
RECOVERING SIGNAL FREQUENCIES WITH THE FOURIER TRANSFORM

KENNETH L. HO

Suppose that we are given a signal of the form

f (t) =
∑

i

Ai sin (2πωit) , (1)

i.e., f is the superposition of fundamental waves of amplitudes Ai and frequencies ωi, and that we are only
allowed to sample f at a finite number of equally-spaced time points. How might we determine, on the basis
of the samples that we have collected, the identities of the frequencies composing f?

A commonly used tool for this task is the Fourier transform. In the continuous setting, the Fourier
transform1 is the mapping

f̂ (ω) =
∫ ∞

0

f (t) e−2πıωt dt ∈ C

of f into the frequency domain, where |f̂(ω)| gives the “contribution” of the fundamental wave of frequency
ω to f . To see this a little more explicitly, it is instructive to introduce also the inverse Fourier transform

f (t) =
∫ ∞

−∞
f̂ (ω) e2πıωt dω,

which is just an integral decomposition of f into its fundamental components. Viewed as a generalization of
(1), f̂(ω) clearly represents the amplitude of the wave of frequency ω.

In the posited situation, however, we do not have access to the entire signal f , but only a discrete number
of samples f1, . . . , fn, where fi = f(ti), with ti+1− ti = ∆t, where ∆t is the intersample time. Consequently,
we will not use the Fourier transform as described above, but instead the discrete Fourier transform (DFT),
defined by

Fj =
n−1∑
k=0

fke−2πıjk/n, j = 0, . . . , n− 1.

Similarly to the continuous case, |Fj | gives the contribution of “frequency” j to the sample signal. But what
physical frequency does j correspond to?

Clearly, the maximum frequency ωmax that we can hope to capture is limited by the sampling frequency
1/∆t. But due to something called the Nyquist condition, we can achieve only half of this—intuitively, it
takes two points to represent each wave cycle: one for the “peak” and another for the “trough”. Therefore,

ωmax =
1

2∆t
. (2)

Now what about the minimum frequency ωmin? For real signals f , there is a symmetry between positive
and negative frequencies, so in fact ωmin = −ωmax. Since the DFT has n components, equally spaced from
ωmin to ωmax, the resolution between the discrete frequencies is

∆ω =
ωmax − ωmin

n
=

1
n∆t

≡ 1
T

, (3)

where T is the total time period over which we sample f .

1There are many definitions of the Fourier transform—the one that we use here is certainly not the most common, though
it is the most convenient for our purposes.

1

2 KENNETH L. HO

Figure 1. Moduli of Fourier transform coefficients |F | of f sampled with T = 10 s and
∆t = 0.01 s as a function of the frequency ω (including negative frequencies; Hz).

So which components of F correspond to the negative frequencies? To answer this, we consider the
periodicity of the DFT kernel:

e−2πı(n−j)/n = e−2πıe−2πı(−j)/n = e−2πı(−j)/n

since exp(2πı) = 1, so Fn−j = F−j is actually the amplitude for “frequency” −j. Hence, the DFT is
redundant, and the first dn/2e components cover all non-negative frequencies captured. Thus, for j =
0, . . . , dn/2e, the physical frequency corresponding to Fj is j∆ω. From this perspective, the maximum
frequency that we can recover is

ωmax = dn/2e∆ω =
dn/2e
n∆t

∼ 1
2∆t

,

which, of course, is consistent with (2). Observe that (2) and (3) provide guidelines on how to select T and
∆t.

Let’s do an example now where we actually use this to recover the fundamental frequencies of the signal

f (t) = sin (2π · 10 · t) + 2 sin (2π · 20 · t)− 0.7 sin (2π · 30 · t) ,

i.e., f is composed of waves of 10, 20, and 30 Hz, if t is given in seconds. We will additionally corrupt f
with white noise to simulate an imperfect sensor. The DFT is computed in Matlab by the command fft,
for the fast Fourier transform—this is how the DFT is almost always computed in practice.

