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We present a method for rejecting competing models from noisy time-course data that does not rely on parameter inference.
First we characterize ordinary differential equation models in only measurable variables using differential-algebra elimination.
This procedure gives input-output equations, which serve as invariants for time series data. We develop a model comparison test
using linear algebra and statistics to reject incorrect models from their invariants.This algorithm exploits the dynamic properties
that are encoded in the structure of the model equations without recourse to parameter values, and, in this sense, the approach is
parameter-free. We demonstrate this method by discriminating between different models from mathematical biology.

1. Introduction

Given competingmathematical models to describe a process,
we wish to know whether our data are compatible with the
candidate models. Often comparing models requires opti-
mization and fitting time-course data to estimate parameter
values and then apply an information criterion to select a
“best” model [1]. However sometimes it is not feasible to
estimate the value of these unknown parameters (e.g., large
parameter space, nonlinear objective function, nonidentifia-
bility, etc.). In this paper, we compare candidate models with
time-course data while avoiding the parameter estimation
problem by considering a “parameter-free” approach.

The parameter problem has motivated the growth of
fields that embrace a parameter-free flavor such as chemical
reaction network theory and stoichiometric theory [2–4].
However many of these approaches are limited to comparing
the behavior ofmodels at steady-state [5–7]. Inspired by tech-
niques commonly used in applied algebraic geometry [8] and
algebraic statistics [9], methods for discriminating between
possible models without estimating parameters have been
developed for steady-state data [10, 11]. These approaches
characterize a model in only observable variables—called

a steady-state invariant [5]—using techniques from com-
putational algebraic geometry and determine whether the
noisy steady-state data are compatible with this steady-state
invariant via a statistical test. However, unlike other Bayesian
and parameter estimation approaches, it does not select
models; it can only rule them out. Notably the method does
not require parameter estimation, hence there is the term
parameter-free.

Extending the method developed in [10], we present
a method for comparing models using time-course data
instead of steady-state data. In this approach we compute
input-output equations, which we refer to as input-output
invariants for time series data. We consider state-space
ordinary differential equations (ODE) models of the form
ẋ(t) = f(x(t), u(t), p) and y(𝑡) = g(x(𝑡), p) where 𝑥𝑘(𝑡) are
species variables, 𝑘 = 1, . . . ,𝑁, 𝑢𝑖(𝑡) is a known input into
the system, 𝑖 = 1, . . . , 𝐿, 𝑦𝑗(𝑡) is a known output (measure-
ment) from the system, 𝑗 = 1, . . . ,𝑀, p is the unknown𝑅−dimensional parameter vector, and the functions f , g are
rational functions of their arguments. The dynamics of the
model can be observed in terms of a time series where u(𝑡) is
the input at discrete points and y(𝑡) is the output.
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In this setting, we aim to characterize our ODE mod-
els by eliminating variables that we cannot measure using
differential elimination from differential algebra [12]. From
the elimination, we obtain a system of equations in 0, 1, and
higher order derivatives forming the input-output invariants:𝐹𝑗(u, u̇, ü, ...u, . . . , y, ẏ, ÿ, ...y, . . .) = 0, 𝑗 = 1, . . . ,𝑀. Importantly,
the coefficients of these equations are rational functions of
the parameters. We will see shortly that, in the linear case,𝐹𝑗 is a linear differential equation. For nonlinear models, 𝐹𝑗
is nonlinear. Computing input-output invariants is described
in Section 2.

In order to testmodel compatibility, we substitute the data
into the input-output invariant, which is given in the form of
u, u̇, ü, ...u, . . . , y, ẏ, ÿ, ...y, . . . evaluated at given time points.This
results in a linear system of equations, 𝐴𝜅 = 𝑏, where each
row of 𝐴 and 𝑏 corresponds to the input-output invariant
evaluated at a different time point. The components of 𝜅
are the coefficient functions of the parameters in the input-
output invariants.The set-up of the model compatibility test
is given in Section 3.

Then we ask: does there exist a 𝜅 such that 𝐴𝜅 = 𝑏. If𝑏 = 0, of course we are guaranteed a zero trivial solution and
the nontrivial solution can be determined via a rank test (e.g.,
singular value decomposition, or SVD). Since data may be
imperfect, we can perform the statistical criterion developed
in [10] with the bound improved in [11] to determine whether
or not to reject the model. One of the key differences in
adapting this method to time-course data is considering𝐴𝜅 = 𝑏 when 𝑏 ̸= 0. For 𝐴𝜅 = 𝑏, there may be
no solutions. Thus, we must check if the linear system of
equations 𝐴𝜅 = 𝑏 is consistent, i.e., has one or infinitely
many solutions.We present a rank test, based on the SVD, for
determining the compatibility of the data with input-output
invariants from various (potentially incorrect) models. The
linear solvability test is described in Section 4. We assume
our data have Gaussian measurement noise. In Section 5, we
derive a statistical cut-off for when the model is incompatible
with the data.

Another key difference in this approach than previous
parameter-free model discrimination methods is the occur-
rence of higher order derivatives of the input and output
variables in the input-output invariants, requiring them to
be known at various time instances. Often one does not have
data points for the higher order derivatives, then these need to
be estimated. Unlike numerical estimation or splines, which
assume a specific functional form, one can use Gaussian
Process Regression (GPR) to estimate the higher order
derivatives from time-course data. In Section 6, we present
such a method, which has previously been done for first and
second derivatives of biological data [13]. Bounding error of
derivative estimates is a difficult problem, which requires us
to remove certain data points; however, the advantage of GPR
is that one can consider a family of functions, which [13]
points out to be able to capturemanymore temporal trends in
the data than any one equation.This enables us to substitute
the newly estimated derivative data into the input-output
invariant and test model compatibility using the solvability
test with the statistical cut-off that we present in Sections 4
and 5.

In Sections 4 and 7, we showcase our method with
examples from linear and nonlinear models. Finally we
discuss special cases and other related topics in Section 8,
before concluding in Section 9.

2. Differential Elimination

We now give some background on differential algebra since
a crucial step in our algorithm is to perform differential
elimination to obtain equations purely in terms of input
variables, output variables, and parameters. For this reason,
we will only give background on the ideas from differential
algebra required to understand the differential elimination
process. For amore detailed description of differential algebra
and the algorithms listed below, see [12, 14, 15]. In what
follows, we assume the reader is familiar with concepts such
as rings and ideals, which are covered in great detail in [8].

Definition 1. A ring 𝑆 is said to be a differential ring if
there is a derivative defined on 𝑆 and 𝑆 is closed under
differentiation. A differential ideal is an ideal which is closed
under differentiation.

Let our differential ideal be equipped with a ranking, i.e.,
a total ordering, denoted <, among the variables and their
derivatives. Let 𝑧(𝜇)𝑖 and 𝑧(])𝑗 be arbitrary derivatives.Then the
ranking should be such that, for arbitrary positive integer 𝑘:𝑧(])𝑖 < 𝑧(]+𝑘)𝑖 ,𝑧(𝜇)𝑖 < 𝑧(])𝑗 󳨐⇒𝑧(𝜇+𝑘)𝑖 < 𝑧(]+𝑘)𝑗

(1)

Let 𝑢𝑗 be the leader of a polynomial 𝐴𝑗, which is the
highest ranking derivative of the variables appearing in that
polynomial. A polynomial 𝐴 𝑖 is said to be of lower rank than𝐴𝑗 if the order of 𝑢𝑖 is less than the order of 𝑢𝑗 or, whenever𝑢𝑖 = 𝑢𝑗, the highest algebraic degree of any term containing
the leader of 𝐴 𝑖 is less than the highest algebraic degree of
any term containing the leader of 𝐴𝑗. A polynomial 𝐴 𝑖 is
reduced with respect to a polynomial 𝐴𝑗 if𝐴 𝑖 contains neither
the leader of𝐴𝑗 with equal or greater algebraic degree, nor its
derivatives. If 𝐴 𝑖 is not reduced with respect to 𝐴𝑗, it can be
reduced by using the pseudodivision algorithm in Section 2.1.
A set of differential polynomials 𝐴 = {𝐴1,𝐴2, . . . ,𝐴𝑟} that
are all reduced with respect to each other is called an auto-
reduced set.

Two auto-reduced sets, 𝐴 = {𝐴1,𝐴2, . . . ,𝐴𝑟} and 𝐵 ={𝐵1,𝐵2, . . . ,𝐵𝑠} ordered in increasing rank so that𝐴1 < 𝐴2 <. . . < 𝐴𝑟,𝐵1 < 𝐵2 < . . . < 𝐵𝑠, are ranked according to the
following principle: if there is an integer 𝑘, 𝑘 ≤ min(𝑠, 𝑟) such
that rank 𝐴 𝑖 = rank 𝐵𝑖, 𝑖 = 1, . . . , 𝑘 − 1, rank 𝐴𝑘 < rank 𝐵𝑘,
then 𝐴 is said to be lower rank than 𝐵. If 𝑟 < 𝑠 and rank 𝐴 𝑖
= rank 𝐵𝑖, 𝑖 = 1, . . . , 𝑟, then 𝐴 is also said to be of lower rank
than 𝐵.

A useful description of a differential ideal is called a
differential characteristic set, which is a finite description of
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a possibly infinite set of differential polynomials. We give the
technical definition from [12].

Definition 2. Let Σ be a set of differential polynomials, not
necessarily finite. If 𝐴 ⊂ Σ is an auto-reduced set, such that
no lower ranked auto-reduced set can be formed in Σ, then𝐴
is called a differential characteristic set.

