## Fibonacci numbers in nature

Kenneth L. Ho ${ }^{1}$<br>Courant Institute, New York University

cSplash 2011
${ }^{1}$ ho@courant. nyu.edu

## What are the Fibonacci numbers?

## What are the Fibonacci numbers?

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

What are the Fibonacci numbers?

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$



## What are the Fibonacci numbers?

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$



One of these is not exactly related to the Fibonacci numbers.

## A little history

■ Studied in India as early as 200 BC


## A little history

■ Studied in India as early as 200 BC

- Introduced to the West by Leonardo of Pisa (Fibonacci) in Liber Abaci (1202)


Leonardo of Pisa
c. 1170 - c. 1250

## A little history

■ Studied in India as early as 200 BC

- Introduced to the West by Leonardo of Pisa (Fibonacci) in Liber Abaci (1202)

■ "Book of Calculation"

- Described Hindu-Arabic numerals
- Used Fibonacci numbers to model rabbit population growth


Leonardo of Pisa
c. 1170 - c. 1250

## Bunnies!

## Model assumptions

- One male-female pair originally
- Each pair able to mate at one month, mating each month thereafter
- Each mating produces one new pair after one month



## Bunnies!

## Model assumptions

- One male-female pair originally
- Each pair able to mate at one month, mating each month thereafter
- Each mating produces one new pair after one month


How many pairs are there after $n$ months?

## Fibonacci bunnies

| month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $\cdots$ | $n$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| pairs | 1 |  |  |  |  |  |  |  |  |  |

Month 1

- One pair originally


## Fibonacci bunnies

| month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $\cdots$ | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pairs | 1 | 1 |  |  |  |  |  |  |  |  |

Month 2

- From last month:

1

- Newly born:


## Fibonacci bunnies

| month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $\cdots$ | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pairs | 1 | 1 | 2 |  |  |  |  |  |  |  |

Month 3
■ From last month: 1

- Newly born: 1


## Fibonacci bunnies

| month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $\cdots$ | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pairs | 1 | 1 | 2 | 3 |  |  |  |  |  |  |

Month 4

- From last month:

2

- Newly born: 1


## Fibonacci bunnies

| month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $\cdots$ | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pairs | 1 | 1 | 2 | 3 | 5 |  |  |  |  |  |

Month 5

- From last month: 3

■ Newly born: 2

## Fibonacci bunnies

| month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $\cdots$ | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pairs | 1 | 1 | 2 | 3 | 5 | 8 |  |  |  |  |

Month 6

- From last month:
- Newly born: 3


## Fibonacci bunnies

| month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $\cdots$ | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pairs | 1 | 1 | 2 | 3 | 5 | 8 | 13 |  |  |  |

Month 7

- From last month: 8
- Newly born:

5

## Fibonacci bunnies

| month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $\cdots$ | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pairs | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 |  |  |

Month 8

- From last month: 13
- Newly born:


## Fibonacci bunnies

| month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $\cdots$ | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pairs | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | $\cdots$ | $F_{n}$ |

Month n
■ From last month: $\quad F_{n-1}$
■ Newly born: $\quad F_{n-2}$

## Fibonacci bunnies

| month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $\cdots$ | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pairs | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | $\cdots$ | $F_{n}$ |

$$
\begin{array}{lr}
F_{1}=F_{2}=1 & \text { (seed values) } \\
F_{n}=F_{n-1}+F_{n-2} & \text { (recurrence relation) }
\end{array}
$$

## Fibonacci bunnies

| month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $\cdots$ | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pairs | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | $\cdots$ | $F_{n}$ |

$$
\begin{array}{lr}
F_{0}=0, \quad F_{1}=1 & \text { (seed values) } \\
F_{n}=F_{n-1}+F_{n-2} & \text { (recurrence relation) }
\end{array}
$$

## Fibonacci bunnies

| month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $\cdots$ | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| pairs | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | $\cdots$ | $F_{n}$ |

$$
\begin{array}{lr}
F_{0}=0, \quad F_{1}=1 & \text { (seed values) } \\
F_{n}=F_{n-1}+F_{n-2} & \text { (recurrence relation) }
\end{array}
$$

Note that the rabbit model is unrealistic (why?), but we will see a real instance where the Fibonacci numbers show up very shortly.

Fibonacci numbers in nature

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{n}$ | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | $\cdots$ |



Fibonacci numbers in nature

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{n}$ | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | $\cdots$ |



## Number of spirals

Clockwise: ..... 13
Counterclockwise: ..... 8

Fibonacci numbers in nature

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{n}$ | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | $\cdots$ |



## Number of spirals

## Clockwise: <br> 21

Counterclockwise: ..... 34

## Fibonacci numbers in nature

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{n}$ | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | $\cdots$ |



## Number of spirals

Clockwise: ..... 13

Counterclockwise: 8

## Fibonacci numbers in nature

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{n}$ | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | $\cdots$ |



So where do the Fibonacci numbers come from?

