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CHAPTER

ONE

INTRODUCTION

A hyperoctree is a geometrical tree data structure where each node is recursively subdivided into orthants. It is a
multidimensional generalization of the binary tree in 1D, the quadtree in 2D, and the octree in 3D.

hypoct contains routines for constructing and manipulating point hyperoctrees. Its primary purpose is to support fast
tree-based algorithms such as the fast multipole method (FMM). In this context, it provides an efficient hierarchical
indexing scheme as well as encodes all near- and far-field information via neighbor and interaction lists.

Special features include:

• Compatibility with general elements by associating with each point a size. The effect of working with elements
is that point distributions are no longer strictly contained within each node but can extend slightly beyond it.
Elements are assigned to nodes that are at least four times their size and have a modified “two over” neighbor
definition in order to fully capture the near field.

• Optimizations for non-uniform and high-dimensional data such as adaptive subdivision and pruning of empty
leaves. In particular, short dimensions are not bisected in order to keep nodes as hypercubic as possible.

• Support for periodic domains.

• Support for “sparse elements” suitable for finite element computations. Sparse elements interact only by overlap
and are assigned to nodes that are at least twice their size. The usual “one over” neighbor definition then suffices
to capture all external interactions.

hypoct is written in Fortran with wrappers in C and Python. This documentation mainly covers the Python interface,
the intended method for most users.

1.1 Motivation and design

To explain the motivation and design choices behind this library, it is perhaps easiest to begin by describing how
a typical tree algorithm is implemented. For this, imagine a set of points distributed over some spatial region in d
dimensions. Most codes proceed by first enclosing all of the points within a sufficiently large hypercube called the
root node. If the root contains more than a prescribed maximum number of points, it is split into 2d children of equal
size via bisection in each dimension and its points distributed accordingly between them. Each of these children are
in turn subdivided if they contain too many points, and the process repeated for each new node added. The leaves
of the tree are those nodes that do not have any children; they obviously satisfy the prescribed maximum occupancy
condition.

1.1.1 General elements

In the fast algorithm context, a key piece of information that one would like to query from the tree is which points lie
in the near and far fields of a given cluster of points. A point is in the far field of a cluster if it is separated from that
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cluster by at least the cluster’s size (also called well-separated). The near field is just the complement of the far field
and can sometimes afford a more convenient description. A tree provides a natural clustering of points via the nodes
to which they belong.

For true points, which are zero-dimensional objects, the near field of a node is composed of precisely its neighbors,
i.e., those nodes of the tree which immediately adjoin it. However, we are often interested in not just points but general
elements, for example, triangles to describe a surface in 3D or cubes to tessellate a volume. These are characterized
by a nonzero size, e.g., the diameter of the triangle or the extent of the cube. We will stick to the point formulation
for tree construction here, but we associate with each point now a size corresponding to the size of the element which
it represents. It is helpful to think of this size as the diameter of the element and the point as its centroid, but it can
be any point in or on the element. Then the problem as compared to the pure point setting is that elements can now
extend beyond the boundaries of the node to which they belong. We can also regard elements as continuous point
distributions, in which case the point distribution belonging to a given node is no longer contained strictly within it but
rather within a slightly enlarged ‘halo’ region.

A consequence of this is that the usual “one over” neighbor definition is insufficient to impose that non-neighbors be
well-separated. At minimum, the neighbors of a halo extension must include nodes that are at least “two over”. We
choose this as our modified neighbor definition for elements, which constrains that we assign elements to nodes that
are at least four times their size. In particular, this means that not all elements are pushed down to the next level upon
subdivision; large elements are held back to ensure correctness.

Note: This also means that not all nodes need obey the maximum occupancy condition, though they will do so as
much as possible given the size restriction. In particular, if a leaf contains only elements whose natural level is deeper
than the leaf’s level, then the leaf will satisfy the occupancy condition.

Note: The simple neighbor definition above characterizes the case when two nodes are at the same level. When one
node is larger than the other, the situation becomes slightly more complicated.

There is also an additional facility for elements that interact only sparsely, i.e., by overlap. This is suitable for, e.g., a
finite element discretization of a partial differential equation. Sparse elements are assigned to nodes that are at least
twice their size, for which the usual “one over” neighbor definition suffices to capture all external interactions. This
substantially reduces the extent of the near field as compared with general ‘dense’ elements.