A well-known fact in differential algebra is that differen-
tial ideals need not be finitely generated [12, 15]. However,
a radical differential ideal is finitely generated by the Ritt-
Raudenbush basis theorem [16].This result gives rise to Ritt’s
pseudodivision algorithm (see below), allowing us to com-
pute the differential characteristic set of a radical differential
ideal. We now describe various methods to find a differential
characteristic set and other related notions, and we describe
why they are relevant to our problem; namely, they can be
used to find the input-output equations.

In what follows, we will be considering the differential
ringR(p)[u, y, x], whereR(p) is the field of rational functions
in the parameter vector p. The variables in this differential
ring are the states, the inputs, the outputs, and possibly their
derivatives.

Consider an ODE system of the form ẋ(t) =
f(x(t), p,u(t)) and 𝑦𝑗(𝑡) = 𝑔𝑗(x(𝑡), p) for 𝑗 = 1, . . . ,𝑀
with f and g rational functions of their arguments. Let our
differential ideal be generated by the differential polynomials
obtained by subtracting the right-hand-side from the ODE
system to obtain ẋ(t) − f(x(t), p,u(t)) and 𝑦𝑗(𝑡) − 𝑔𝑗(x(𝑡), p)
for 𝑗 = 1, . . . ,𝑀. In what follows, we use the ranking in [17],
which is given by

u < u̇ < ü < ⋅ ⋅ ⋅ < y < ẏ < ÿ < ⋅ ⋅ ⋅< 𝑥1 < 𝑥2 < ⋅ ⋅ ⋅ < 𝑥̇1 < 𝑥̇2 < ⋅ ⋅ ⋅ (2)

Note that the notation reflects the fact that the ordering
among the components of u and y is immaterial, since
these are known variables, whereas different ordering of the
components of xmay lead to different characteristic sets [17].
With respect to this ordering, a differential characteristic set
is of the form [17]:𝐴1 (u, y) , . . . ,𝐴𝑀 (u, y)𝐴𝑀+1 (u, y,𝑥1)𝐴𝑀+2 (u, y,𝑥1,𝑥2)...𝐴𝑀+𝑁 (u, y,𝑥1, . . . ,𝑥𝑁)

(3)

where 𝐴 𝑖 are differential polynomials. Note that the result-
ing system is not necessarily auto-reduced in R(p)[u, y, x],
namely, 𝐴1(𝑢,𝑦), . . . ,𝐴𝑀(𝑢,𝑦) may not be auto-reduced.
The first 𝑀 terms of the differential characteristic set,𝐴1(u, y), . . . ,𝐴𝑀(u, y), are those terms independent of the
state variables and when set to zero form the input-output
equations:

F (u, u̇, ü, ...u, . . . , y, ẏ, ÿ, ...y, . . .) = 0. (4)

Specifically, the 𝑀 input-output equations F(u, u̇, ü, ...u, . . . , y,
ẏ, ÿ, ...y, . . .) = 0 are polynomial equations in the variables
u, u̇, ü, ...u, . . . , y, ẏ, ÿ, ...y, . . . with rational coefficients in the
parameter vector p. Note that the differential characteristic
set is in general non-unique, but the coefficients of the input-
output equations can be fixed uniquely by normalizing the
equations to make them monic.

We now discuss several methods to find the input-output
equations.The first method (Ritt’s pseudodivision algorithm)
can be used to find a differential characteristic set for a radical
differential ideal. The second method (RosenfeldGroebner)
gives a representation of the radical of the differential ideal
as an intersection of regular differential ideals and can also
be used to find a differential characteristic set under certain
conditions [18, 19]. Finally, we discuss Gröbner basismethods
to find the input-output equations.

2.1. Ritt’s Pseudodivision Algorithm. An algorithm to find
a differential characteristic set of a radical (in particular,
prime) differential ideal generated by a finite set of differential
polynomals is called Ritt’s pseudodivision algorithm. We
describe the process in detail below, which comes from
the description in [17]. Note that our differential ideal as
described above is a prime differential ideal [12, 20]. Let 𝐴 𝑖
and 𝐴𝑗 be differential polynomials.

(1) If 𝐴 𝑖 contains the 𝑘𝑡ℎ derivative 𝑢(𝑘)𝑗 of the leader of𝐴𝑗, 𝐴𝑗 is differentiated 𝑘 times so its leader becomes𝑢(𝑘)𝑗 .

(2) Multiply the polynomial 𝐴 𝑖 by the coefficient of the
highest power of 𝑢(𝑘)𝑗 ; let 𝑅 be the remainder of the
division of this new polynomial by 𝐴(𝑘)𝑗 with respect
to the variable 𝑢(𝑘)𝑗 .Then 𝑅 is reduced with respect to𝐴(𝑘)𝑗 .The polynomial 𝑅 is called the pseudoremainder
of the pseudodivision.

(3) The polynomial 𝐴 𝑖 is replaced by the pseudoremain-
der 𝑅 and the process is iterated using 𝐴(𝑘−1)𝑗 in
place of 𝐴(𝑘)𝑗 and so on, until the pseudoremainder is
reduced with respect to 𝐴𝑗.

This algorithm is applied to a set of differential poly-
nomials, such that each polynomial is reduced with respect
to each other, to form an auto-reduced set. The result is
a differential characteristic set. Note that the multiplication
mentioned in Step (2) above may yield a nonequivalent
system if that coefficient happens to belong to the ideal.
However, in practice, this does not occur for theODE systems
studied [17].

2.2. RosenfeldGroebner. Using the DifferentialAlgebra
package inMaple, one can find a representation of the radical
of a differential ideal generated by some equations, as an
intersection of radical differential ideals with respect to a
given ranking [21]. Specifically, the RosenfeldGroebner
command in Maple takes two arguments: sys and R, where
sys is a list of set of differential equations or inequations
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which are all rational in the independent and dependent vari-
ables and their derivatives and R is a differential polynomial
ring built by the command DifferentialRing specifying
the independent and dependent variables and a ranking for
them [21]. Then RosenfeldGroebner returns a represen-
tation of the radical of the differential ideal generated by
sys, as an intersection of radical differential ideals saturated
by the multiplicative family generated by the inequations
found in sys.This representation consists of a list of regular
differential chains with respect to the ranking of R. Note that
RosenfeldGroebner returns a differential characteristic set
if the differential ideal is prime [18].

2.3. Gröbner Basis Methods. Finally, both algebraic and dif-
ferential Gröbner bases can be employed to find the input-
output equations. To use an algebraic Gröbner basis, one
can take a sufficient number of derivatives of the model
equations and then treat the derivatives of the variables
as indeterminates in the polynomial ring in x, ẋ, ẍ,..., u,
u̇, ü,..., y, ẏ, ÿ,..., etc. Then a Gröbner basis of the ideal
generated by this full system of (differential) equations with
an elimination ordering where the state variables and their
derivatives are eliminated first can be found. Details of this
approach can be found in [22]. Differential Gröbner bases
have been developed by Carrà Ferro [23], Ollivier [24], and
Mansfield [25], but currently there are no implementations
in computer algebra systems [14].

3. Model Rejection Using
Input-Output Invariants

We now discuss how to use the input-output invariants
obtained from differential elimination (using Ritt’s pseudo-
division, differential Gröbner bases, or some other method)
for model selection/rejection.

We can write our input-output relations in (4), or input-
output invariants, in the form:∑𝑖 𝑐𝑖 (p)𝜓𝑖 (u, y) = 0 (5)

The functions 𝜓𝑖(u, y) are differential monomials, i.e., mono-
mials in the input/output variables u, u̇, ü, ...u, . . ., y, ẏ, ÿ, ...y, . . .,
etc., and the functions 𝑐𝑖(p) are rational functions in the
unknown parameter vector p. In order to uniquely fix
the rational coefficients 𝑐𝑖(p) to the differential monomials𝜓𝑖(u, y), we normalize each input/output equation to make
it monic. In other words, we can rewrite our input-output
relations as ∑𝑖 𝑐𝑖 (p)𝜓𝑖 (u, y) = 𝜉 (u, y) (6)

Here 𝜉(u, y) is a differential monomial in the input/output
variables u, u̇, ü, ...u, . . ., y, ẏ, ÿ, ...y, . . ., etc. If the values of
u, u̇, ü, ...u,. . ., y, ẏ, ÿ, ...y, . . ., etc., were known at a sufficient
number of time instances 𝑡1, 𝑡2, . . . , 𝑡𝑚, then one could
substitute in values of 𝜓𝑖(u, y) and 𝜉(u, y) at each of these
time instances to obtain a linear system of equations in the
variables 𝑐𝑖(p).