## A crash course on plant growth

■ Central turning growing tip
■ Emits new seed head, floret, leaf bud, etc. every $\alpha$ turns
■ Seed heads grow outward with time


A crash course on plant growth

$$
\alpha=1 / 4
$$

$$
\alpha=1 / 5
$$

## From a plant's perspective

- What's wrong with this growth pattern?



## From a plant's perspective

- What's wrong with this growth pattern?
- Too much wasted space!


From a plant＇s perspective


From a plant's perspective


## From a plant's perspective

■ What's wrong with this growth pattern?

- Too much wasted space!

■ Want to maximize exposure to sunlight, dew, $\mathrm{CO}_{2}$


## From a plant's perspective

■ What's wrong with this growth pattern?

- Too much wasted space!

■ Want to maximize exposure to sunlight, dew, $\mathrm{CO}_{2}$

- Evolve for optimal packing



## Floral showcase

$\alpha=1 / 4$
$\alpha=1 / 5$
$\alpha=1 / 7$



$$
\alpha=2 / 3
$$

$\alpha=3 / 4$
$\alpha=5 / 8$


## Rationality is not always good

## Definition

A rational number is a number that can be expressed as a fraction $m / n$, where $m$ and $n$ are integers.

## Rationality is not always good

## Definition

A rational number is a number that can be expressed as a fraction $m / n$, where $m$ and $n$ are integers.

Can we get a good covering with $\alpha=m / n$ ?

## Rationality is not always good

## Definition

A rational number is a number that can be expressed as a fraction $m / n$, where $m$ and $n$ are integers.

Can we get a good covering with $\alpha=m / n$ ? The answer is no.

## Rationality is not always good

## Definition

A rational number is a number that can be expressed as a fraction $m / n$, where $m$ and $n$ are integers.

Can we get a good covering with $\alpha=m / n$ ? The answer is no. Why?

- Growing tip makes $m$ revolutions every $n$ seeds
- Growth pattern repeats after $n$ seeds
- At most $n$ "rays" of seeds


## Floral showcase redux (rational)

$\alpha=1 / 4$


$$
\alpha=2 / 3
$$


$\alpha=1 / 5$
$\alpha=1 / 7$

$\alpha=3 / 4$


## Floral showcase (irrational)



$$
\alpha=1 / e
$$

$$
\alpha=1 / \sqrt{2}
$$



## Floral showcase (irrational)

$$
\alpha=1 / \pi
$$

$$
\alpha=1 / e
$$

$$
\alpha=1 / \sqrt{2}
$$


"Less" irrational


"More" irrational

- Some irrationals work better than others.

■ What is the "most" irrational number?

## The golden ratio



Mathematically,

$$
\frac{a+b}{a}=\frac{a}{b} \equiv \varphi .
$$

How to solve for $\varphi$ ?

## The golden ratio

1 Given:

$$
\frac{a+b}{a}=\frac{a}{b} \equiv \varphi
$$

## The golden ratio

1 Given:

$$
\begin{array}{r}
\frac{a+b}{a}=\frac{a}{b} \equiv \varphi \\
1+\frac{b}{a}=\varphi
\end{array}
$$

## The golden ratio

1 Given:
(2) Simplify:

$$
\begin{array}{r}
\frac{a+b}{a}=\frac{a}{b} \equiv \varphi \\
1+\frac{b}{a}=\varphi \\
1+\frac{1}{\varphi}=\varphi
\end{array}
$$

3 Substitute:

## The golden ratio

## 1 Given:

$$
\begin{array}{r}
\frac{a+b}{a}=\frac{a}{b} \equiv \varphi \\
1+\frac{b}{a}=\varphi
\end{array}
$$

3 Substitute:
4 Rearrange:

$$
\varphi^{2}-\varphi-1=0
$$

## The golden ratio

1 Given:

$$
\begin{array}{r}
\frac{a+b}{a}=\frac{a}{b} \equiv \varphi \\
1+\frac{b}{a}=\varphi
\end{array}
$$

3 Substitute:
4 Rearrange:
5 Quadratic formula:

$$
\begin{array}{r}
\varphi^{2}-\varphi-1=0 \\
\varphi=\frac{1+\sqrt{5}}{2}
\end{array}
$$

## The golden ratio

## 1 Given:

$$
\begin{array}{r}
\frac{a+b}{a}=\frac{a}{b} \equiv \varphi \\
1+\frac{b}{a}=\varphi \\
1+\frac{1}{\varphi}=\varphi
\end{array}
$$

2 Simplify:
3 Substitute:
4 Rearrange:

$$
\begin{array}{r}
\varphi^{2}-\varphi-1=0 \\
\varphi=\frac{1+\sqrt{5}}{2}
\end{array}
$$

The number $\varphi \approx 1.618 \ldots$ is called the golden ratio.