1.1.2 Periodic domains

Problems involving periodic domains are encountered with some regularity and these, too, present troubles for standard
tree codes. In this setting, the given data represent the unit cell, which is supplemented by additional parameters
defining its extent. Building the tree itself is not problematic, but finding a neighbor structure compatible with the
periodic geometry produces some difficulty. This is because the neighboring nodes across boundaries will generally
not align with the node structure inside the unit cell. Thus, we must force the tree to conform to the problem geometry
so that it is compatible with the imposed periodicity.

We therefore allow the extent of the root node to be specified by the user (and otherwise calculated from the data if not
supplied). Since this can lead to highly skewed aspect ratios, we also institute an adaptive subdivision criterion such
that new nodes are as hypercubic as possible. This is achieved by halving only those node dimensions that are at least
1/
√

2 times the maximum node dimension at each level, which ensures a bound of
√

2 on the aspect ratio for nodes at
levels for which all dimensions are bisected.

1.1.3 Further adaptivity

We have already seen some adaptivity in the splitting of nodes above, but for problems with non-uniform distributions
or in high dimensions, further adaptivity is often desired. A potential bottleneck in such codes is the creation of all
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2d children for a given node upon subdivision, which for large d can become expensive. In this library, we therefore
create only those nodes which are needed, allowing us to handle far larger dimensions than usual. This also has the
effect of pruning empty leaves from the tree, which is a relatively standard feature.

1.1.4 Dynamic memory

Finally, we wanted also to make use of some modern Fortran features to streamline the algorithm as compared to
classical Fortran 77 programs. The main beneficiary is the use of dynamic memory. Older Fortran-style codes would
typically run the tree algorithm twice: first to go through and count up the amount of memory required and then again
to perform the actual memory writes once a properly sized block has been allocated. Here, we do essentially both
at the same time by doubling the size of our working array each time that more memory is requested. All arrays are
resized appropriately on output. Granted, this is a pretty minor point given all of the other languages out there with
dynamic memory, but it is rather useful from a Fortran 77 standpoint.

Other features that we took advantage of include modules for better encapsulation of data and routines, and some
shorthand notation for clarity and, perhaps, optimizability.

1.2 Algorithmic overview

We have already discussed the tree construction process above. Briefly, to review, it consists of recursively subdividing
nodes following a top-down sweep, alternately deciding which nodes to divide and then which points within those
nodes to hold from further subdivision.

Finding neighbors similarly involves a top-down sweep. We first initialize the neighbors at the two coarsest levels as a
base case, then at each finer level search for the neighbors of each node among the children of its parent’s neighbors.
This hence nests the neighbor search hierarchically and results in good performance.

For points, the neighbors of a given node consist of:

• All nodes at the same level immediately adjoining it (“one over”).

• All non-empty nodes at a coarser level (parent or above) immediately adjoining it.

For elements, the neighbors of a given node consist of:

• All nodes at the same level separated by at most the node’s size (“two over”).

• All non-empty nodes at a coarser level (parent or above) whose halo extensions are separated its own extension
by less than its extension’s size.

Finally, for sparse elements, the neighbors consist of:

• All nodes at the same level immediately adjoining it (“one over”).

• All non-empty nodes at a coarser level (parent or above) whose halo extensions overlap with its own extension.

In all cases, a node is not considered its own neighbor.

For FMM codes, it is also useful to have access to the interaction list of a node, which consists of:

• All nodes at the same level that are children of the neighbors of the node’s parent but not neighbors of the node
itself.

• All non-empty nodes at a coarser level (parent or above) that are neighbors of the node’s parent but not neighbors
of the node itself.

Interaction lists define a systematic multiscale tiling of space and provide an efficient organization of the main FMM
computations. Here, we generate interaction lists as follows. First, we initialize the lists for the three coarsest levels.

1.2. Algorithmic overview 5
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Then for each node at a finer level, we simply apply the definition directly by searching among the children of its
parent’s neighbors.

For data distributions that are not too pathological, meaning here that the elements are not oversized and that the data
do not consist of separate point clusters of vastly different scales (which, in principle, could be handled by constructing
a tree on each cluster individually), the following complexity estimates hold, where N is the number of points:

• The running time to build a tree scales as O(N log N), while its memory requirement is O(N).

• Both the time and memory complexities for finding all neighbors are O(N).

