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What are the Fibonacci numbers?

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

One of these is not exactly related to the Fibonacci numbers.
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A little history

Studied in India as early as 200 BC

Introduced to the West by
Leonardo of Pisa (Fibonacci) in
Liber Abaci (1202)

“Book of Calculation”
Described Hindu-Arabic numerals
Used Fibonacci numbers to
model rabbit population growth
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Bunnies!

Model assumptions

One male-female pair originally

Each pair able to mate at one month,
mating each month thereafter

Each mating produces one new pair
after one month

How many pairs are there after n months?
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Fibonacci bunnies
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F1 = F2 = 1 (seed values)
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Fibonacci bunnies

month 1 2 3 4 5 6 7 8 · · · n

pairs 1 1 2 3 5 8 13 21 · · · Fn

F0 = 0, F1 = 1 (seed values)

Fn = Fn−1 + Fn−2 (recurrence relation)

Note that the rabbit model is unrealistic (why?), but we will see a
real instance where the Fibonacci numbers show up very shortly.



Fibonacci numbers in nature

n 0 1 2 3 4 5 6 7 8 9 10 11 · · ·

Fn 0 1 1 2 3 5 8 13 21 34 55 89 · · ·



Fibonacci numbers in nature

n 0 1 2 3 4 5 6 7 8 9 10 11 · · ·

Fn 0 1 1 2 3 5 8 13 21 34 55 89 · · ·

Number of spirals

Clockwise: 13
Counterclockwise: 8



Fibonacci numbers in nature

n 0 1 2 3 4 5 6 7 8 9 10 11 · · ·

Fn 0 1 1 2 3 5 8 13 21 34 55 89 · · ·

Number of spirals

Clockwise: 21
Counterclockwise: 34



Fibonacci numbers in nature

n 0 1 2 3 4 5 6 7 8 9 10 11 · · ·

Fn 0 1 1 2 3 5 8 13 21 34 55 89 · · ·

Number of spirals

Clockwise: 13
Counterclockwise: 8



Fibonacci numbers in nature

n 0 1 2 3 4 5 6 7 8 9 10 11 · · ·

Fn 0 1 1 2 3 5 8 13 21 34 55 89 · · ·

So where do the Fibonacci numbers come from?



A crash course on plant growth

Central turning growing tip

Emits new seed head, floret, leaf
bud, etc. every α turns

Seed heads grow outward with time



A crash course on plant growth

α = 1/4 α = 1/5



From a plant’s perspective

What’s wrong with this
growth pattern?

Too much wasted space!

Want to maximize exposure
to sunlight, dew, CO2

Evolve for optimal packing
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α = 1/4

α = 2/3

α = 1/5

α = 3/4

α = 1/7
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Rationality is not always good

Definition

A rational number is a number that can be expressed as a fraction
m/n, where m and n are integers.

Can we get a good covering with α = m/n? The answer is no.

Why?

Growing tip makes m revolutions every n seeds

Growth pattern repeats after n seeds

At most n “rays” of seeds
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Floral showcase redux (rational)
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α = 1/π

“Less” irrational

α = 1/e

⇐⇒

α = 1/
√

2

“More” irrational

Some irrationals work better than others.

What is the “most” irrational number?
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The golden ratio

Mathematically,

a + b

a
=

a

b
≡ ϕ.

How to solve for ϕ?
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2 Simplify: 1 +
b

a
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3 Substitute: 1 +
1

ϕ
= ϕ

4 Rearrange: ϕ2 − ϕ− 1 = 0

5 Quadratic formula: ϕ =
1 +
√

5

2

The number ϕ ≈ 1.618 . . . is called the golden ratio.
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The golden ratio: a broader perspective

Studied since antiquity

First defined by Euclid (Elements, c. 300 BC)

Associated with perceptions of beauty

Applications in art and architecture



The golden ratio in plant growth

α = 1/ϕ



The golden ratio in plant growth



The golden ratio in plant growth

α = 222.4◦ α = 1/ϕ ≈ 222.5◦ α = 222.6◦

Nature seems to have found ϕ quite precisely!



Some properties of irrational numbers

Theorem

Every irrational number can be written as a continued fraction

a0 +
1

a1 +
1

a2 +
.. .

or, for short, [a0; a1, a2, . . . ], where the ai are positive integers.



Some properties of irrational numbers

Theorem

Every irrational number can be written as a continued fraction

a0 +
1

a1 +
1

a2 +
.. .

or, for short, [a0; a1, a2, . . . ], where the ai are positive integers.

π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, . . . ]

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, . . . ]
√

2 = [1; 2, 2, 2, . . . ]

ϕ = [1; 1, 1, 1, . . . ]



Some properties of irrational numbers

Theorem

Every irrational number can be written as a continued fraction
[a0; a1, a2, . . . ], where the ai are positive integers.

The truncations

[a0] =
a0

1
, [a0; a1] =

a1a0 + 1

a1
,

[a0; a1, a2] =
a2 (a1a0 + 1) + a0

a2a1 + 1
, . . .

give a sequence of rational approximations called convergents.



Some properties of irrational numbers

Theorem

The convergent [a0; a1, a2, . . . , ak ] ≡ m/n provides the best
approximation among all rationals m′/n′ with n′ ≤ n.

The truncations
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The most irrational number

A few convergents:

π: 3,
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7
,
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,
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8

3
,
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4
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√
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5
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5
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Back to the Fibonacci numbers

Theorem

The ratio of successive Fibonacci numbers Fn+1/Fn → ϕ as
n→∞.

Informally:

1 Exponential growth: Fn+1/Fn ≈ θ
2 Recurrence relation: Fn = Fn−1 + Fn−2

3 Divide and rewrite:
Fn

Fn−1

Fn−1

Fn−2
=

Fn−1

Fn−2
+ 1

4 Substitute: θ2 ≈ θ + 1

This is just the equation for the golden ratio, so θ ≈ ϕ.
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Going around

α = 1/ϕ ≈ Fn/Fn+1

Fn revolutions over Fn+1 seeds

No exact repeat since irrational

Alternately overshoot and
undershoot



Going around

α = 1/ϕ ≈ Fn/Fn+1 seeds position

2 +0.236068
3 −0.145898
5 +0.090170
8 −0.055728

13 +0.034442
21 −0.021286
34 +0.013156
55 −0.008131
89 +0.005025

144 −0.003106



Origin of the spirals

Seed heads: 250

CW spirals: 13

CCW spirals: 13 + 8



Origin of the spirals

Seed heads: 500

CW spirals: 21 + 13

CCW spirals: 21



Origin of the spirals

Seed heads: 1000

CW spirals: 34

CCW spirals: 34 + 21



Origin of the spirals



Summary

Overview of Fibonacci numbers Fn

Ubiquity in plant growth

Goal: optimal packing
Solution: the golden ratio ϕ
Reason: ϕ is the most irrational number

Connection between ϕ and the Fn

Final note

There is a very good reason why the Fibonacci numbers show up
in at least one aspect of nature (plant growth)—and now you
know what it is. (Spread the word!)
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Questions?

MoMA (Sep 2008)


