Construction and analysis of a modular model of caspase activation in apoptosis

Kenneth L. Ho

Courant Institute, New York University

November 14, 2008

1COB Colloquium, NYU
Apoptosis is a conserved, highly regulated form of programmed cell death in multicellular organisms.
Apoptosis is a conserved, highly regulated form of programmed cell death in multicellular organisms.

- Involved in many physiological processes
- Dysregulation associated with pathological conditions
- Characteristic cell death morphology
Apoptosis is a conserved, highly regulated form of programmed cell death in multicellular organisms.

- Involved in many physiological processes
- Dysregulation associated with pathological conditions
- Characteristic cell death morphology

adapted from Wikipedia
Introduction
Background: Signaling pathways

Zheng and Flavell (2000)
Introduction

Approach

- Model construction by integration of previous models from the literature
Introduction

Approach

- Model construction by integration of previous models from the literature
- Simplification of dynamics by steady-state abstraction of oligomerization kinetics
Introduction

Approach

- Model construction by integration of previous models from the literature
- Simplification of dynamics by steady-state abstraction of oligomerization kinetics
- Linear regression to identify essential reactions
Introduction

Approach

- Model construction by integration of previous models from the literature
- Simplification of dynamics by steady-state abstraction of oligomerization kinetics
- Linear regression to identify essential reactions
- Reduced models and validation
A MATHEMATICAL MODEL OF RECEPTOR-MEDIATED APOPTOSIS: DYING TO KNOW WHY FASL IS A TRIMER

RONALD LAI
TRACHETE L. JACKSON
Department of Mathematics, University of Michigan
525 E. University, Ann Arbor, Michigan 48109-1109
(Communicated by Yang Kuang)

ABSTRACT. The scientific importance of understanding programmed cell death is undeniable; however, the complexity of death signal propagation and the formerly incomplete knowledge of apoptotic pathways has left this topic virtually untouched by mathematical modeling. In this paper, we use a mechanistic approach to frame the current understanding of receptor-mediated apoptosis with an immediate goal of isolating the role receptor trimerization plays in this process. Analysis and simulation suggest that if the death signal is to be successful at low-receptor, high-ligand concentration, Fas trimerization is unlikely to be the driving force in the signal propagation. However at high-receptor and low-ligand concentrations, the mathematical model illustrates how the ability of FasL to cluster three Fas receptors can be crucially important for downstream events that propagate the apoptotic signal.

1. Introduction. Apoptosis or programmed cell death (PCD) is a critical process in normal tissue development [1]. It is the primary mechanism through which cells are removed when malfunctions arise from cell stress, cell damage, or conflicting cell division signals [2]. Maintaining the balance between programmed cell death and cell survival is fundamentally important since disturbing this equilibrium can lead to a number of pathological disorders. The core component of the cell suicide...
Model construction

Network integration: Extrinsic subnetwork

Analysis and results

Bistability Analyses of a Caspase Activation Model for Receptor-induced Apoptosis

Received for publication, May 3, 2004, and in revised form, June 18, 2004
Published, JBC Papers in Press, June 18, 2004, DOI 10.1074/jbc.M410480206

Thomas Eissing†, Holger Conzelmann†, Ernst D. Gilles‡, Frank Allgöwer§, Eric Bullinger‖, and Peter Scheurich**

From the Institute for Systems Theory in Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany, the Institute for System Dynamics and Control, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany, the Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany, and the **Institute for Cell Biology and Immunology, University of Stuttgart, Allee 31, 70569 Stuttgart, Germany

Apoptosis is an important physiological process crucially involved in development and homeostasis of multicellular organisms. Although the major signaling pathways have been unraveled, a detailed mechanistic understanding of the complex underlying network remains elusive. We have translated here the current knowledge of the molecular mechanisms of the death-receptor-activated caspase cascade into a mathematical model. A reduction down to the apoptotic core machinery enables the application of analytical mathematical methods to elucidate the system behavior within a wide range of parameters. Using parameter values from the literature, the model reveals an unstable status of survival indicating the need for further control. Based on recent publications we tested one additional regulatory mechanism at the level of initiator caspase activation and demonstrated that the resulting system displays desired characteristics such as bistability. In addition, the results from our model studies allowed us to reconcile the fast kinetics of caspase-3 activation observed at the single cell level with the much slower kinetics found at the level of a cell population.