• Both the time and memory complexities for generating all interaction lists are O(N).

1.3 Licensing and availability

hypoct is freely available under the GNU GPL and can be downloaded at https://github.com/klho/hypoct. To request
alternate licenses, please contact the author.

6 Chapter 1. Introduction
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CHAPTER

TWO

INSTALLING

This section describes how to compile and install hypoct on Unix-like systems. Primary prerequisites include Git,
GNU Make, and a Fortran compiler such as GFortran. Secondary prerequisites, depending on which options are
desired, include a C compiler such as GCC (for the C interface); F2PY, Python, NumPy, and matplotlib (for the
Python interface); and Sphinx and LaTeX (for the documentation).

hypoct has only been tested using the GFortran and GCC compilers; the use of all other compilers should be considered
“at your own risk” (though they should really be fine).

2.1 Code repository

All source files for hypoct (including those for this documentation) are available at https://github.com/klho/hypoct. To
download hypoct using Git, type the following command at the shell prompt:

$ git clone https://github.com/klho/hypoct /path/to/local/repository/

2.2 Compiling

There are several targets available to compile, namely:

• the main Fortran library;

• the C wrapper for the Fortran library;

• the Python wrapper for the Fortran library;

• this documentation; and

• driver programs calling the library from each of the above languages.

To see all available targets, switch the working directory to the root of the local repository and type:

$ make help

Hopefully the instructions are self-explanatory; for more explicit directions, please see below. Before beginning, view
and edit the file Makefile to ensure that all options are properly set for your system. In particular, if you will not be
using GFortran or GCC, be sure to set alternate compilers as appropriate.

To compile the main Fortran library, type:

$ make fortran

To compile the C wrapper, type:
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$ make c

To compile the Python wrapper, type:

$ make python

To compile all three, type:

$ make

or:

$ make all

All object files are placed in the directory bin.

To compile the documentation files, type:

$ make doc

Output HTML and PDF files are placed in the directory doc.

2.3 Driver programs

hypoct also contains driver programs in Fortran, C, and Python to demonstrate the use of the library and its various
wrappers. To compile the drivers, type:

$ make fortran_driver

or:

$ make c_driver

or:

$ make python_driver

as appropriate. The above commands also automatically execute the corresponding programs. The driver programs
are discussed in more detail in Tutorial.

8 Chapter 2. Installing
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THREE

TUTORIAL

We now present a tutorial on using the Python interface to hypoct. From here on, we will therefore assume that hypoct
has been properly installed along with its Python wrapper; if this is not the case, please go back to Installing. The
choice to cover only the Python interface is merely for convenience. For help regarding the Fortran or C interfaces,
please consult the corresponding source code and driver programs.

3.1 Overview

The Python interface is located in the directory python, which contains the directory hypoct, organizing the main
Python package, and hypoct_python.so, the F2PY-ed Fortran library. The file hypoct_python.so contains
all wrapped routines and is imported by hypoct, which creates a somewhat more convenient (but still pretty bare-
bones) object-oriented interface around it. For details on the Python modules, please see the Python API; for details
on data formats, please refer to the Fortran source code.

We will now step through the process of running a program calling hypoct from Python, following the Python driver
program as a guide.

3.2 Initializing

The first step is to import hypoct by issuing the command:

>>> import hypoct

at the Python prompt. This should work if you are in the python directory; otherwise, you may have to first type
something like:

>>> import sys
>>> sys.path.append(/path/to/hypoct/python/)

in order to tell Python where to look.

Now let’s generate some data. As an example, we consider points distributed uniformly on the unit circle:

>>> import numpy as np
>>> n = 100
>>> theta = np.linspace(0, 2*np.pi, n+1)[:n]
>>> x = np.array([np.cos(theta), np.sin(theta)], order=’F’)

Note the use of the flag order=’F’ in numpy.array(). This instantiates the array in Fortran-contiguous order
and is important for avoiding data copying when passing to the backend.

9
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3.3 Building the tree

Building a tree can be as easy as typing:

>>> tree = hypoct.Tree(x)

Of course, this uses only the default options, e.g., sorting with a maximum occupany parameter of one, treating the
data as zero-dimensional points, and no control over the extent of the root. To specify any of these, we can use keyword
arguments as explained in hypoct.Tree(). We also outline these briefly below.