First consider the case of a single input-output equation. If
there are 𝑛 unknown coefficients 𝑐𝑖(p), we obtain the system:𝑐1 (p)𝜓1 (u (𝑡1) , y (𝑡1)) + ⋅ ⋅ ⋅+ 𝑐𝑛 (p)𝜓𝑛 (u (𝑡1) , y (𝑡1)) = 𝜉 (u (𝑡1) , y (𝑡1))...𝑐1 (p)𝜓1 (u (𝑡𝑚) , y (𝑡𝑚)) + ⋅ ⋅ ⋅+ 𝑐𝑛 (p)𝜓𝑛 (u (𝑡𝑚) , y (𝑡𝑚)) = 𝜉 (u (𝑡𝑚) , y (𝑡𝑚))

(7)

We write this linear system as𝐴𝜅 = 𝑏, where𝐴 is an𝑚 by𝑛 matrix of the form:

( 𝜓1 (u (𝑡1) , y (𝑡1)) ⋅ ⋅ ⋅ 𝜓𝑛 (u (𝑡1) , y (𝑡1))... ... ...𝜓1 (u (𝑡𝑚) , y (𝑡𝑚)) ⋅ ⋅ ⋅ 𝜓𝑛 (u (𝑡𝑚) , y (𝑡𝑚))) (8)

𝜅 is the vector of unknown coefficients [𝑐1(p), . . . , 𝑐𝑛(p)]𝑇, and𝑏 is of the form [𝜉(u(𝑡1), y(𝑡1)), . . . , 𝜉(u(𝑡𝑚), y(𝑡𝑚))]𝑇.
For the case of multiple input-output equations, we get

the following block diagonal system of equations 𝐴𝜅 = 𝑏:
(𝐴1 0 0 . . . 00 𝐴2 0 . . . 0... ... d

... ...0 0 0 . . . 𝐴𝑀
)(𝜅1𝜅2...𝜅𝑀) =(𝑏1𝑏2...𝑏𝑀) (9)

where 𝐴 is a 𝑚 = 𝑚1 + ⋅ ⋅ ⋅ +𝑚𝑀 by 𝑛 = 𝑛1 + ⋅ ⋅ ⋅ + 𝑛𝑀 matrix.
In the symbolic setting, given a general input function

u and generic initial conditions and parameters, this system𝐴𝜅 = 𝑏 should have a unique solution for 𝜅, due to the
persistence of excitation conditions [26]. In other words, we
assume that the vectors of differential monomials 𝜓1, . . . ,𝜓𝑛
at various time points are linearly independent. This means
the coefficients 𝑐𝑖(p) of the input-output equations can be
uniquely determined in the generic setting [26]. Note that we
have assumed that the parameters are all unknown and we
have not taken any possible algebraic dependencies among
the coefficients into account.

The main idea of this paper is to translate the symbolic
setting to the numerical setting and can be described as
follows. Assume we have perfect data; i.e., we know values
of u, u̇, ü, ...u, . . . , y, ẏ, ÿ, ...y, . . ., etc., at many time instances𝑡1, . . . , 𝑡𝑚, perfectly. Given a set of candidate models, we
find their associated input-output invariants and then sub-
stitute in our values of u, u̇, ü, ...u, . . . , y, ẏ, ÿ, ...y, . . ., etc., at
time instances 𝑡1, . . . , 𝑡𝑚, thus setting up the linear system𝐴𝜅 = 𝑏 for each model. With perfect data and assuming
the persistence of excitation conditions mentioned above,
the solution to 𝐴𝜅 = 𝑏 should be unique for the correct
model, but there should, in theory, be no solution for each
of the incorrect models. Thus under ideal circumstances,
one should be able to select the correct model since the
input/output data corresponding to that model should satisfy
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its input-output invariant. Likewise, one should be able to
reject the incorrectmodels since the input/output data should
not satisfy their input-output invariants.

However, with imperfect data, there could be no solution
to 𝐴𝜅 = 𝑏 even for the correct model, and likewise there may
or may not be a solution to 𝐴𝜅 = 𝑏 for an incorrect model.
Thus, with imperfect data, one may be unable to select the
correct model. On the other hand, if there is no solution to𝐴𝜅 = 𝑏 for each of the candidate models, then the goal is to
determine how “badly” each of the models fails and rejects
models accordingly.

A subtle point regarding this approach is that this
model rejection technique works best if the models under
consideration are in the simplest possible form. This means
that, ideally, redundant parameters have been eliminated
from the model so that the input-output equations are as
reduced as possible; i.e., there are not extra columns in 𝐴
when considering the linear system 𝐴𝜅 = 𝑏. Extra columns
generically mean more possible solutions, which can make it
harder for our algorithm to reject incorrectmodels. However,
redundant parameters, and the related notion of parameter
unidentifiability, do not necessarily yield more coefficients in
the input-output equations, as can be seen from the structure
of input-output equations for linear compartment models as
discussed in Section 8.

A related question to model compatibility is that of
structural indistinguishability. Two models are structurally
indistinguishable if for any choice of parameters in the first
model there is a choice of parameters in the second model
that will yield the same dynamics in both models, and vice
versa [27]. One way to test for structural indistinguishability
of twomodels is to find the associated input-output equations
and then equate their coefficient functions and attempt to
solve for one set of parameters in terms of the other set of
parameters, and vice versa [27]. A necessary condition for
models to be structurally indistinguishable is to have input-
output equations with the same differential monomial terms.
Since our approach only considers the structure of the input-
output equations and not the specific coefficient functions, it
is possible to have several different models, all with the same
structure of their input-output equations, to be compatible
using our model compatibility test. Thus, if a given model is
found to be compatible, then any model that is structurally
indistinguishable from thatmodel is also compatible and thus
our approach and structural indistinguishability testing can
be applied in parallel. For more on structural indistinguisha-
bility, see [28–30].The specific form of the coefficients of the
input-output equations is considered in Section 8.

We now describe criteria to reject models.

4. Linear Solvability

Let 𝐴 ∈ R𝑚×𝑛 and consider the linear system𝐴𝜅 = 𝑏. (10)

Here, we study the solvability of (10) under noisy perturbation
of both𝐴 and 𝑏. Let𝐴 and 𝑏̃ denote the perturbed versions of𝐴 and 𝑏, respectively, and assume that𝐴−𝐴 and 𝑏̃−𝑏 depend

only on 𝐴 and 𝑏̃, respectively (see Section 5). Our goal is to
infer the unsolvability of the unperturbed system (10) from
observation of 𝐴 and 𝑏̃ only.

Our method is based on detecting the rank of an aug-
mented matrix, but first let us introduce some notation. The
singular values of a matrix 𝐴 ∈ R𝑚×𝑛 will be denoted by𝜎1 (𝐴) ≥ ⋅ ⋅ ⋅ ≥ 𝜎ℓ (𝐴) ≥ 𝜎ℓ+1 (𝐴) = ⋅ ⋅ ⋅ = 𝜎𝑛 (𝐴) = 0,ℓ = min (𝑚, 𝑛) . (11)
(Note that we have trivially extended the number of singular
values of 𝐴 from ℓ to 𝑛.) The rank of 𝐴 is written rank(𝐴).
The range of 𝐴 is denoted R(𝐴). Throughout, ‖ ⋅ ‖ refers to
the Euclidean norm.

The basic strategy will be to assume as a null hypothesis
that (10) has a solution, i.e., 𝑏 ∈ R(𝐴), and then to derive
its consequences in terms of 𝐴 and 𝑏̃. If these consequences
are not met, then we conclude by contradiction that (10) is
unsolvable. In other words, we will provide sufficient but not
necessary conditions for (10) to have no solution; i.e., we can
only reject (but not confirm) the null hypothesis.Wewill refer
to this procedure as testing the null hypothesis.

4.1. Preliminaries. We first collect some useful results.

Theorem 3 (Weyl’s inequality). Let 𝐴,𝐴 ∈ R𝑚×𝑛.Then󵄨󵄨󵄨󵄨󵄨𝜎𝑘 (𝐴) − 𝜎𝑘 (𝐴)󵄨󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩󵄩𝐴 − 𝐴󵄩󵄩󵄩󵄩󵄩 , 𝑘 = 1, . . . , 𝑛. (12)

Corollary 4. Let 𝐴,𝐴 ∈ R𝑚×𝑛 and assume that rank(𝐴) < 𝑘.
Then 𝜎𝑘 (𝐴) ≤ 󵄩󵄩󵄩󵄩󵄩𝐴 − 𝐴󵄩󵄩󵄩󵄩󵄩 . (13)

Therefore, if (13) is not satisfied, then rank(𝐴) ≥ 𝑘.
4.2. Augmented Matrix. Assume the null hypothesis. Then𝑏 ∈ R(𝐴), so rank([𝐴, 𝑏]) = rank(𝐴) ≤ min(𝑚, 𝑛).
Therefore, 𝜎𝑛+1([𝐴, 𝑏]) = 0. But we do not have access to[𝐴, 𝑏] and somust consider instead the perturbed augmented
matrix [𝐴, 𝑏̃].
Theorem 5. Under the null hypothesis,𝜎𝑛+1 ([𝐴, 𝑏̃]) ≤ 󵄩󵄩󵄩󵄩󵄩[𝐴 − 𝐴, 𝑏̃ − 𝑏]󵄩󵄩󵄩󵄩󵄩≤ 󵄩󵄩󵄩󵄩󵄩𝐴 − 𝐴󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑏̃ − 𝑏󵄩󵄩󵄩󵄩󵄩 . (14)

Proof. Apply Corollary 4.

In other words, if (14) does not hold, then (10) has no
solution.

Remark 6. This approach can fail to correctly reject the null
hypothesis if 𝐴 is (numerically) low-rank.

Remark 7. In principle, we should test directly the assertion
that rank([𝐴, 𝑏]) = rank(𝐴). However, we can only establish
lower bounds on the matrix rank (we can only tell if a
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singular value is “too large”), so this is not feasible in practice.
An alternative approach is to consider only numerical ranks
obtained by thresholding. How to choose such a threshold,
however, is not at all clear and can be a very delicate matter
especially if the data have high dynamic range.

Remark 8. The theorem is uninformative if 𝑚 ≤ 𝑛 since then𝜎𝑛+1([𝐴, 𝑏]) = 𝜎𝑛+1([𝐴, 𝑏̃]) = 0 trivially. However, this is not
a significant disadvantage beyond that described above since
if 𝐴 is full-rank, then it must be true that (10) is solvable.