## The golden ratio: a broader perspective

■ Studied since antiquity
■ First defined by Euclid (Elements, c. 300 BC)

- Associated with perceptions of beauty
- Applications in art and architecture



## The golden ratio in plant growth

$$
\alpha=1 / \varphi
$$

The golden ratio in plant growth


## The golden ratio in plant growth



$$
\alpha=1 / \varphi \approx 222.5^{\circ}
$$

$$
\alpha=222.6^{\circ}
$$



Nature seems to have found $\varphi$ quite precisely!

## Some properties of irrational numbers

## Theorem

Every irrational number can be written as a continued fraction

or, for short, $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$, where the $a_{i}$ are positive integers.

## Some properties of irrational numbers

## Theorem

Every irrational number can be written as a continued fraction

or, for short, $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$, where the $a_{i}$ are positive integers.

$$
\begin{aligned}
\pi & =[3 ; 7,15,1,292,1,1,1,2,1, \ldots] \\
e & =[2 ; 1,2,1,1,4,1,1,6,1, \ldots] \\
\sqrt{2} & =[1 ; 2,2,2, \ldots] \\
\varphi & =[1 ; 1,1,1, \ldots]
\end{aligned}
$$

## Some properties of irrational numbers

## Theorem

Every irrational number can be written as a continued fraction $\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$, where the $a_{i}$ are positive integers.

The truncations

$$
\begin{aligned}
{\left[a_{0}\right]=\frac{a_{0}}{1}, \quad\left[a_{0} ; a_{1}\right]=\frac{a_{1} a_{0}+1}{a_{1}}, } & \\
& {\left[a_{0} ; a_{1}, a_{2}\right]=\frac{a_{2}\left(a_{1} a_{0}+1\right)+a_{0}}{a_{2} a_{1}+1}, \quad \ldots }
\end{aligned}
$$

give a sequence of rational approximations called convergents.

## Some properties of irrational numbers

## Theorem

The convergent $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right] \equiv m / n$ provides the best approximation among all rationals $m^{\prime} / n^{\prime}$ with $n^{\prime} \leq n$.

The truncations

$$
\begin{aligned}
{\left[a_{0}\right]=\frac{a_{0}}{1}, \quad\left[a_{0} ; a_{1}\right]=} & \frac{a_{1} a_{0}+1}{a_{1}}, \\
& {\left[a_{0} ; a_{1}, a_{2}\right]=\frac{a_{2}\left(a_{1} a_{0}+1\right)+a_{0}}{a_{2} a_{1}+1}, \quad \ldots }
\end{aligned}
$$

give a sequence of rational approximations called convergents.

## The most irrational number

A few convergents:

- $\pi: \quad 3, \frac{22}{7}, \frac{333}{106}, \frac{355}{113}$
- e: $2,3, \frac{8}{3}, \frac{11}{4}, \frac{19}{7}$
- $\sqrt{2}: 1, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}$


## The most irrational number

A few convergents:

- $\pi: \quad 3, \quad \frac{22}{7}, \frac{333}{106}, \frac{355}{113}$
- e: $2,3, \frac{8}{3}, \frac{11}{4}, \frac{19}{7}$
- $\sqrt{2}: 1, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}$

$$
22 / 7 \approx 3.14285714 \ldots
$$

$333 / 106 \approx 3.14150943 \ldots$
$355 / 113 \approx 3.14159292 \ldots$

## The most irrational number

A few convergents:

- $\pi: \quad 3, \frac{22}{7}, \frac{333}{106}, \frac{355}{113}$
- e: $2,3, \frac{8}{3}, \frac{11}{4}, \frac{19}{7}$
$22 / 7 \approx 3.14285714 \ldots$ $333 / 106 \approx 3.14150943 \ldots$ $355 / 113 \approx 3.14159292 \ldots$
- $\sqrt{2}: 1, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}$

What makes a number easy to approximate rationally?

## The most irrational number

A few convergents:


What makes a number easy to approximate rationally?

## The most irrational number

A few convergents:
$\begin{array}{llll}-\pi: & 3, & \frac{22}{7}, & \frac{333}{106}, \frac{355}{113} \\ -e: & 2, & 3, & \frac{8}{3}, \frac{11}{4}, \frac{19}{7} \\ -\sqrt{2}: & 1, & \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29} & 7+\frac{1}{15+\frac{1}{1+\frac{1}{292+\ddots}}}\end{array}$

Large denominators mean small numbers!