3.3.1 Adaptivity setting

To switch the build mode from adaptive to uniform subdivision (i.e., all leaves are divided if any one of them violates
the occupany condition), enter:

>>> tree = hypoct.Tree(x, adap=’u’)

The default is adap=’a’.

3.3.2 Tree depth

To control the level of subdivision, we can set the maximum leaf occupancy using the occ keyword. For example, to
subdivide until all leaves contain no more than five points, we can type:

>>> tree = hypoct.Tree(x, occ=5)

The default is occ=1.

It is also possible to set the maximum tree depth explicitly using the lvlmax keyword, e.g.:

>>> tree = hypoct.Tree(x, lvlmax=3)

The root is denoted as level zero. The default is lvlmax=-1, which specifies no maximum depth. Both occ and
lvlmax can be employed together, with lvlmax setting a hard limit on the tree.

3.3.3 Element setting

To treat the points as elements, each with a size, first create an array containing the size of each point, then build the
tree using the elem and siz keywords. For instance, to consider the points as elements each of size 0.1, write:

>>> tree = hypoct.Tree(x, elem=’e’, siz=0.1)

where we have used the shorthand that if siz is a single number, then it is automatically expanded into an array of
the appropriate size. Similarly, to build a tree on “sparse elements”, write:

>>> tree = hypoct.Tree(x, elem=’s’, siz=0.1)

The defaults are elem=’p’, corresponding to points, and siz=0.

3.3.4 Root extent

The extent of the root node can be specified using the ext keyword, e.g.,

10 Chapter 3. Tutorial
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>>> tree = hypoct.Tree(x, ext=[10, 0])

This tells the code to set the length of the root along the first dimension to 10; its length along the second dimension
is calculated from the data (since the corresponding entry is nonpositive). This is often useful if there is some external
parameter governing the problem geometry, for example, periodicity conditions. Like siz, ext can also be given as
a single number, in which case it is automatically expanded as appropriate. The default is ext=0.

3.3.5 Remarks

All options can be combined with each other. The output is stored as a hypoct.Tree instance, which is a thin
wrapper for the arrays output from Fortran. On our machine, running:

>>> tree = hypoct.Tree(x)
>>> tree.lvlx

gives:

array([[ 0, 1, 5, 17, 45, 97, 177, 193],
[ 6, 0, 3, 3, 3, 3, 3, 3]], dtype=int32)

which indicates that the tree has 6 levels (beyond the root at level 0) with 193 nodes in total. See the Fortran source
code for details.

3.4 Generating auxiliary data

The base tree output is stored in a rather spartan manner; it contains only the bare minimum necessary to reconstruct
the data for the entire tree. This is not always convenient and it is sometimes useful to have the data in a more easily
accessible form. For instance, the base tree representation contains only parent and child identifier information that
only really allows you to traverse a tree from the bottom up. To traverse a tree from the top down, we have to generate
child pointers, which we can do via:

>>> tree.generate_child_data()

We can also generate geometry information (center and extent) for each node by using:

>>> tree.generate_geometry_data()

These commands create the arrays tree.chldp, and tree.l, and tree.ctr, respectively.

3.5 Finding neighbors

To find the neighbors of each node, type:

>>> tree.find_neighbors()

which creates the neighbor index and pointer arrays tree.nbori and tree.nborp, respectively. The method also
accepts the keyword per indicating whether the root is periodic in a given dimension. For example, to impose that
the root is periodic in the first but not the second dimension, set:

>>> tree.find_neighbors(per=[True, False])

It is worth emphasizing that the size of the unit cell cannot be directly controlled here; for this, use the ext keyword
in hypoct.Tree(). As with the siz and ext keywords for hypoct.Tree(), we can also use shorthand by
writing just, e.g.:

3.4. Generating auxiliary data 11
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>>> tree.find_neighbors(per=True)

for double periodicity. The default is per=False.

The method hypoct.Tree.find_neighbors() requires that the child data from
hypoct.Tree.generate_child_data() have already been generated; if this is not the case, then this
is done automatically.

Note: Recall that neighbors are defined differently for points vs. elements as described briefly in Introduction.

3.6 Getting interaction lists

Interaction lists are often used in fast multipole-type algorithms to systematically cover the far field. To get interaction
lists for all nodes, type:

>>> tree.get_interaction_lists()

This command requires that the neighbor data from hypoct.Tree.find_neighbors() have already been gen-
erated; if this is not the case, then this is done automatically using default settings. Outputs include the index and
pointer arrays tree.ilsti and tree.ilstp, respectively.