To ensure that we can capture the highest frequency of 30 Hz2, we use (2) to derive the condition
∆t ≤ 1/60 ≈ 0.0167 s; we hence choose ∆t = 0.01 s for simplicity. For moderate resolution, we set T = 10
s. The moduli |Fj | of the transformed signal are shown in Figure 1. Strong peaks about 10, 20, and 30
Hz clearly pinpoint the constituent frequencies. However, there are also peaks about 70, 80, and 90 Hz; as
discussed above, these correspond to the negative frequencies −30, −20, and −10 Hz, respectively, as can
be seen from the fact that the amplitudes of the corresponding frequencies are identical—this is the sense in
which we mean that the DFT is redundant.

We can clean this up a bit by dropping off the second half of the DFT data. There are a few details in
doing this cleanly (primarily involving promoting n up to the next power-of-two); these are all given in the
function fft freq3:

2Note that we don’t usually have such knowledge a priori.
3All codes can be downloaded at http://www.courant.nyu.edu/~ho/teaching/2011/nyu/spring/comput-med-biol/.

http://www.courant.nyu.edu/~ho/teaching/2011/nyu/spring/comput-med-biol/

RECOVERING SIGNAL FREQUENCIES WITH THE FOURIER TRANSFORM 3

Figure 2. Moduli of Fourier coefficients |F | of f sampled with T = 10 s and ∆t = 0.01 s
as a function of the frequency ω (Hz).

%FFT FREQ Compute a FFT r e s t r i c t e d to non−negat ive f requenc ies and return
% the f requenc ies assoc ia ted with each Fourier component .
%
% X = FFT FREQ(X,T,DT) returns the d i s c r e t e Fourier transform of X
% sampled over the time in t e r v a l T in time increments of DT, r e s t r i c t e d
% to non−negat ive f requenc ies only . The time in t e r v a l T must have the
% form [TMIN, . . . , TMAX] ; only the f i r s t and l a s t elements are used .
%
% [X,W] = FFT FREQ(X,T,DT) a l so returns the f requenc ies W assoc ia ted with
% each component of X.
%
% See a l so FFT.
function [X, w] = f f t f r e q (x , t , dt)

n = ce i l ((t (end) − t (1)) / dt) ;
n f f t = 2ˆnextpow2(n) ;
X = f f t (x , n f f t) / n ;
X = X(1 : ce i l (n f f t / 2)) ;
w = 1/(2∗ dt) ∗ l inspace (0 , 1 , ce i l (n f f t / 2)) ;

end

The script demo fft freq below demonstrates its use:

%% i n i t i a l i z e
f = @(t) (sin (2∗pi ∗10∗ t) + . . . % input s i gna l

2 ∗ sin (2∗pi ∗20∗ t) − . . .
0 .7∗ sin (2∗pi ∗30∗ t)) ;

T = 10 ; % sampling time in t e r v a l
dt = 0 . 0 1 ; % sampling time period
%% compute
n = ce i l (T/dt) ; % number of sample points
t = l inspace (0 , T, n) ; % sampling times
x = f (t) + randn (1 , n) ; % sampled noisy s i gna l
[X, w] = f f t f r e q (x , t , dt) ; % compute FFT
%% p lo t
f igure
plot (w, abs (X)) % frequency contr i bu t ions
xlabel (’ Frequency (\omega) [Hz] ’)
ylabel (’ Four i e r c o e f f i c i e n t modulus (|F |) ’)

Figure 2 shows the Fourier coefficients for the same sampling parameters as Figure 1, but with only the
first half of the DFT data shown. Finally, to show the effects of resolution, we give two more plots: Figure
3 with T = 1 s, and Figure 4 with T = 100 s.

4 KENNETH L. HO

Figure 3. Moduli of Fourier coefficients |F | of f sampled with T = 1 s and ∆t = 0.01 s as
a function of the frequency ω (Hz).

Figure 4. Moduli of Fourier coefficients |F | of f sampled with T = 100 s and ∆t = 0.01 s
as a function of the frequency ω (Hz).