Conclusion

Apoptosis is a genetically defined major form of programmed cell death enabling the organism to remove unwanted cells, e.g., during embryonic development and after immune responses, to select educated immune cells and to eliminate virally infected and transformed cells (1, 2). Extrinsic or intrinsic apoptotic cell death can be involved in severe pathological alterations, including developmental defects, autoimmune diseases, neurodegeneration, or cancer. Extrinsic and intrinsic apoptotic pathways can be distinguished, although partly employing overlapping signaling transduction pathways. A hallmark of the ongoing research on extrinsic apoptosis is the identification of the extrinsic pathway of apoptosis induction after death receptor stimulation as depicted in Fig. 1.

Mathematical modeling and systems theory can provide valuable tools to get insight into complex dynamical systems, to test hypotheses, and to identify weak points (5, 40). Previous modeling approaches in apoptosis focused on the extrinsically triggered pathways, resulting in complex models (7, 8). The model parameters were fitted to data derived from cell population studies showing caspase activation in a range from 30 min to several hours. These models can describe and easily illustrate certain aspects of the signal transduction pathway. However, more recent experimental results performed at the single cell level show that the majority of caspases are activated within a very short time interval (<15 min) (9–12). Obviously, the single cell level is relevant for a mechanistic understanding. With the focus on receptor-induced apoptosis, we used Monte Carlo methods to look for parameter domains that enable an appropriate description of apoptosis induction in a single cell (model based on Fig. 1, data not shown). The obtained results revealed an unexpected responsiveness of the system toward minute initiator caspase activation if required to act rapidly. This behavior of the model was caused by the caspase cascade that represents the main signaling route in so-called type I cells (13) (see Fig. 1, yellow background). We therefore translated the current picture of the extrinsically triggered caspase cascade in a very elementary form into a mathematical model enabling a thorough investigation through the application of analytical methods. Our results showed that within large parameter ranges, including values from the literature, this straightforward model structure is capable of appropriately describing the expected behavior that can be deduced from experimental data. We therefore explored the cell model structure to reconcile these observed differences and constructed a model able to describe the
Model construction
Network integration: Coupling subnetwork

Effects of Bcl-2 Levels on Fas Signaling-Induced Caspase-3 Activation: Molecular Genetic Tests of Computational Model Predictions

Fei Hua, Melanie G. Cornejo, Michael H. Cardone, Cynthia L. Stokes, and Douglas A. Lauffenburger

Fas-induced apoptosis is a critical process for normal immune system development and function. Although many molecular components in the Fas-signaling pathway have been identified, a systematic understanding of how they work together to determine network dynamics and apoptosis itself has remained elusive. To address this, we generated a computational model for interpreting and predicting effects of pathway component properties. The model integrates current information concerning the signaling network downstream of Fas activation, through both type I and type II pathways, until activation of caspase-3. Unknown parameter values in the model were estimated using experimental data obtained from human Jurkat T cells. To elucidate critical signaling network properties, we examined the effects of altering the level of Bcl-2 on the kinetics of caspase-3 activation, using both overexpression and knockdown in the model and experimentally. Overexpression was used to distinguish among alternative hypotheses for inhibitory binding interactions of Bcl-2 with various components in the mitochondrial pathway. In comparing model simulations with experimental results, we find the best agreement when Bcl-2 blocks the release of cytochrome c by binding to both Bax and truncated Bcl instead of Bax, truncated Bcl, or Bcl alone. Moreover, although Bcl-2 overexpression strongly reduces caspase-3 activation, Bcl-2 knockdown has a negligible effect, demonstrating a general model finding that varying the expression levels of signal molecules frequently has asymmetric effects on the outcome. Finally, we demonstrate that the relative dominance of type I vs type II pathways can be switched by varying particular signaling component levels without changing network structure. The Journal of Immunology, 2005, 175: 903-915.

