Fibonacci numbers in nature

Kenneth L. Ho¹

Courant Institute, New York University

cSplash 2011

¹ho@courant.nyu.edu

What are the Fibonacci numbers?

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

$0,\ 1,\ 1,\ 2,\ 3,\ 5,\ 8,\ 13,\ 21,\ 34,\ 55,\ 89,\ 144,\ \ldots$

What are the Fibonacci numbers?

$0,\ 1,\ 1,\ 2,\ 3,\ 5,\ 8,\ 13,\ 21,\ 34,\ 55,\ 89,\ 144,\ \ldots$

・ロ> < 回> < 回> < 回> < 回> < 回

What are the Fibonacci numbers?

$0,\ 1,\ 1,\ 2,\ 3,\ 5,\ 8,\ 13,\ 21,\ 34,\ 55,\ 89,\ 144,\ \ldots$

One of these is not exactly related to the Fibonacci numbers.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A little history

Studied in India as early as 200 BC

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A little history

- Studied in India as early as 200 BC
- Introduced to the West by Leonardo of Pisa (Fibonacci) in Liber Abaci (1202)

Leonardo of Pisa c. 1170 – c. 1250

A little history

- Studied in India as early as 200 BC
- Introduced to the West by Leonardo of Pisa (Fibonacci) in Liber Abaci (1202)
 - "Book of Calculation"
 - Described Hindu-Arabic numerals
 - Used Fibonacci numbers to model rabbit population growth

Leonardo of Pisa c. 1170 – c. 1250

Bunnies!

Model assumptions

- One male-female pair originally
- Each pair able to mate at one month, mating each month thereafter
- Each mating produces one new pair after one month

Bunnies!

Model assumptions

- One male-female pair originally
- Each pair able to mate at one month, mating each month thereafter
- Each mating produces one new pair after one month

How many pairs are there after n months?

month 1	2	3	4	5	6	7	8	 n
pairs 1								

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Month 1

One pair originally

month	1	2	3	4	5	6	7	8	 n
pairs	1	1							

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

- From last month: 1
- Newly born: 0

month	1	2	3	4	5	6	7	8	• • •	n
pairs	1	1	2							

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

- From last month: 1
- Newly born: 1

month	1	2	3	4	5	6	7	8	• • •	n
pairs	1	1	2	3						

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- From last month: 2
- Newly born: 1

month	1	2	3	4	5	6	7	8	• • •	n
pairs	1	1	2	3	5					

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- From last month: 3
- Newly born: 2

month	1	2	3	4	5	6	7	8	 n
pairs	1	1	2	3	5	8			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- From last month: 5
- Newly born: 3

month	1	2	3	4	5	6	7	8	 n
pairs	1	1	2	3	5	8	13		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- From last month: 8
- Newly born: 5

month	1	2	3	4	5	6	7	8	 n
pairs	1	1	2	3	5	8	13	21	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- From last month: 13
- Newly born: 8

month	1	2	3	4	5	6	7	8	 n
pairs	1	1	2	3	5	8	13	21	 F _n

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Month n

- From last month: F_{n-1}
- Newly born: F_{n-2}

month	1	2	3	4	5	6	7	8	 n
pairs	1	1	2	3	5	8	13	21	 F _n

$$F_1 = F_2 = 1$$
 (seed values)
 $F_n = F_{n-1} + F_{n-2}$ (recurrence relation)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

month	1	2	3	4	5	6	7	8	• • •	n
pairs	1	1	2	3	5	8	13	21		F _n

 $F_0 = 0, \quad F_1 = 1$ (seed values) $F_n = F_{n-1} + F_{n-2}$ (recurrence relation)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

month	1	2	3	4	5	6	7	8	 n
pairs	1	1	2	3	5	8	13	21	 F _n

$$F_0 = 0, \quad F_1 = 1$$
 (seed values)
 $F_n = F_{n-1} + F_{n-2}$ (recurrence relation)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Note that the rabbit model is unrealistic (why?), but we will see a real instance where the Fibonacci numbers show up very shortly.

Fibonacci numbers in nature

★ロト ★週 ト ★ ヨト ★ ヨト 二 ヨ

<i>n</i> 0	1	2	3	4	5	6	7	8	9	10	11	•••
$F_n \mid 0$	1	1	2	3	5	8	13	21	34	55	89	

Number of spirals

Clockwise:	13
Counterclockwise:	8

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Number of spirals

Clockwise:	21
Counterclockwise:	34

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Number of spirals

Clockwise:	13
Counterclockwise:	8

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

<i>n</i> 0	1	2	3	4	5	6	7	8	9	10	11	•••
$F_n \mid 0$	1	1	2	3	5	8	13	21	34	55	89	

So where do the Fibonacci numbers come from?