4.3. Example: Perfect Data. As a proof of principle, we first
apply Theorem 5 to a simple linear model. We start by
taking perfect input and output data and then add a specific
amount of noise to the output data and attempt to reject the
incorrect model. In the subsequent sections, we will see how
to interpretTheorem 5 statistically under a particular “noise”
model for the perturbations.

Here, we take data from a linear 3-compartment model,
add noise, and try to reject the general form of the linear
2-compartment model with the same input/output compart-
ments. Linear compartment models are defined in Section 8.
In practice, one would like to compare models with the
same input and output compartments, as the number of
compartments involved may not be known, but the injection
and measurement compartments would be known. Thus,
in this particular example, we are assuming the linear 3-
compartment model is the “true model” and want to reject
a competing model, but as our method concerns model
rejection and not model selection, this notion of a “true
model” is not a requirement for our method to work.

Example 9. Let our model be a 3-compartment model of the
following form:

(𝑥̇1̇𝑥2̇𝑥3) =(
−2 1 01 −3 10 1 −2)(𝑥1𝑥2𝑥3)
+(2𝑒−3𝑡 + 12𝑒−5𝑡00 ) ,

𝑦 = 𝑥1𝑥1 (0) = 1,𝑥2 (0) = 7,𝑥3 (0) = 9
(15)

Here we have an input to the first compartment of the form𝑢1 = 2𝑒−3𝑡 + 12𝑒−5𝑡 and the first compartment is measured,
so that 𝑦 = 𝑥1 represents the output. Note that we have
chosen a smooth, persistently exciting input function [26] so
that derivatives can be taken and the coefficients of the input-
output equation can be uniquely determined, as required.The

solution to this system of ODEs can be easily found of the
form:

(𝑥1𝑥2𝑥3) = 7(
111)𝑒−𝑡 +(−101 )𝑒−2𝑡 +( 1−21 )𝑒−4𝑡
+(−1−11 )𝑒−3𝑡 +(−53−1)𝑒−5𝑡 (16)

so that 𝑦 = 7𝑒−𝑡 − 𝑒−2𝑡 + 𝑒−4𝑡 − 𝑒−3𝑡 − 5𝑒−5𝑡.
The input-output equation for a 3-compartment model

with a single input/output to the first compartment has the
form:

...𝑦 + 𝑐1 ̈𝑦 + 𝑐2 ̇𝑦 + 𝑐3𝑦 = 𝑢̈1 + 𝑐4𝑢̇1 + 𝑐5𝑢1 (17)

where 𝑐1, 𝑐2, 𝑐3 are the coefficients of the characteristic poly-
nomial of the matrix 𝐴 and 𝑐4, 𝑐5 are the coefficients of the
characteristic polynomial of thematrix𝐴1 which has the first
row and first column of 𝐴 removed [31].

We now substitute values of 𝑢1, 𝑢̇1, 𝑢̈1,𝑦, ̇𝑦, ̈𝑦, ...𝑦 at time
instances 𝑡 = 0, 0.2, 0.4, 0.6, 0.8, 1 into our input-output
equation and solve the resulting linear systemof equations for𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5. We get that 𝑐1 = 7, 𝑐2 = 14, 𝑐3 = 8, 𝑐4 = 5, 𝑐5 =5, which agrees with the coefficients of the characteristic
polynomials of 𝐴 and 𝐴1.

Wenow attempt to reject the 2-compartmentmodel using
3-compartment model data. We find the input-output equa-
tions for a 2-compartment model with a single input/output
to the first compartment, which has the form:̈𝑦 + 𝐶1 ̇𝑦 + 𝐶2𝑦 = 𝑢̇1 + 𝐶3𝑢1 (18)

where again 𝐶1,𝐶2 are the coefficients of the characteristic
polynomial of the matrix 𝐴 and 𝐶3 is the coefficient of the
characteristic polynomial of thematrix𝐴1 which has the first
row and first column of 𝐴 removed.

We substitute values of 𝑢1, 𝑢̇1,𝑦, ̇𝑦, ̈𝑦 at time instances𝑡 = 0, 0.2, 0.4, 0.6, 0.8, 1 into our input-output equation and
attempt to solve the resulting linear system of equations for𝐶1,𝐶2,𝐶3.

The singular values for the matrix 𝐴 with the substituted
values of 𝑢1,𝑦, ̇𝑦 at time instances 𝑡 = 0, 0.2, 0.4, 0.6, 0.8, 1 are24.8133, 7.64917, 0.0626589 (19)

The singular values of the matrix [𝐴, 𝑏] with the sub-
stituted values of 𝑢1, 𝑢̇1,𝑦, ̇𝑦, ̈𝑦 at time instances 𝑡 =0, 0.2, 0.4, 0.6, 0.8, 1 are57.174, 7.69381, 0.326204, 0.00596031 (20)

Since the smallest singular value is greater than zero (or order
machine precision), it is evident that the 2-compartment
model can be rejected.

We now add noise to our matrix 𝐴 in the following way.
To each entry ̇𝑦, and 𝑦, we add 𝜖𝑘𝑖𝑗 where 𝑘𝑖𝑗 is a random
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real number between 0 and 1, and 𝜖 = 0.001.Then the noisy
matrix 𝐴 has the following singular values:24.8134, 7.64949, 0.0627827 (21)

We add noise to our vector 𝑏 in a similar way. To each
entry 𝑢̇1 − ̈𝑦, we add 𝜖𝑘𝑖𝑗 where 𝑘𝑖𝑗 is again a random real
number between 0 and 1. Then the noisy matrix [𝐴, 𝑏̃] has
the following singular values:57.1747, 7.69409, 0.326141, 0.00579117 (22)

To determine whether the noisy data are compatible, we
need to compute ‖[𝐴 − 𝐴, 𝑏̃ − 𝑏]‖. Due to the specific noise
model chosen, this can be bounded independently of the
true unobservable data [𝐴, 𝑏] as 𝜖‖1‖ = 0.00489898, where
1 is a matrix of all ones of the appropriate size (the actual
norm is 0.00207018). Since this norm is less than the smallest
singular value 0.00579117, we can reject this model. Thus,
using noisy 3-compartment model data, we are able to reject
the 2-compartment model.

5. Statistical Inference

We now consider the statistical inference of the solvability of
(10). First, we need a noise model.

5.1. Noise Model. If the perturbations ‖𝐴 − 𝐴‖ and ‖𝑏̃ − 𝑏‖
are bounded, e.g., ‖𝐴 − 𝐴‖ ≤ 𝜖‖𝐴‖ and ‖𝑏̃ − 𝑏‖ ≤ 𝜖‖𝑏̃‖
for some 𝜖 > 0 (representing a relative accuracy of 𝜖 in the
“measurements” 𝐴 and 𝑏̃), then Theorem 5 can be used at
once. However, it is customary to model such perturbations
as normal random variables, which are not bounded. Here,
we will assume a noise model of the form𝐴 − 𝐴 = 𝐶𝐴 ∘ 𝑍,𝑏̃ − 𝑏 = 𝐶𝑏̃ ∘ 𝑍, (23)

where 𝐶𝐴 is a (computable) matrix that depends only on𝐴 and similarly with 𝐶𝑏̃, 𝐴 ∘ 𝐵 denotes the Hadamard
(entrywise) matrix product (𝐴 ∘ 𝐵)𝑖𝑗 = 𝐴 𝑖𝑗𝐵𝑖𝑗, and 𝑍 is a
matrix-valued random variable whose entries 𝑍𝑖𝑗 ∼ N(0, 1)
are independent standard normals.

In our application of interest, the entries of𝐶𝐴 depend on
those of 𝐴 as follows. Let 𝐴 𝑖𝑗 = 𝜙𝑖𝑗(V) for some input vector
V, but suppose that we can only observe the “noisy” vector
Ṽ = (1 + 𝜖𝑍) ∘ V. Then the corresponding perturbed matrix
entries are𝐴 𝑖𝑗 = 𝜙𝑖𝑗 (Ṽ)= 𝜙𝑖𝑗 (V) + 𝜖∑𝑘 (∇𝜙𝑖𝑗 (V))𝑘 V𝑘𝑍𝑘 + 𝑂(𝜖2) ,𝑍𝑘 ∼ N (0, 1) . (24)
By the additivity formula∑𝑘 𝑎𝑘𝑍𝑘 = √∑𝑘 𝑎2𝑘𝑍 = ‖𝑎‖𝑍 (25)

for standard Gaussians,∑𝑘 (∇𝜙𝑖𝑗 (V))𝑘 V𝑘𝑍𝑘 =∑𝑘 (∇𝜙𝑖𝑗 (V) ∘ V)𝑘 𝑍𝑘= 󵄩󵄩󵄩󵄩󵄩∇𝜙𝑖𝑗 (V) ∘ V󵄩󵄩󵄩󵄩󵄩 𝑍. (26)

Therefore, 𝐴 𝑖𝑗 = 𝐴 𝑖𝑗 + 𝜖 󵄩󵄩󵄩󵄩󵄩∇𝜙𝑖𝑗 (V) ∘ V󵄩󵄩󵄩󵄩󵄩 𝑍 + 𝑂(𝜖2)= 𝐴 𝑖𝑗 + 𝜖 󵄩󵄩󵄩󵄩󵄩∇𝜙𝑖𝑗 (Ṽ) ∘ Ṽ󵄩󵄩󵄩󵄩󵄩 𝑍 + 𝑂(𝜖2) , (27)

so, to first order in 𝜖,(𝐶𝐴)𝑖𝑗 = 𝜖 󵄩󵄩󵄩󵄩󵄩∇𝜙𝑖𝑗 (Ṽ) ∘ Ṽ󵄩󵄩󵄩󵄩󵄩 . (28)