Apoptosis is an essential cellular event for maintaining homeostasis of the immune system and its normal function. Dysregulation of apoptosis can contribute to various autoimmune diseases and cancer (1, 2). One major mechanism for inducing apoptosis is through the activation of death receptors such as TNF, Fas (Apo-1/CDD9), DR4 (TRAMP), DR5 (TRAIL-R2), and DR6 (TRAIL-R2). Among death receptors, the signaling pathways for Fas-induced apoptosis are the best characterized (3) (Fig 1). Two pathways activated by Fas have been identified (6), and are referred to as type I and type II pathways. For both pathways, caspases, a family of cysteine proteases, are crucial for both the initiation and execution of apoptosis. The pathways diverge after activation of initiator caspases (e.g., caspase-8 and caspase-10) and converge at the end by activating effector caspases (e.g., caspase-3). In the type I pathway, initiator caspases cleave and activate effector caspases directly. In the type II pathway, also called the mitochondrial pathway, a more complex series of multiple steps along both signal cascades (2, 4, 5, 7). For instance, FLIP blocks activation of initiator caspases, Bcl-2 prevents mitochondrial disruption, and X-linked inhibitor of apoptosis protein (XIAP) inhibits downstream caspases (e.g., caspase-9 and caspase-3).

Despite the characterization of the components of those apoptotic pathways, we have an incomplete understanding of how all of the signaling molecules fit together into a single coherent network, and how the quantitative and dynamic aspects of the network function in relation to the final cellular outcome (i.e., apoptosis vs survival). Studies in other systems, such as the epidemic growth factor receptor (8), have shown that using computational models to study the dynamic behavior of an integrated signaling system can contribute significantly to understanding complex biological processes. In this study, we organize biochemical and biophysical knowledge about the Fas signaling pathway into a mechanistic mathematical model to advance our understanding of the intera-
A mathematical model for apoptosome assembly: The optimal cytochrome c/Apaf-1 ratio

Jun Nakabayashi*, Akira Sasaki

Department of Biology, Faculty of Science, Kyoto University, Sakyo-ku 606-8502, Japan
Received 7 October 2005; revised in revised form 24 February 2006; accepted 24 February 2006
Available online 2 May 2006

Abstract

Apoptosis, a highly conserved form of cell suicide, is regulated by apoptotic signals and their transduction with caspases, a family of cysteine proteases. Caspases are constantly expressed in the normal cells as inactive pro-enzymes. The activity of caspase is regulated by the proteolysis. Sequential proteolytic reactions of caspases are needed to execute apoptosis. Mitochondrial pathway is one of these apoptotic signal pathways, in which caspases are oligomerized into characteristic heptamer structure, called apoptosome, with caspase-9 that activate the effector caspase for apoptosis. To investigate the dynamics of signal transduction pathway regulated by oligomerization, we construct a mathematical model for Apaf-1 heptamer assembly process. The model first reveals that intermediate products can remain unconverted even after all assembly reactions are completed. The second result of the model is that the conversion efficiency of Apaf-1 heptamer assembly is maximized when the initial concentration of cytochrome c is equal to that of Apaf-1. When the concentration of cytochrome c is sufficiently larger or smaller than that of Apaf-1, the final Apaf-1 heptamer production is decreased, because intermediate Apaf-1 oligomers (receptors and bigger oligomers), which themselves are unable to form active heptamer, accumulate too fast in the cells, obstructing a smooth production of Apaf-1 heptamer. Slow activation of Apaf-1 monomers and small oligomers increase the conversion efficiency. We also study the optimal number of subunits comprising an active oligomer that maximizes the conversion efficiency in assembly process, and found that the heptamer is the optimum.

Keywords: Apoptosis; Apoptosome; Mitochondrial pathway; Cytochrome c; Apaf-1; Oligomerization

1. Introduction

Apoptosis is a highly conserved form of cell suicide, which plays a key role in controlling the cell number in multicellular organisms (Zimmermann et al., 2001). The apoptotic signals are transduced through the specific pathways. All of the apoptotic signal pathways are composed of the cascade of caspase reactions. Caspases are highly conserved cysteine proteases (Nunez et al., 1998) protein cleavage. Once caspase is cleaved into subunits, an active complex is produced from the large and the small subunits. The active complex of caspase can cleave the specific site of caspase and or substrates in the downstream of the cascade. The apoptotic signal is transduced by this sequential activations of caspases. Caspases are divided into two classes by their functions in this cascade. One, called initiator caspase, takes part in the upstream of the cascade, which are activated by the receptor of the
Mathematical Modeling Identifies Inhibitors of Apoptosis as Mediators of Positive Feedback and Bistability

Stefan Legewie, Niels Bützgen, Hanspeter Herzel
Institute for Theoretical Biology, Humboldt University, Berlin, Germany