(ロ)、(型)、(E)、(E)、 E) の(の)

A crash course on plant growth

- Central turning growing tip
- Emits new seed head, floret, leaf bud, etc. every α turns
- Seed heads grow outward with time

A crash course on plant growth

$$\alpha = 1/4$$
 $\alpha = 1/5$

<□ > < @ > < E > < E > E のQ @

What's wrong with this growth pattern?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- What's wrong with this growth pattern?
- Too much wasted space!

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

- What's wrong with this growth pattern?
- Too much wasted space!
- Want to maximize exposure to sunlight, dew, CO₂

- What's wrong with this growth pattern?
- Too much wasted space!
- Want to maximize exposure to sunlight, dew, CO₂
- Evolve for optimal packing

Floral showcase

270*

270*

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣 →
Rationality is not always good

Definition

A rational number is a number that can be expressed as a fraction m/n, where m and n are integers.

Rationality is not always good

Definition

A rational number is a number that can be expressed as a fraction m/n, where m and n are integers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Can we get a good covering with $\alpha = m/n$?

Definition

A rational number is a number that can be expressed as a fraction m/n, where m and n are integers.

Can we get a good covering with $\alpha = m/n$? The answer is no.

Definition

A rational number is a number that can be expressed as a fraction m/n, where m and n are integers.

Can we get a good covering with $\alpha = m/n$? The answer is no.

Why?

- Growing tip makes *m* revolutions every *n* seeds
- Growth pattern repeats after *n* seeds
- At most *n* "rays" of seeds

Floral showcase redux (rational)

・ロト ・聞ト ・ヨト ・ヨト æ

Floral showcase (irrational)

(日) (個) (目) (目) (目) (目)

Floral showcase (irrational)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Some irrationals work better than others.
- What is the "most" irrational number?

Mathematically,

$$\frac{a+b}{a} = \frac{a}{b} \equiv \varphi.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How to solve for φ ?

<□ > < @ > < E > < E > E のQ @

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The number $\varphi \approx 1.618...$ is called the golden ratio.

The golden ratio: a broader perspective

- Studied since antiquity
- First defined by Euclid (*Elements*, c. 300 BC)
- Associated with perceptions of beauty
- Applications in art and architecture

The golden ratio in plant growth

$$\alpha = 1/\varphi$$

The golden ratio in plant growth

・ロト・西ト・西ト・日・ 日・ シック

The golden ratio in plant growth

Nature seems to have found φ quite precisely!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

Every irrational number can be written as a continued fraction

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ddots}}$$

or, for short, $[a_0; a_1, a_2, ...]$, where the a_i are positive integers.

Theorem

Every irrational number can be written as a continued fraction

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ddots}}$$

or, for short, $[a_0; a_1, a_2, ...]$, where the a_i are positive integers.

$$\pi = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, \ldots]$$

$$e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, \ldots]$$

$$\sqrt{2} = [1; 2, 2, 2, \ldots]$$

$$\varphi = [1; 1, 1, 1, \ldots]$$

Theorem

Every irrational number can be written as a continued fraction $[a_0; a_1, a_2, ...]$, where the a_i are positive integers.

The truncations

$$\begin{aligned} [a_0] &= \frac{a_0}{1}, \quad [a_0; a_1] = \frac{a_1 a_0 + 1}{a_1}, \\ [a_0; a_1, a_2] &= \frac{a_2 (a_1 a_0 + 1) + a_0}{a_2 a_1 + 1}, \quad \dots \end{aligned}$$

give a sequence of rational approximations called convergents.

Theorem

The convergent $[a_0; a_1, a_2, ..., a_k] \equiv m/n$ provides the best approximation among all rationals m'/n' with $n' \leq n$.

The truncations

$$[a_0] = \frac{a_0}{1}, \quad [a_0; a_1] = \frac{a_1 a_0 + 1}{a_1}, \\ [a_0; a_1, a_2] = \frac{a_2 (a_1 a_0 + 1) + a_0}{a_2 a_1 + 1}, \quad \dots$$

give a sequence of rational approximations called convergents.