An analogous derivation holds for 𝐶𝑏̃.
The basic strategy is now as follows. Let 𝜏 be a test statistic,

i.e., 𝜎𝑛+1([𝐴, 𝑏̃]) in Section 4.2.Then since𝜏𝜔 ≤ (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐶𝑏̃ ∘ 𝑍󵄩󵄩󵄩󵄩)𝜔 , (29)

where we havemade explicit the dependence of both sides on
the same underlying randommechanism𝜔, the (cumulative)
distribution function of 𝜏 must dominate that of ‖𝐶𝐴 ∘ 𝑍‖ +‖𝐶𝑏̃ ∘ 𝑍‖, i.e.,

Pr (𝜏 ≤ V) ≥ Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐶𝑏̃ ∘ 𝑍󵄩󵄩󵄩󵄩 ≤ V) . (30)

Thus,

Pr (𝜏 ≥ V) ≤ Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐶𝑏̃ ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ V) (31a)= ∫∞0 Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 = 𝑡)Pr (󵄩󵄩󵄩󵄩𝐶𝑏̃ ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ V − 𝑡) 𝑑𝑡 (31b)= ∫V0 Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 = 𝑡)Pr (󵄩󵄩󵄩󵄩𝐶𝑏̃ ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ V − 𝑡) 𝑑𝑡+ ∫∞
V

Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 = 𝑡) 𝑑𝑡 (31c)

≤ ∫V0 Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ 𝑡)Pr (󵄩󵄩󵄩󵄩𝐶𝑏̃ ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ V − 𝑡) 𝑑𝑡+ Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ V) . (31d)

Using (31a)–(31d), we can associate a 𝑝-value to any
given realization of 𝜏 by referencing upper tail bounds for
quantities of the form ‖𝐶 ∘ 𝑍‖. Recall that 𝜏 = 0 under the
null hypothesis. In a classical statistical hypothesis testing
framework, we may therefore reject the null hypothesis if
(31d) is at most 𝛼, where 𝛼 is the desired significance level
(e.g., 𝛼 = 0.05).
5.2. Hadamard Tail Bounds. We now turn to bounding
Pr(‖𝐶 ∘ 𝑍‖ ≥ V), where we will assume that 𝐶,𝑍 ∈ R𝑚×𝑛.
This can be done in several ways.

One easy way is to recognize that‖𝐶 ∘ 𝑍‖ ≤ ‖𝐶 ∘ 𝑍‖𝐹 ≤ ‖𝐶‖𝐹 ‖𝑍‖𝐹 , (32)
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where ‖ ⋅ ‖𝐹 is the Frobenius norm, so

Pr (‖𝐶 ∘ 𝑍‖ ≥ V) ≤ Pr (‖𝐶 ∘ 𝑍‖𝐹 ≥ V)≤ Pr(‖𝑍‖𝐹 ≥ V‖𝐶‖𝐹) . (33)

But ‖𝑍‖𝐹 ∼ 𝜒𝑚𝑛 has a chi distribution with 𝑚𝑛 degrees of
freedom.Therefore,

Pr(‖𝑍‖𝐹 ≥ V‖𝐶‖𝐹) = Pr(𝑉 ≥ V‖𝐶‖𝐹) , 𝑉 ∼ 𝜒𝑚𝑛. (34)

However, each inequality in (32) can be quite loose; a slightly
better approach is to use the inequality [32]‖𝐶 ∘ 𝑍‖ ≤ ‖ min(max𝑖 󵄩󵄩󵄩󵄩𝐶𝑖,:󵄩󵄩󵄩󵄩 ,max𝑗 󵄩󵄩󵄩󵄩󵄩𝐶:,𝑗󵄩󵄩󵄩󵄩󵄩) ‖𝑍‖ , (35)

where 𝐶𝑖,: and 𝐶:,𝑗 denote the 𝑖th row and 𝑗th column,
respectively, of 𝐶. The ‖𝑍‖ term can then be handled using
a chi distribution via ‖𝑍‖ ≤ ‖𝑍‖𝐹 as above or directly
using a concentration bound (see below). Variations on this
undoubtedly exist.

Here, we will appeal to a result by Tropp [33]. The
following is from Section 4.3 in [33].

Theorem 10. Let 𝐶,𝑍 ∈ R𝑚×𝑛, where each 𝑍𝑖𝑗 ∼ N(0, 1).
Then for any V ≥ 0,
Pr (‖𝐶 ∘ 𝑍‖ ≥ V) ≤ (𝑚 + 𝑛) exp(− V22𝜎2) ,𝜎2 = max(max𝑖 󵄩󵄩󵄩󵄩𝐶𝑖,:󵄩󵄩󵄩󵄩2 ,max𝑗 󵄩󵄩󵄩󵄩󵄩𝐶:,𝑗󵄩󵄩󵄩󵄩󵄩2) . (36)

5.3. Test Statistic Tail Bounds. The bound (31d) for Pr(𝜏 ≥ V)
can then be computed as follows. Let𝑃1 (V)= ∫V0 Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ 𝑡)Pr (󵄩󵄩󵄩󵄩𝐶𝑏̃ ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ V − 𝑡) 𝑑𝑡,𝑃2 (V) = Pr (󵄩󵄩󵄩󵄩𝐶𝐴 ∘ 𝑍󵄩󵄩󵄩󵄩 ≥ V) (37)

so that Pr(𝜏 ≥ V) ≤ 𝑃1(V) + 𝑃2(V).Then byTheorem 10,𝑃1 (V)≤ 𝑚 (𝑚 + 𝑛)∫V0 exp[−12 ( 𝑡2𝜎2𝐴 + (V − 𝑡)2𝜎2𝑏 )]𝑑𝑡, (38)

where𝜎2𝐴 and𝜎2𝑏 are the “variance” parameters in the theorem
for 𝐶𝐴 and 𝐶𝑏̃, respectively.This simplifies to𝑃1 (V) ≤ 𝑚 (𝑚 + 𝑛) exp[−12 ( V2𝜎2𝐴 + 𝜎2𝑏 )]

⋅ ∫V0 exp[−12 (𝜎2𝐴 + 𝜎2𝑏𝜎2𝐴𝜎2𝑏 )(𝑡 − 𝜎2𝐴𝜎2𝐴 + 𝜎2𝑏 V)2]𝑑𝑡 (39)

on completing the square. Now set𝜎2 = 𝜎2𝐴𝜎2𝑏𝜎2𝐴 + 𝜎2𝑏 ,𝛼 = 𝜎2𝐴𝜎2𝐴 + 𝜎2𝑏 (40)

so that the integral becomes∫V0 exp[−12 (𝜎2𝐴 + 𝜎2𝑏𝜎2𝐴𝜎2𝑏 )(𝑡 − 𝜎2𝐴𝜎2𝐴 + 𝜎2𝑏 V)2]𝑑𝑡
= ∫V0 exp[− (𝑡 − 𝛼V)22𝜎2 ]𝑑𝑡. (41)

The variable substitution 𝑢 = (𝑡 − 𝛼V)/𝜎 then gives∫V0 exp[− (𝑡 − 𝛼V)22𝜎2 ]𝑑𝑡 = 𝜎∫(1−𝛼)V/𝜎−𝛼V/𝜎 𝑒−𝑢2/2𝑑𝑢= √2𝜋𝜎 [Φ( (1 − 𝛼) V𝜎 ) − Φ(−𝛼V𝜎 )] , (42)

where Φ (V) = 1√2𝜋 ∫V−∞ 𝑒−𝑡2/2𝑑𝑡 (43)

is the standard normal distribution function.Thus,𝑃1 (V) ≤ √2𝜋𝜎𝑚 (𝑚 + 𝑛)⋅ [Φ( (1 − 𝛼) V𝜎 ) − Φ(−𝛼V𝜎 )]⋅ exp[−12 ( V2𝜎2𝐴 + 𝜎2𝐵)] . (44)

A similar analysis yields𝑃2 (V) ≤ (𝑚 + 𝑛) exp(− V22𝜎2𝐴) . (45)

Equations (44) and (45) together comprise the probability
bound on the null hypothesis that we will use hereafter.

6. Gaussian Processes to Estimate Derivatives

We next present a method for estimating higher order
derivatives and the estimation error using Gaussian Process
Regression and then apply the input-output invariantmethod
to both linear and nonlinear models in the subsequent
sections.

A Gaussian process (GP) is a stochastic process 𝑊(𝑡) ∼
N(𝜇(𝑡),Σ(𝑡, 𝑡󸀠)), where 𝜇(𝑡) is a mean function and Σ(𝑡, 𝑡󸀠)
a covariance function. GPs are often used for regres-
sion/prediction as follows.

