▶ < □</p>

Discussion Future research

- Manifold layers
 - Separate for smooth variation in Δv
 - Statistical clustering
- Geometry of low-energy transfer regions
- Parametric study of the Δv surface

→ 3 → < 3</p>

Discussion Future research

Conclusion Future research: trajectory correction

• Form of merit function

A 10

(*) *) *) *)

э

Discussion Future research

Conclusion Future research: trajectory correction

- Form of merit function
- Point sampling

э

A B > A B >

Discussion Future research

Conclusion Future research: trajectory correction

- Form of merit function
- Point sampling
- Computational efficiency

Image: Image:

Discussion Future research

Conclusion Future research: trajectory correction

- Form of merit function
- Point sampling
- Computational efficiency
- Shooting method

Image: Image:

Discussion Future research

- More periodic orbits
 - L₁ Lagrange point
 - Retrograde orbits

同 ト イ ヨ ト イ ヨ ト

э
Discussion Future research

- More periodic orbits
 - L₁ Lagrange point
 - Retrograde orbits
- Elliptical orbits

- ₹ 🖬 🕨

-

э

Discussion Future research

- More periodic orbits
 - L₁ Lagrange point
 - Retrograde orbits
- Elliptical orbits
- Orbital inclinations

< ∃ →

-

э

Discussion Future research

- More periodic orbits
 - L₁ Lagrange point
 - Retrograde orbits
- Elliptical orbits
- Orbital inclinations
- Integration with JPL ephemeris

4 3 b

Discussion Future research

- More periodic orbits
 - L₁ Lagrange point
 - Retrograde orbits
- Elliptical orbits
- Orbital inclinations
- Integration with JPL ephemeris
- 3D model extension

4 3 b

Acknowledgements

- Stefano Campagnola (faculty mentor)
- Martin Lo (industry mentor)
- Edward Soong, Michael Wu, Jim Kimmick
- Michael Raugh
- IPAM

4 3 b

Questions?

DeSalvo S, Essen J, Ho KL, Knight G (IPAM-RIPS JPL) A method for low-energy Earth-Moon mission design

References

- Howell KC (1983) Three-dimensional, periodic, 'halo' orbits. *Celest Mech* 32:53-71.
- Conley CC (1968) Low energy transfer orbits in the restricted three-body problem. *SIAM J Appl Math* 16(4):732-746.
- Koon WS, Lo MW, Marsden JE, Ross SD (1999) Dynamical Systems, the Three-Body Problem and Space Mission Design. In *International Conference on Differential Equations 1999.*
- Gómez G, Koon WS, Lo MW, Marsden JE, Masdemont J, Ross SD (2001) Invariant manifolds, the spatial three-body problem and space mission design. In *Advances in the Astronautical Sciences 2001*.
- Koon WS, Lo MW, Marsden JE, Ross SD (2001) Low energy transfer to the Moon. Celest Mech Dyn Astron 81(2):63-73.
- Koon WS, Lo MW, Marsden JE, Ross SD (2000) Shoot the Moon. In Spaceflight Mechanics 2000.
- Ross SD (2004) Cylindrical Manifolds and Tube Dynamics in the Restricted Three-Body Problem. PhD thesis, California Institute of Technology.

(日) (同) (日) (日) (日)

Lagrange points Transfer region boundary polygons Density control by polygon construction

Extra slides Lagrange points

Image from NASA: http://www.gsfc.nasa.gov/.

Lagrange points

- Balance of gravitational and rotational forces
- Five equilibrium points
- Unstable (saddle): L₁, L₂, L₃

< 日 > < 同 > < 三 > < 三 >

3

• Stable: L₄, L₅

Lagrange points Transfer region boundary polygons Density control by polygon construction

< 日 > < 同 > < 三 > < 三 >

э

• Spatial polygon: region of transfer in position space

Lagrange points Transfer region boundary polygons Density control by polygon construction

< ロ > < 同 > < 回 > < 回 >

- Spatial polygon: region of transfer in position space
- Total polygon: region of transfer in velocity space
 - Bounds all velocity coordinates corresponding to low Δv

Lagrange points Transfer region boundary polygons Density control by polygon construction

< ロ > < 同 > < 回 > < 回 >

- Spatial polygon: region of transfer in position space
- Total polygon: region of transfer in velocity space
 - Bounds all velocity coordinates corresponding to low Δv
- Intersection polygon: region in velocity space likely to contain zero-correction transfers

Lagrange points Transfer region boundary polygons Density control by polygon construction

・ロト ・同ト ・ヨト ・ヨト

- Spatial polygon: region of transfer in position space
- Total polygon: region of transfer in velocity space
 - $\bullet\,$ Bounds all velocity coordinates corresponding to low Δv
- Intersection polygon: region in velocity space likely to contain zero-correction transfers
 - Polygons bounding velocity coordinates corresponding to low Δv for each manifold
 - Intersection of these polygons

Lagrange points Transfer region boundary polygons Density control by polygon construction

・ロト ・同ト ・ヨト ・ヨト

- Spatial polygon: region of transfer in position space
- Total polygon: region of transfer in velocity space
 - $\bullet\,$ Bounds all velocity coordinates corresponding to low Δv
- Intersection polygon: region in velocity space likely to contain zero-correction transfers
 - Polygons bounding velocity coordinates corresponding to low Δv for each manifold
 - Intersection of these polygons
- All polygons are overestimations!

Lagrange points Transfer region boundary polygons Density control by polygon construction

< 日 > < 同 > < 三 > < 三 >

э

Polygon construction

- Triangulation, then polygon union
- Convex polygon

Lagrange points Transfer region boundary polygons Density control by polygon construction

- 4 同 2 4 日 2 4 日 2

- Polygon construction
 - Triangulation, then polygon union
 - Convex polygon
- Concave transfer region geometry

Lagrange points Transfer region boundary polygons Density control by polygon construction

- 4 同 ト 4 ヨ ト 4 ヨ ト

- Polygon construction
 - Triangulation, then polygon union
 - Convex polygon
- Concave transfer region geometry
- Concave polygon as union of convex polygons

Lagrange points Transfer region boundary polygons Density control by polygon construction

- 4 同 2 4 日 2 4 日 2

- Polygon construction
 - Triangulation, then polygon union
 - Convex polygon
- Concave transfer region geometry
- Concave polygon as union of convex polygons
- Polygon construction by grid partition

Lagrange points Transfer region boundary polygons Density control by polygon construction

- 4 同 6 4 日 6 4 日 6

- Polygon construction
 - Triangulation, then polygon union
 - Convex polygon
- Concave transfer region geometry
- Concave polygon as union of convex polygons
- Polygon construction by grid partition
 - No polygon constructed if less than two points in grid box!

Lagrange points Transfer region boundary polygons Density control by polygon construction

・ロト ・同ト ・ヨト ・ヨト

- Polygon construction
 - Triangulation, then polygon union
 - Convex polygon
- Concave transfer region geometry
- Concave polygon as union of convex polygons
- Polygon construction by grid partition
 - No polygon constructed if less than two points in grid box!
- Set tolerance for density of low-energy transfer points by appropriate gridding