3.7 Searching the tree

It is often also useful to be able to search the tree for a given set of points. This can be done via:

>>> trav = tree.search(x)

where x is the set of points to search for. The output trav is an array that records the tree traversal history for
each point: the node containing the point x[:,i] at level j has index trav[i,j]; if no such node exists, then
trav[i,j] = 0. By default, the tree is traversed fully from top to bottom. To limit the maximum tree depth
searched, use the keyword mlvl.

If we have a tree on elements, then we can also attach a size to each point using the keyword siz. Each node in the
tree traversal array, if it exists, must fully contain the point based on its size. The default is siz=0.

This command requires that child and geometry data have already been generated; if this is not the case, then this is
done automatically.

3.8 Putting it all together

A complete example program for building a tree and generating all auxiliary data is given as follows:

import hypoct, numpy as np

# initialize points
n = 100
theta = np.linspace(0, 2*np.pi, n+1)[:n]
x = np.array([np.cos(theta), np.sin(theta)], order=’F’)

# build tree
tree = hypoct.Tree(x, occ=4)

12 Chapter 3. Tutorial
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tree.generate_child_data()
tree.generate_geometry_data()
tree.find_neighbors()
tree.get_interaction_lists()

This is a slightly modified and abridged version of the driver program examples/hypoct_driver.py.

3.9 Viewing trees in 1D and 2D

Trees in 1D and 2D can be viewed graphically using the hypoct.tools.TreeViewer class. To use the viewer,
type:

>>> from hypoct.tools import TreeViewer
>>> view = TreeViewer(tree)
>>> view.draw_interactive()

This brings up an interactive session where each node in the tree is highlighted in turn, displaying its geometry,
contained points, and neighbor and interaction list information, if available. Press Enter to step through the tree. All
plot options can be controlled using matplotlib-style keywords.

Note: The hypoct.tools.TreeViewer class was written originally for 2D trees. It was extended to 1D trees
by trivially lifting into 2D.

3.9. Viewing trees in 1D and 2D 13
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CHAPTER

FOUR

EXAMPLES

We give some further examples on using hypoct in this section. Some of these can also be considered tests. Insert into
the preamble of each code snippet the following:

import hypoct, numpy as np

4.1 Degenerate distributions

A good test of robustness is to run hypoct on data that is degenerate in one or more dimensions:

x = np.random.rand(2, 100)
x[0,:] = 0
tree = hypoct.Tree(x)

The following output shows that the test succeeds:

>>> tree.lvlx

array([[ 0, 1, 3, 7, 15, 31, 61, 105, 159, 193, 215, 231, 239,
245, 249],
[ 13, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2]], dtype=int32)

Note the string of twos in tree.lvlx[1,:], which indicates that subdivision occurred only along the second
dimension and not the first (which has zero extent).

4.2 High-dimensional data

Another good test is on high-dimensional data. Here, we try d = 30, for which 2d ∼ 109, near the upper limit of
four-byte integer values:

x = np.random.rand(30, 100)
tree = hypoct.Tree(x)
tree.find_neighbors()

The code executes successfully with outputs:

>>> tree.lvlx

array([[ 0, 1, 101],
[ 1, 0, 1073741823]], dtype=int32)

15
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>>> tree.nborp

array([ 0, 0, 99, 198, 297, 396, 495, 594, 693, 792, 891,
990, 1089, 1188, 1287, 1386, 1485, 1584, 1683, 1782, 1881, 1980,

2079, 2178, 2277, 2376, 2475, 2574, 2673, 2772, 2871, 2970, 3069,
3168, 3267, 3366, 3465, 3564, 3663, 3762, 3861, 3960, 4059, 4158,
4257, 4356, 4455, 4554, 4653, 4752, 4851, 4950, 5049, 5148, 5247,
5346, 5445, 5544, 5643, 5742, 5841, 5940, 6039, 6138, 6237, 6336,
6435, 6534, 6633, 6732, 6831, 6930, 7029, 7128, 7227, 7326, 7425,
7524, 7623, 7722, 7821, 7920, 8019, 8118, 8217, 8316, 8415, 8514,
8613, 8712, 8811, 8910, 9009, 9108, 9207, 9306, 9405, 9504, 9603,
9702, 9801, 9900], dtype=int32)

>>> tree.nbori

array([ 3, 4, 5, ..., 98, 99, 100], dtype=int32)

For higher dimensions, hypoct must be modified and recompiled to use extended precision integers, e.g., integer*8
in Fortran, long long in C, and int64 in Python (NumPy).