## The most irrational number

A few convergents:
$\begin{array}{lll}-\pi: & 3, & \frac{22}{7}, \frac{333}{106}, \frac{355}{113} \\ -e: & 2, & 3, \frac{8}{3}, \frac{11}{4}, \frac{19}{7} \\ -\sqrt{2}: & 1, & \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}\end{array} \quad \varphi=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ddots}}}}$

The golden ratio has the slowest converging representation.

## The most irrational number

A few convergents:

- $\pi: \quad 3, \frac{22}{7}, \frac{333}{106}, \frac{355}{113}$
- e: $2,3, \frac{8}{3}, \frac{11}{4}, \frac{19}{7}$
- $\sqrt{2}: 1, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}$

$$
\varphi=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ddots}}}}
$$

- $\varphi$ : $1,2, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \frac{13}{8}$

The golden ratio has the slowest converging representation.

## Back to the Fibonacci numbers

## Theorem

The ratio of successive Fibonacci numbers $F_{n+1} / F_{n} \rightarrow \varphi$ as $n \rightarrow \infty$.

## Back to the Fibonacci numbers

## Theorem (in English)

The ratio of successive Fibonacci numbers $F_{n+1} / F_{n} \approx \varphi$, and the approximation gets better the bigger $n$ is.

## Back to the Fibonacci numbers

## Theorem (in English)

The ratio of successive Fibonacci numbers $F_{n+1} / F_{n} \approx \varphi$, and the approximation gets better the bigger $n$ is.

Informally:
1 Exponential growth:

$$
\begin{array}{r}
F_{n+1} / F_{n} \approx \theta \\
F_{n}=F_{n-1}+F_{n-2} \\
\frac{F_{n}}{F_{n-1}} \frac{F_{n-1}}{F_{n-2}}=\frac{F_{n-1}}{F_{n-2}}+1 \\
\theta^{2} \approx \theta+1
\end{array}
$$

4 Substitute:

## Back to the Fibonacci numbers

## Theorem (in English)

The ratio of successive Fibonacci numbers $F_{n+1} / F_{n} \approx \varphi$, and the approximation gets better the bigger $n$ is.

Informally:
1 Exponential growth:

$$
\begin{array}{r}
F_{n+1} / F_{n} \approx \theta \\
F_{n}=F_{n-1}+F_{n-2} \\
\frac{F_{n}}{F_{n-1}} \frac{F_{n-1}}{F_{n-2}}=\frac{F_{n-1}}{F_{n-2}}+1 \\
\theta^{2} \approx \theta+1
\end{array}
$$

4 Substitute:

This is just the equation for the golden ratio, so $\theta \approx \varphi$.

## Going around

$$
\alpha=1 / \varphi \approx F_{n} / F_{n+1}
$$



- $F_{n}$ revolutions over $F_{n+1}$ seeds

■ No exact repeat since irrational

- Alternately overshoot and undershoot


## Going around



| seeds | position |
| :---: | :---: |
| 2 | +0.236068 |
| 3 | -0.145898 |
| 5 | +0.090170 |
| 8 | -0.055728 |
| 13 | +0.034442 |
| 21 | -0.021286 |
| 34 | +0.013156 |
| 55 | -0.008131 |
| 89 | +0.005025 |
| 144 | -0.003106 |

## Origin of the spirals



- Seed heads: 250
- CW spirals: 13
- CCW spirals: $\quad 13+8$


## Origin of the spirals



■ Seed heads: 500
■ CW spirals: $21+13$
■ CCW spirals: 21

## Origin of the spirals



■ Seed heads: 1000
■ CW spirals: 34
■ CCW spirals: $\quad 34+21$

## Origin of the spirals

## Summary

■ Overview of Fibonacci numbers $F_{n}$

## Summary

- Overview of Fibonacci numbers $F_{n}$

■ Ubiquity in plant growth

- Goal: optimal packing
- Solution: the golden ratio $\varphi$


## Summary

- Overview of Fibonacci numbers $F_{n}$
- Ubiquity in plant growth
- Goal: optimal packing
- Solution: the golden ratio $\varphi$
- Reason: $\varphi$ is the most irrational number


## Summary

- Overview of Fibonacci numbers $F_{n}$
- Ubiquity in plant growth
- Goal: optimal packing
- Solution: the golden ratio $\varphi$
- Reason: $\varphi$ is the most irrational number
- Connection between $\varphi$ and the $F_{n}$


## Summary

■ Overview of Fibonacci numbers $F_{n}$

- Ubiquity in plant growth
- Goal: optimal packing
- Solution: the golden ratio $\varphi$
- Reason: $\varphi$ is the most irrational number
- Connection between $\varphi$ and the $F_{n}$


## Final note

There is a very good reason why the Fibonacci numbers show up in at least one aspect of nature (plant growth)—and now you know what it is. (Spread the word!)

## Questions?



MoMA (Sep 2008)