Suppose that there is an underlying deterministic func-
tion 𝑤(𝑡) that we can only observe with some measurement
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noise as 𝑤(𝑡) = 𝑤(𝑡) + 𝜖(𝑡), where 𝜖(𝑡) ∼ N(0,𝜎2(𝑡)𝛿(𝑡, 𝑡󸀠))
for 𝛿 (𝑡, 𝑡󸀠) = {1 if 𝑡 = 𝑡󸀠0 if 𝑡 ̸= 𝑡󸀠 (46)

the Dirac delta. We consider the problem of finding 𝑤(𝑡)
in a Bayesian setting by assuming it to be a GP with prior
mean and covariance functions 𝜇prior and Σprior, respectively.
Then the joint distribution of 𝑤(t) = [𝑤(𝑡1), . . . ,𝑤(𝑡𝑝)]⊤
at the observation points t = [𝑡1, . . . , 𝑡𝑝]⊤ and 𝑤(s) =[𝑤(𝑠1), . . . ,𝑤(𝑠𝑞)]⊤ at the prediction points s = [𝑠1, . . . , 𝑠𝑞]⊤
is [𝑤 (t)𝑤 (s)] ∼ N([𝜇prior (t)𝜇prior (s)] ,[Σprior (t, t) + 𝜎2 (t) 𝐼 Σ⊤prior (s, t)Σprior (s, t) Σprior (s, s) ]) (47)

The conditional distribution of𝑤(s) given 𝑤(t) = 𝑤(t) is also
Gaussian: 𝑤 (s) | (𝑤 (t) = 𝑤 (t)) ∼ N (𝜇post,Σpost) , (48)

where𝜇post = 𝜇prior (s) + Σprior (s, t) (Σprior (t, t) + 𝜎2 (t) 𝐼)−1⋅ (𝑤 (t) − 𝜇prior (t)) ,Σpost = Σprior (s, s) − Σprior (s, t)⋅ (Σprior (t, t) + 𝜎2 (t) 𝐼)−1 )Σ⊤prior (s, t)
(49)

are the posterior mean and covariance, respectively. This
allows us to infer 𝑤(s) on the basis of observing 𝑤(t).
The diagonal entries of Σpost are the posterior variances
and quantify the uncertainty associated with this inference
procedure. In particular, the square roots of these variances
give us estimates on the 𝜖𝑤 term in the assumed noise model𝑤 = (1 + 𝜖𝑍) ∘ 𝑤 in Section 5.

6.1. Estimating Derivatives. Equation (48) provides an esti-
mate for the function values 𝑤(s). What if we want to
estimate its derivatives? Let cov(𝑤(𝑡),𝑤(𝑡󸀠)) = 𝑘(𝑡, 𝑡󸀠) for
some covariance function 𝑘. Then cov(𝑤(𝑚)(𝑡),𝑤(𝑛)(𝑡󸀠)) =𝜕𝑚𝑡 𝜕𝑛𝑡󸀠𝑘(𝑡, 𝑡󸀠) by linearity of differentiation.Thus,

[[[[[[[[[[
𝑤 (t)𝑤 (s)𝑤󸀠 (s)...𝑤(𝑛) (s)

]]]]]]]]]]
∼ N

(((((
[[[[[[[[[[
𝜇prior (t)𝜇prior (s)𝜇(1)prior (s)...𝜇(𝑛)prior (s)

]]]]]]]]]]
,[[[[[[[[[[[

Σprior (t, t) + 𝜎2 (t) 𝐼 Σ⊤prior (s, t) Σ(1,0),⊤prior (s, t) ⋅ ⋅ ⋅ Σ(𝑛,0),⊤prior (s, t)Σprior (s, t) Σprior (s, s) Σ(1,0),⊤prior (s, s) ⋅ ⋅ ⋅ Σ(𝑛,0),⊤prior (s, s)Σ(1,0)prior (s, t) Σ(1,0)prior (s, s) Σ(1,1)prior (s, s) ⋅ ⋅ ⋅ Σ(𝑛,1),⊤prior (s, s)... ... ... d
...Σ(𝑛,0)prior (s, t) Σ(𝑛,0)prior (s, s) Σ(𝑛,1)prior (s, s) ⋅ ⋅ ⋅ Σ(𝑛,𝑛) (s, s)

]]]]]]]]]]]
)))))
, (50)

where 𝜇(𝑖)prior(𝑡) is the prior mean for 𝑤(𝑖)(𝑡) and Σ(𝑖,𝑗)prior(𝑡, 𝑡󸀠) =𝜕𝑖𝑡𝜕𝑗𝑡󸀠Σprior(𝑡, 𝑡󸀠). This joint distribution is exactly of the form
(47). An analogous application of (48) then yields the poste-
rior estimate of 𝑤(𝑖)(s) | (𝑤(t) = 𝑤(t)) for all 𝑖 = 0, 1, . . . , 𝑛.

Alternatively, if we are interested only in the posterior
variances of each𝑤(𝑖)(s), then it suffices to consider each 2×2
block independently:

[ 𝑤 (t)𝑤(𝑖) (s)] ∼ N([ 𝜇prior (t)𝜇(𝑖)prior (s) ] ,[[Σprior (t, t) + 𝜎2 (t) 𝐼 Σ(𝑖,0),⊤prior (s, t)Σ(𝑖,0)prior (s, t) Σ(𝑖,𝑖)prior (s, s) ]]) . (51)

The cost of computing (Σprior(t, t) + 𝜎2(t)𝐼)−1 can clearly be
amortized over all 𝑖.

6.2. Formulae for Squared Exponential Covariance Functions.
We now consider the specific case of the squared exponential
(SE) covariance function

𝑘 (𝑡, 𝑡󸀠) = 𝜃2 exp[[−(𝑡 − 𝑡󸀠)22ℓ2 ]] , (52)

where 𝜃2 is the signal variance and ℓ is a length scale.The SE
function is one of the most widely used covariance functions
in practice. Its derivatives can be expressed in terms of the
(probabilists’) Hermite polynomials

𝐻𝑛 (𝑤) = (−1)𝑛 𝑒𝑤2/2 𝑑𝑛𝑑𝑤𝑛 𝑒−𝑤2/2 (53)

(these are also sometimes denoted 𝐻𝑒𝑛(𝑤)). The first few
Hermite polynomials are 𝐻0(𝑤) = 1, 𝐻1(𝑤) = 𝑤, and𝐻2(𝑤) = 𝑤2 − 1.
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We need to compute the derivatives 𝜕𝑚𝑡 𝜕𝑛𝑡󸀠𝑘(𝑡, 𝑡󸀠). Let V =(𝑡 − 𝑡󸀠)/ℓ so that 𝑘(𝑡, 𝑡󸀠) = 𝑘(V) = 𝜃2𝑒−V2/2. Then 𝜕𝑚𝑡 𝑓(V) =(1/ℓ)𝑚𝑓(𝑚)(V) and 𝜕𝑛𝑡󸀠𝑓(V) = (−1/ℓ)𝑛𝑓(𝑛)(V).Therefore,𝜕𝑚𝜕𝑡𝑚 𝜕𝑛𝜕𝑡󸀠𝑛 𝑘 (𝑡, 𝑡󸀠) = (−1)𝑛ℓ𝑚+𝑛 𝑘(𝑚+𝑛) (V)= (−1)𝑚ℓ𝑚+𝑛 𝐻𝑚+𝑛 (V) 𝑘 (V)= (−1)𝑚ℓ𝑚+𝑛 𝐻𝑚+𝑛 (𝑡 − 𝑡󸀠ℓ ) 𝑘 (𝑡, 𝑡󸀠) . (54)

The GP regression requires us to have the values of the
hyperparameters 𝜎2, 𝜃2, and ℓ. In practice, however, these
are hardly ever known. In the examples below, we deal with
this by estimating the hyperparameters from the data by
maximizing the likelihood. We do this by using a nonlinear
conjugate gradient algorithm, which can be quite sensitive to
the initial starting point, so we initialize multiple runs over
a small grid in hyperparameter space and return the best
estimate found. This increases the quality of the estimated
hyperparameters but can still sometimes fail.

7. Results

We showcase our method on competing models: linear
compartment models (2 and 3 species), Lotka-Volterra mod-
els (2 and 3 species) and Lorenz. We compute the input-
output invariants of the Lotka-Volterra and Lorenz using
RosenfeldGroebner. The method to compute the linear
compartment input-output invariants is presented in the
following section. We simulate each of these models to
generate time-course data, add varying levels of noise, and
estimate the necessary higher order derivatives using GP
regression. Using the estimated GP regression data, we test
each of the models using the input-output invariant method
on other models.

Example 11. The two species Lotka-Volterra model is𝑥̇1 = 𝑝1𝑥1 − 𝑝2𝑥1𝑥2,𝑥̇2 = −𝑝3𝑥2 + 𝑝4𝑥1𝑥2, (55)

where 𝑥1 and 𝑥2 are variables and 𝑝1,𝑝2,𝑝3,𝑝4 are parame-
ters.We assumeonly𝑥1 is observable andperformdifferential
elimination and obtain our input-output invariant in terms of
only 𝑦 = 𝑥1(𝑡):𝑝4 ̇𝑦𝑦2 − 𝑝3 ̇𝑦𝑦 − 𝑝1𝑝4𝑦3 + 𝑝1𝑝3𝑦2 = ̈𝑦𝑦 − ̇𝑦2. (56)

Example 12. By including an additional variable 𝑧, the three
species Lotka-Volterra model is𝑥̇1 = 𝑝1𝑥1 − 𝑝2𝑥1𝑥2,𝑥̇2 = −𝑝3𝑥2 + 𝑝4𝑥1𝑥2 − 𝑝5𝑥2𝑥3,𝑥̇3 = −𝑝6𝑥3 + 𝑝7𝑥2𝑥3, (57)

assuming only 𝑦 = 𝑥1 is observable. After differential
elimination, the input-output invariant is(𝑝21𝑝4𝑝6 − 𝑝31𝑝4𝑝7𝑝2 )𝑦5 + (𝑝31𝑝3𝑝7𝑝2 − 𝑝21𝑝3𝑝6)𝑦4

+ (3𝑝21𝑝4𝑝7𝑝2 + 𝑝21𝑝4 + 2𝑝1𝑝4𝑝6) ̇𝑦𝑦4
+ (2𝑝1𝑝3𝑝6 − 3𝑝21𝑝3𝑝7𝑝2 ) ̇𝑦𝑦3+ (𝑝4𝑝6 − 2𝑝1𝑝4 − 3𝑝1𝑝4𝑝7𝑝2 ) ̇𝑦2𝑦3+ (𝑝21𝑝7 + 3𝑝1𝑝3𝑝7𝑝2 − 𝑝3𝑝6 − 𝑝1𝑝6) ̇𝑦2𝑦2+ (𝑝4𝑝7𝑝2 + 𝑝4) ̇𝑦3𝑦2+ (2𝑝1 + 𝑝6 − 2𝑝1𝑝7 + 𝑝3𝑝7𝑝2 ) ̇𝑦3𝑦 + 𝑝7𝑝2 ̇𝑦4+ (𝑝1𝑝6 − 𝑝21𝑝7𝑝2 ) ̈𝑦𝑦3+ (2𝑝1𝑝7𝑝2 − 3𝑝1 − 𝑝6) ̈𝑦 ̇𝑦𝑦2 − 𝑝7𝑝2 ̈𝑦 ̇𝑦2𝑦+ 𝑝1 ...𝑦𝑦3 = − ̈𝑦2𝑦2 + ...𝑦 ̇𝑦𝑦2 − ̈𝑦 ̇𝑦2𝑦 + ̇𝑦4.