4.3 Periodic data

To construct a triply periodic tree with unit cell extents of, say, 10, 2, and 2, respectively, in the first, second, and third
dimensions, write, e.g.:

x = np.random.rand(3, 100)
tree = hypoct.Tree(x, ext=[10, 2, 2])
tree.find_neighbors(per=True)
tree.get_interaction_lists()

The periodicity of the interaction lists inherits from that of the neighbor list.

4.4 Tree on triangles

The following code demonstrates how to build a tree on triangles:

# format for ‘vert‘: vertex ‘i‘ of triangle ‘j‘ has coordinates ‘vert[:,i,j]‘
n = vert.shape[2]

# compute triangle centroids
cent = vert.mean(axis=1)

# compute triangle diameters
diam = np.empty(n)
for i in range(n):
diam[i] = max(vert[:,:,i].max(axis=1) - vert[:,:,i].min(axis=1))

# build tree
tree = hypoct.Tree(cent, elem=’e’, siz=diam)
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4.5 Changing plot styles for TreeViewer

Plot styles for hypoct.tools.TreeViewer.draw_interactive() can be changed by specifying
matplotlib-type keywords. For example, using:

from hypoct.tools import TreeViewer
view = TreeViewer(tree)
view.draw_interactive(node_alpha=0.2, point_c=’g’, nbor_color=’y’, ilst_color=’r’)

sets the transparency level for the current node patch to 0.2, the color for points contained within the current node to
green, the color of neighboring node patches to yellow, and the color of node patches in the interaction list to red.

4.5. Changing plot styles for TreeViewer 17
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CHAPTER

FIVE

PYTHON API

This section provides the auto-generated API for the Python modules hypoct and hypoct.tools.

5.1 hypoct

Python module for interfacing with hypoct.

class hypoct.Tree(x, adap=’a’, elem=’p’, siz=0, occ=1, lvlmax=-1, ext=0)
Build hyperoctree.

Parameters

• x (numpy.ndarray) – Point coordinates, where the coordinate of point i is x[:,i].

• adap ({‘a’, ‘u’}) – Adaptivity setting: adaptive (‘a’), uniform (‘u’). This specifies whether
nodes are divided adaptively or to a uniformly fine level.

• elem ({‘p’, ‘e’, ‘s’}) – Element type: point (‘p’), element (‘e’), sparse element (‘s’). This
specifies whether the input points represent true points or general elements (with sizes) that
can extend beyond node boundaries. The element type determines how points are assigned
to nodes and also how node neighbors are defined (see find_neighbors()). If elem =
‘p’, then siz is ignored. Points and elements are intended to interact densely with each other,
whereas sparse elements are intended to interact only by overlap.

• siz (numpy.ndarray) – Sizes associated with each point. If siz is a single float, then it is
automatically expanded into an appropriately sized constant array. Not accessed if elem =
‘p’.

• occ (int) – Maximum leaf occupancy. Requires occ > 0.

• lvlmax (int) – Maximum tree depth. The root is defined to have level zero. No maximum if
lvlmax < 0.

• ext (numpy.ndarray) – Extent of root node. If ext[i] <= 0, then the extent in dimension
i is calculated from the data. Its primary use is to force nodes to conform to a a specified
geometry (see find_neighbors()). If ext is a single float, then it is automatically
expanded into an appropriately sized constant array.

find_neighbors(per=False)
Find neighbors.

The definition of a neighbor depends on the element type (see Tree()).

For points (elem = ‘p’), the neighbors of a given node consist of:

•All nodes at the same level immediately adjoining it (“one over”).
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•All non-empty nodes at a coarser level (parent or above) immediately adjoining it.

For elements and sparse elements (elem = ‘e’ or ‘s’), first let the extension of a node be the spatial region
corresponding to all possible point distributions belonging to that node.

Then for elements (elem = ‘e’), the neighbors of a given node consist of:

•All nodes at the same level separated by at most the node’s size (“two over”)

•All non-empty nodes at a coarser level (parent or above) whose extensions are separated from its own
extension by less than its extension’s size.