A few convergents:

π :	3,	$\frac{22}{7}$,	$\frac{33}{10}$	33)6	$\frac{355}{113}$
e:	2,	3,	$\frac{8}{3}$,	$\frac{11}{4}$,	$\frac{19}{7}$
$\sqrt{2}$:	1,	$\frac{3}{2}$,	$\frac{7}{5}$,	$\frac{17}{12}$	$\frac{41}{29}$

A few convergents:

π :	3,	$\frac{22}{7}$,	$\frac{33}{10}$	33)6	$\frac{355}{113}$
e:	2,	3,	$\frac{8}{3}$,	$\frac{11}{4}$,	$\frac{19}{7}$
$\sqrt{2}$:	1,	$\frac{3}{2}$,	$\frac{7}{5}$,	$\frac{17}{12}$	$\frac{41}{29}$

 $22/7 \approx 3.14285714...$ $333/106 \approx 3.14150943...$ $355/113 \approx 3.14159292...$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A few convergents:

π :	3,	$\frac{22}{7}$,	$\frac{33}{10}$	33)6'	$\frac{355}{113}$
e:	2,	3,	8 3'	$\frac{11}{4}$,	$\frac{19}{7}$
$\sqrt{2}$:	1,	$\frac{3}{2}$,	$\frac{7}{5}$,	$\frac{17}{12}$	$\frac{41}{29}$

 $22/7 \approx 3.14285714...$ $333/106 \approx 3.14150943...$ $355/113 \approx 3.14159292...$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What makes a number easy to approximate rationally?

A few convergents:

What makes a number easy to approximate rationally?

A few convergents:

Large denominators mean small numbers!

A few convergents:

The golden ratio has the slowest converging representation.

A few convergents:

The golden ratio has the slowest converging representation.

Back to the Fibonacci numbers

Theorem

The ratio of successive Fibonacci numbers $F_{n+1}/F_n \rightarrow \varphi$ as $n \rightarrow \infty$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (in English)

The ratio of successive Fibonacci numbers $F_{n+1}/F_n \approx \varphi$, and the approximation gets better the bigger *n* is.

Theorem (in English)

The ratio of successive Fibonacci numbers $F_{n+1}/F_n \approx \varphi$, and the approximation gets better the bigger *n* is.

Informally:

- Exponential growth:
- 2 Recurrence relation:
- 3 Divide and rewrite:
- 4 Substitute:

$$F_{n+1}/F_n \approx \theta$$

$$F_n = F_{n-1} + F_{n-2}$$

$$\frac{F_n}{F_{n-1}} \frac{F_{n-1}}{F_{n-2}} = \frac{F_{n-1}}{F_{n-2}} + 1$$

$$\theta^2 \approx \theta + 1$$

Theorem (in English)

The ratio of successive Fibonacci numbers $F_{n+1}/F_n \approx \varphi$, and the approximation gets better the bigger *n* is.

Informally:

- Exponential growth:
- 2 Recurrence relation:
- 3 Divide and rewrite:

4 Substitute:

$$F_{n+1}/F_n \approx \theta$$

$$F_n = F_{n-1} + F_{n-2}$$

$$\frac{F_n}{F_{n-1}} \frac{F_{n-1}}{F_{n-2}} = \frac{F_{n-1}}{F_{n-2}} + 1$$

$$\theta^2 \approx \theta + 1$$

This is just the equation for the golden ratio, so $\theta \approx \varphi$.

Going around

 $\alpha = 1/\varphi \approx F_n/F_{n+1}$

- F_n revolutions over F_{n+1} seeds
- No exact repeat since irrational
- Alternately overshoot and undershoot

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Going around

$$\alpha = 1/\varphi \approx F_n/F_{n+1}$$

seeds	position		
2	+0.236068		
3	-0.145898		
5	+0.090170		
8	-0.055728		
13	+0.034442		
21	-0.021286		
34	+0.013156		
55	-0.008131		
89	+0.005025		
144	-0.003106		

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ (の)

Origin of the spirals

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ 「国」 釣ん(で)
Origin of the spirals

★□> ★@> ★注> ★注> 注: のへで.

Origin of the spirals

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Origin of the spirals

• Overview of Fibonacci numbers F_n

- Overview of Fibonacci numbers F_n
- Ubiquity in plant growth
 - Goal: optimal packing
 - \blacksquare Solution: the golden ratio φ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Overview of Fibonacci numbers F_n
- Ubiquity in plant growth
 - Goal: optimal packing
 - \blacksquare Solution: the golden ratio φ
 - **Reason:** φ is the most irrational number

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Overview of Fibonacci numbers F_n

- Ubiquity in plant growth
 - Goal: optimal packing
 - \blacksquare Solution: the golden ratio φ
 - Reason: φ is the most irrational number

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Connection between φ and the F_n

Overview of Fibonacci numbers F_n

- Ubiquity in plant growth
 - Goal: optimal packing
 - \blacksquare Solution: the golden ratio φ
 - Reason: φ is the most irrational number
- Connection between φ and the F_n

Final note

There is a very good reason why the Fibonacci numbers show up in at least one aspect of nature (plant growth)—and now you know what it is. (Spread the word!)

Questions?

MoMA (Sep 2008)

・ロト ・個ト ・モト ・モト

æ