(58)

Example 13. Another three species model, the Lorenz model,
is described by the system of equations:𝑥̇1 = 𝑝1 (𝑥2 − 𝑥1) ,𝑥̇2 = 𝑥1 (𝑝2 − 𝑥3) − 𝑥2,𝑥̇3 = 𝑥1𝑥2 − 𝑝3𝑥3, (59)

We assume only 𝑦 = 𝑥1 is observable, perform differential
elimination, and obtain the following invariant:− (𝑝1 + 𝑝3) ̈𝑦𝑦 + 𝑝1 ̇𝑦2 − (𝑝1𝑝3 + 𝑝3) ̇𝑦𝑦 − 𝑝1𝑦4+ (𝑝1𝑝2𝑝3 − 𝑝1𝑝3) 𝑦2= ...𝑦𝑦 − ̈𝑦 ̇𝑦 + ̈𝑦𝑦 − ̇𝑦2 + ̇𝑦𝑦3. (60)

Example 14. A linear 2-compartment model without input
can be written as 𝑥̇1 = 𝑝11𝑥1 + 𝑝12𝑥2,𝑥̇2 = 𝑝21𝑥1 + 𝑝22𝑥2, (61)

where 𝑥1 and 𝑥2 are variables and 𝑝11,𝑝12,𝑝21,𝑝22 are
parameters. We assume only 𝑥1 is observable and perform
differential elimination and obtain our input-output invariant
in terms of only 𝑦 = 𝑥1(𝑡):̈𝑦 − (𝑝11 + 𝑝22) ̇𝑦 + (𝑝11𝑝22 − 𝑝12𝑝21) 𝑦 = 0 (62)
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Example 15. A linear 3-compartment model without input is𝑥̇1 = 𝑝11𝑥1 + 𝑝12𝑥2 + 𝑝13𝑥3,𝑥̇2 = 𝑝21𝑥1 + 𝑝22𝑥2 + 𝑝23𝑥3,𝑥̇3 = 𝑝31𝑥1 + 𝑝32𝑥2 + 𝑝33𝑥3, (63)

where 𝑥1,𝑥2, 𝑥3 are variables and 𝑝11.𝑝12,𝑝13,𝑝21,𝑝22,𝑝23,𝑝31,𝑝32,𝑝33 are parameters. We assume only 𝑥1 is
observable and perform differential elimination and obtain
our input-output invariant in terms of only 𝑦 = 𝑥1(𝑡):

...𝑦 − (𝑝11 + 𝑝22 + 𝑝33) ̈𝑦 + (𝑝12𝑝21 − 𝑝11𝑝22 + 𝑝13𝑝31+ 𝑝23𝑝32 − 𝑝11𝑝33 − 𝑝22𝑝33) ̈𝑦 − (−𝑝13𝑝22𝑝31+ 𝑝12𝑝23𝑝31 + 𝑝13𝑝21𝑝32 − 𝑝11𝑝23𝑝32 − 𝑝12𝑝21𝑝33+ 𝑝11𝑝22𝑝33) 𝑦 = 0 (64)

By assuming 𝑦 = 𝑥1 in Examples 6.1–6.5 representing
the same observable variable, we apply our method to data
simulated from each model and perform model comparison.
The models are simulated and 100 time points are obtained
for the variable 𝑥 in each model. We add different levels of
Gaussian noise to the simulated data and then estimate the
higher order derivatives from the data. Accurate estimation of
the derivatives was not always possible. For example, during
our study we found that for some parameters of the Lotka-
Volterra three species model, e.g., 𝑝1,𝑝2,𝑝3,𝑝4,𝑝5,𝑝6,𝑝7 =[1.24; 1.68; 3.26; 0.38; 1.50; 0.15; 1.14], the data could not ade-
quately fit with a GP, as indicated by a small likelihood.
Furthermore, even when a good fit is achieved, the derivative
estimates themselves could be poor as reflected in high pos-
terior variances. This is a notoriously difficult problem and
we offer only some pragmatic guidance here. In particular,
we err on the side of being overly conservative by keeping
only “good” time points defined as follows. Let 𝜎𝑘post(𝑡) be the
posterior standard deviation of the estimate of 𝑦(𝑘)(𝑡).Then a
time point 𝑡𝑖 is considered good only if𝜎𝑘post (𝑡𝑖) ≤ mean {𝜎𝑘post (𝑡𝑗)} + std {𝜎𝑘post (𝑡𝑗)} (65)

for all 𝑘, where mean(⋅) and std(⋅) give the mean and
standard deviations, respectively, of a set. In this way, we
adaptively filter out potentially problematic inputs to the
ensuing model rejection framework. Note that filtering out
data is equivalent to removing constraints so that we can
only decrease the discriminatory power, i.e., models that are
flagged as incompatible after data filtering would have been
incompatible as well without filtering.

Once the data are obtained and derivative data are
estimated through the GP regression, each model data set
is tested against the other input-output invariants. Results
are shown in Figure 1, which gives a probability bound that
the data are compatible with a given model (i.e., ∼ 0 means
model rejected) at a variety of noise levels. We find that we
can reject the three species Lotka-Volterra model and Lorenz
model for data simulated from the Lotka-Volterra two species;
however, both linear compartment models are compatible.

For data from the three species Lotka-Volterra model, the
linear compartment models and two species Lotka-Volterra
can be rejected until the noise increases and then the method
can no longer reject any models. Finally data generated from
the Lorenz model can only reject the two species linear
compartment and two species Lotka-Volterra model.

8. Other Considerations: Known Parameter
Values and Algebraic Dependencies

We have demonstrated our model discrimination algorithm
on various models. In this section, we consider some other
theoretical points regarding input-output invariants.

As mentioned earlier, we have assumed that the param-
eters are all unknown and we have not taken any possible
algebraic dependencies among the coefficients into account.
This latter point is another reason our algorithm only con-
cerns model rejection and not model selection. Thus, each
unknown coefficient is essentially treated as an independent
unknown variable in our linear system of equations. How-
ever, there may be instances where we would like to consider
incorporating this additional information.

To analyze the effects of incorporating known parameter
values and algebraic dependencies, we will examine a par-
ticularly nice class of models, linear compartment models,
whose input-output equations can be found using linear
algebra techniques [31]; i.e., computation of the input-output
equations does not rely on more computationally intensive
approaches such as RosenfeldGroebner and Gröbner bases.
Since we will now be considering the explicit form of the
coefficients of the input-output equations, we describe the
set-up of linear compartment models below.

Let 𝐺 = (𝑉,𝐸) be a directed graph with vertex set 𝑉
and set of directed edges 𝐸. Each vertex 𝑖 ∈ 𝑉 corresponds
to a compartment in our model and each edge 𝑗 󳨀→𝑖 corresponds to a direct flow of material from the 𝑗th
compartment to the 𝑖th compartment. Let 𝐼𝑛,𝑂𝑢𝑡, 𝐿𝑒𝑎𝑘 ⊆ 𝑉
be three sets of compartments: the set of input compartments,
output compartments, and leak compartments, respectively.
To each edge 𝑗 󳨀→ 𝑖 we associate an independent parameter𝑝𝑖𝑗, the rate of flow from compartment 𝑗 to compartment 𝑖.
To each leak node 𝑖 ∈ 𝐿𝑒𝑎𝑘, we associate an independent
parameter 𝑝0𝑖, the rate of flow from compartment 𝑖 leaving
the system.