Finally, for sparse elements (elem = ‘s’), the neighbors consist of:

•All nodes at the same level immediately adjoining it (“one over”).

•All non-empty nodes at a coarser level (parent or above) whose extensions overlap with its own
extension.

In all cases, a node is not considered its own neighbor.

This routine requires that the child and geometry data have already been generated. If this is not the case,
then this is done automatically.

See generate_child_data() and generate_geometry_data().

Parameters per (numpy.ndarray) – Periodicity of root note. The domain is periodic in
dimension i if per[i] = True. If per is a single bool, then it is automatically expanded into an
appropriately sized constant array. Use ext in Tree() to control the extent of the root.

generate_child_data()
Generate child data.

generate_geometry_data()
Generate geometry data.

get_interaction_lists()
Get interaction lists.

The interaction list of a given node consists of:

•All nodes at the same level that are children of the neighbors of the node’s parent but not neighbors of
the node itself.

•All non-empty nodes at a coarser level (parent or above) that are neighbors of the node’s parent but
not neighbors of the node itself.

This routine requires that the neighbor data have already been generated. If this is not the case, then this is
done automatically (at default settings).

See find_neighbors().

search(x, siz=0, mlvl=-1)
Search hyperoctree.

The element type of the points to search for are assumed to be the same as that used to construct the tree
(see Tree()).

This routine requires that the child and geometry data have already been generated. If this is not the case,
then this is done automatically.

See generate_child_data() and generate_geometry_data().

Parameters
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• x (numpy.ndarray) – Point coordinates to search for, where the coordinate of point i
is x[:,i]‘.

• siz (numpy.ndarray) – Sizes associated with each point. If siz is a single float, then it
is automatically expanded into an appropriately sized constant array. Not accessed if elem
= ‘p’.

• mlvl (int) – Maximum tree depth to search. Defaults to full tree depth if mlvl < 0.

Returns Tree traversal array. The node containing point i at level j has index trav[i,j]; if no such
node exists, then trav[i,j] = 0.

Return type numpy.ndarray

5.2 hypoct.tools

Additional tools for hypoct.

class hypoct.tools.TreeViewer(tree)
View binary and quadtrees (1D and 2D hyperoctrees).

Parameters tree (hypoct.Tree) – Hyperoctree.

draw_base(c=’k’, **kwargs)
Draw wireframe outlines of all nodes in the tree.

Accepts all matplotlib.pyplot.plot() keyword arguments.

draw_interactive(draw_neighbors=True, draw_interaction_list=True, base_c=’k’,
node_alpha=0.5, node_color=’b’, nbor_alpha=0.5, nbor_color=’r’,
ilst_alpha=0.5, ilst_color=’g’, point_c=’k’, **kwargs)

Draw each node in the tree sequentially via an interactive session (press Enter to continue) along with
all neighbor and interaction list data, if available.

All keyword arguments prefaced with ‘base_’ are passed to draw_base(); those prefaced with
‘node_’ are passed to draw_node() when drawing each node; those prefaced with ‘nbor_’ are passed
to draw_node() when drawing each node neighbor; and those prefaced with ‘ilst_’ are passed to
draw_node() when drawing each node in the interaction list.

See draw_base() and draw_node().

Parameters

• draw_neighbors (bool) – Whether to draw neighbors.

• draw_interaction_list (bool) – Whether to draw interaction lists.

draw_node(index, level=None, draw_points=True, update=True, node_alpha=0.5, node_color=’b’,
point_c=’k’, **kwargs)

Draw node patch and, optionally, all points contained within it.

The node is drawn as a matplotlib.patches.Rectangle instance. Points are drawn using
matplotlib.pyplot.scatter().

All keyword arguments prefaced with ‘node_’ are passed to the node drawing routine with the prefix
stripped, and, similarly all arguments prefixed with ‘point_’ are passed to the point drawing routine with
the prefix stripped. For example, setting node_color=’r’ and point_c=’b’ passes the keyword argument
color=’r’ to the node drawer and c=’b’ to the point drawer.

Parameters

• index (int) – Node index.

5.2. hypoct.tools 21
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• level (int) – Level of node. If None, the level is found automatically.

• draw_points (bool) – Whether to draw points contained in the node.

• update (bool) – Whether to update the plot after drawing the node.
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• genindex

• modindex

• search
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