To such a graph 𝐺 and set of leaks 𝐿𝑒𝑎𝑘 we associate the
matrix 𝐴 in the following way:𝐴 𝑖𝑗
= {{{{{{{{{{{{{{{{{

−𝑝0𝑖 − ∑𝑘:𝑖󳨀→𝑘∈𝐸𝑝𝑘𝑖 if 𝑖 = 𝑗 and 𝑖 ∈ 𝐿𝑒𝑎𝑘− ∑𝑘:𝑖󳨀→𝑘∈𝐸𝑝𝑘𝑖 if 𝑖 = 𝑗 and 𝑖 ∉ 𝐿𝑒𝑎𝑘𝑝𝑖𝑗 if 𝑗 󳨀→ 𝑖 is an edge of 𝐺0 otherwise

(66)

Then we construct a system of linear ODEs with inputs and
outputs associated with the quadruple (𝐺, 𝐼𝑛,𝑂𝑢𝑡, 𝐿𝑒𝑎𝑘) as
follows:
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(c) Data from Lorenz model
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(d) Data from linear compartment three species

Figure 1: Data simulated frommodel specified and differential algebraic statistics model rejection applied to five model invariants. Gaussian
noise is added to data in factors of 10 at levels shown in the figure. (a) Data simulated from two species Lotka-Volterra model with parameter
values 𝑝1,𝑝2,𝑝3,𝑝4 = [1.24; 1.68; 3.26; 0.38] and initial condition [10, 1]. (b) Data simulated from three species Lotka-Volterra model with
parameter values 𝑝1,𝑝2,𝑝3,𝑝4,𝑝5,𝑝6,𝑝7 = [0.178; 0.12; 0.99; 0.17; 0.03; 0.56; 0.88] and initial condition [2, 1, 1]. (c) Data simulated from the
Lorenz model with parameter values 𝑝1,𝑝2,𝑝3 = [3.5, .3, 2.8] and initial condition [2, 1, 1]. (d) Data simulated from the linear compartment
three species model with parameter values 𝑝11,𝑝12,𝑝13,𝑝21,𝑝22,𝑝23,𝑝31,𝑝32,𝑝33 = [−2, 1, 0, 1,−3, 1, 0, 1,−2] and initial condition [3, 1, 5].

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝑢 (𝑡)𝑦𝑖 (𝑡) = 𝑥𝑖 (𝑡) for 𝑖 ∈ 𝑂𝑢𝑡 (67)

where 𝑢𝑖(𝑡) ≡ 0 for 𝑖 ∉ 𝐼𝑛.The coordinate functions 𝑥𝑖(𝑡) are
the state variables, the functions𝑦𝑖(𝑡) are the output variables,
and the nonzero functions 𝑢𝑖(𝑡) are the inputs.The resulting
model is called a linear compartment model.

In [31], an explicit formula for the input-output equations
for linearmodels was derived. In particular, it was shown that

all linear 𝑛-compartment models corresponding to strongly
connected graphs with at least one leak and having the same
input and output compartments will have the same differ-
ential polynomial form of the input-output equations. For
example, a linear 2-compartment model with a single input
and output in the same compartment and corresponding to a
strongly connected graph with at least one leak has the form:̈𝑦 + 𝑐1 ̇𝑦 + 𝑐2𝑦 = 𝑢̇ + 𝑐3𝑢 (68)
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Thus, our model discrimination method would not work
for twodistinct linear 2-compartmentmodelswith the above-
mentioned form. In order to discriminate between two such
models, we need to take other information into account, e.g.,
known parameter values.

Example 16. Consider the following two linear 2-
compartment models:(𝑥̇1̇𝑥2) = (−𝑝01 − 𝑝21 𝑝12𝑝21 −𝑝12)(𝑥1𝑥2) + (𝑢0) , 𝑦 = 𝑥1(𝑥̇1̇𝑥2) = (−𝑝21 𝑝12𝑝21 −𝑝02 − 𝑝12)(𝑥1𝑥2) + (𝑢0) , 𝑦 = 𝑥1

(69)

whose corresponding input-output equations are of the
form: ̈𝑦 + (𝑝01 + 𝑝21 + 𝑝12) ̇𝑦 + 𝑝01𝑝12𝑦 = 𝑢̇ + 𝑝12𝑢̈𝑦 + (𝑝21 + 𝑝12 + 𝑝02) ̇𝑦 + 𝑝02𝑝21𝑦= 𝑢̇ + (𝑝02 + 𝑝12) 𝑢 (70)

Notice that both of these equations are of the above-
mentioned form, i.e., both 2-compartment models have a
single input and output in the same compartment and corre-
spond to strongly connected graphs with at least one leak. In
the first model, there is a leak from the first compartment and
an exchange between compartments 1 and 2. In the second
model, there is a leak from the second compartment and an
exchange between compartments 1 and 2. Assume that the
parameter 𝑝12 is known. In the first model, this changes our
invariant to(𝑝01 + 𝑝21) ̇𝑦 + 𝑝01 (𝑝12𝑦) = 𝑢̇ + 𝑝12𝑢 − ̈𝑦 − 𝑝12 ̇𝑦

or, 𝑐1 ̇𝑦 + 𝑐2 (𝑝12𝑦) = 𝑢̇ + 𝑝12𝑢 − ̈𝑦 − 𝑝12 ̇𝑦 (71)

In the second model, our invariant is(𝑝21 + 𝑝02) ̇𝑦 + 𝑝02𝑝21𝑦 − 𝑝02𝑢= 𝑢̇ + 𝑝12𝑢 − ̈𝑦 − 𝑝12 ̇𝑦
or, 𝑐1 ̇𝑦 + 𝑐2𝑦 + 𝑐3𝑢 = 𝑢̇ + 𝑝12𝑢 − ̈𝑦 − 𝑝12 ̇𝑦 (72)

In this case, the right-hand sides of the two equations are
the same, but thefirst equation has two variables (coefficients)
while the second equation has three variables (coefficients).
Thus, if we had data from the second model, we could try to
reject the first model (much like the 3-compartment versus 2-
compartment model discrimination in the examples above).
In other words, a vector in the span of ̇𝑦,𝑦, and 𝑢 for 𝑡1, 𝑡2, 𝑡3
may not be in the span of ̇𝑦 and 𝑦 only.

We next consider the effect of incorporating coefficient
dependency relationships. While we cannot incorporate the

polynomial algebraic dependency relationships among the
coefficients in our linear algebraic approach to model rejec-
tion, we can include certain dependency conditions, such
as certain coefficients becoming known constants. We have
already seen oneway inwhich this can happen in the previous
example (from known nonzero parameter values). We now
explore the case where certain coefficients go to zero. From
the explicit formula for input-output equations from [31], we
get that a linear model without any leaks has a zero term
for the coefficient of 𝑦. Thus a linear 2-compartment model
with a single input and output in the same compartment and
corresponding to a strongly connected graph without any
leaks has the form: ̈𝑦 + 𝑐1 ̇𝑦 = 𝑢̇ + 𝑐2𝑢 (73)

Thus to discriminate between two distinct linear 2-
compartment models, one with leaks and one without any
leaks, we should incorporate this zero coefficient into our
invariant.

Example 17. Consider the following two linear 2-
compartment models:(𝑥̇1̇𝑥2) = (−𝑝01 − 𝑝21 𝑝12𝑝21 −𝑝12)(𝑥1𝑥2) + (𝑢0) , 𝑦 = 𝑥1(𝑥̇1̇𝑥2) = (−𝑝21 𝑝12𝑝21 −𝑝12)(𝑥1𝑥2) + (𝑢0) , 𝑦 = 𝑥1 (74)

whose corresponding input-output equations are of the
form: ̈𝑦 + (𝑝01 + 𝑝21 + 𝑝12) ̇𝑦 + 𝑝01𝑝12𝑦 = 𝑢̇ + 𝑝12𝑢̈𝑦 + (𝑝21 + 𝑝12) ̇𝑦 = 𝑢̇ + 𝑝12𝑢 (75)

In the first model, there is a leak from the first compartment
and an exchange between compartments 1 and 2. In the
second model, there is an exchange between compartments1 and 2 and no leaks.Thus, our invariants can be written as𝑐1 ̇𝑦 + 𝑐2𝑦 + 𝑐3𝑢 = 𝑢̇ − ̈𝑦𝑐1 ̇𝑦 + 𝑐2𝑢 = 𝑢̇ − ̈𝑦 (76)

Again, the right-hand sides of the two equations are the
same, but the first equation has three variables (coefficients)
while the second equation has two variables (coefficients).
Thus, if we had data from the first model, we could try to
reject the second model. In other words, a vector in the span
of ̇𝑦,𝑦, and 𝑢 for 𝑡1, 𝑡2, 𝑡3 may not be in the span of ̇𝑦 and 𝑢
only.

9. Conclusion

After performing this differential algebraic and statistical
model rejection, one has already obtained the input-output
equations and thus can test structural identifiability [17, 26,
34]. In a sense, our method extends the current spectrum of
potential approaches for comparingmodels with time-course
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data, in that one canfirst reject incompatiblemodels, then test
structural identifiability of compatible models using input-
output equations obtained from the differential elimination,
infer parameter values of the admissiblemodels, and apply an
information criterion model selection method to assert the
best model.

Notably the presented differential algebraic and statistical
method does not penalize for model complexity, unlike tra-
ditional model selection techniques. Rather, we reject when
a model cannot, for any parameter values, be compatible
with the given data. We found that simpler models, such
as the linear 2-compartment model, could be rejected when
data were generated from a more complex model, such as
the three species Lotka-Volterra model, which elicits a wider
range of behavior. On the other hand, more complex models,
such as the Lorenz model, were often not rejected, from data
simulated from less complexmodels. In the future it would be
helpful to better understand the relationship between input-
output invariants and dynamics. It would be useful to develop
numerical algorithms in differential algebra (similar to that in
numerical algebraic geometry); a natural extension, if such
algorithms were available, would be to analyze models with
data, although not parameter-free, similar to that done in [35,
36]. Another future direction is creating an algorithm that
takes a probabilistic or randomized approach for eliminating
variables of larger differential-algebra models [37].

We believe there is large scope for additional parameter-
free coplanarity model comparison methods. It would be
beneficial to explore whether algorithms for differential
elimination can handle larger systems and whether this area
could be extended.
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