The intrinsic, or mitochondrial, pathway of caspase activation is essential for apoptotic induction by various stimuli including cyto toxic stress. It depends on the cellular context, whether cytochrome c released from mitochondria induces caspase activation gradually or in an all-or-none fashion, and whether caspase activation irreversibly commits cells to apoptosis. By analyzing a quantitative kinetic model, we show that inhibition of caspase-3 (Casp3) and Casp9 by inhibitors of apoptosis (IAPs) results in an implicit positive feedback, since cleaved Casp3 augments its own activation by resequestering IAPs away from Casp9. We demonstrate that this positive feedback brings about bistability (i.e., all-or-none behaviour), and that it cooperates with Casp3-mediated feedback cleavage of Casp9 to generate irreversibility in caspase activation. Our calculations also unravel how cell-specific protein expression brings about the observed qualitative differences in caspase activation (gradual versus all-or-none and reversible versus irreversible). Finally, known regulators of the pathway are shown to efficiently shift the apoptotic threshold stimulus, suggesting that the bistable caspase cascade computes multiple inputs into an all-or-none caspase output. As cellular inhibitory proteins (e.g., IAPs) frequently inhibit consecutive intermediates in cellular signaling cascades (e.g., Casp3 and Casp9), the feedback mechanism described in this paper is likely to be a widespread principle on how cells achieve ultrasensitivity, bistability, and irreversibility.

Introduction

Apoptosis, an evolutionary conserved form of cell suicide, allows multicellular organisms to eliminate damaged or excess cells in order to maintain tissue homeostasis. Dysregulation of apoptosis is associated with various pathological conditions, including cancer and neurodegenerative disorders. Apoptosis-specific cysteine proteases, also known as caspases, are the central executors of apoptosis. In most cases, apoptotic stimuli activate initiator caspases, whose substrates, the effector caspases, ultimately cause cellular demise by cleaving various cellular substrates [1].

OPEN ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Introduction

Apoptosis, an evolutionary conserved form of cell suicide, allows multicellular organisms to eliminate damaged or excess cells in order to maintain tissue homeostasis. Dysregulation of apoptosis is associated with various pathological conditions, including cancer and neurodegenerative disorders. Apoptosis-specific cysteine proteases, also known as caspases, are the central executors of apoptosis. In most cases, apoptotic stimuli activate initiator caspases, whose substrates, the effector caspases, ultimately cause cellular demise by cleaving various cellular substrates [1].

OPEN ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Introduction

Apoptosis, an evolutionary conserved form of cell suicide, allows multicellular organisms to eliminate damaged or excess cells in order to maintain tissue homeostasis. Dysregulation of apoptosis is associated with various pathological conditions, including cancer and neurodegenerative disorders. Apoptosis-specific cysteine proteases, also known as caspases, are the central executors of apoptosis. In most cases, apoptotic stimuli activate initiator caspases, whose substrates, the effector caspases, ultimately cause cellular demise by cleaving various cellular substrates [1].

OPEN ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Introduction

Apoptosis, an evolutionary conserved form of cell suicide, allows multicellular organisms to eliminate damaged or excess cells in order to maintain tissue homeostasis. Dysregulation of apoptosis is associated with various pathological conditions, including cancer and neurodegenerative disorders. Apoptosis-specific cysteine proteases, also known as caspases, are the central executors of apoptosis. In most cases, apoptotic stimuli activate initiator caspases, whose substrates, the effector caspases, ultimately cause cellular demise by cleaving various cellular substrates [1].
Model construction
Steady-state abstraction

For an oligomer X with intermediate structures X_1, \ldots, X_n and dynamics

$$\frac{d \left[X \right]}{dt} = f ([X], [X]_1, \ldots, [X]_n) - \underbrace{\mu [X]}_{\text{degradation}} ,$$

use the steady-state approximation $f \approx f_{\text{ss}} = \mu [X]_{\text{ss}}$.
Model construction

Steady-state abstraction

For an oligomer \(X \) with intermediate structures \(X_1, \ldots, X_n \) and dynamics

\[
\frac{d [X]}{dt} = f ([X], [X]_1, \ldots, [X]_n) - \mu [X],
\]

use the steady-state approximation \(f \approx f_{ss} = \mu [X]_{ss} \). Fit \(\mu \) by comparing full dynamics with reduced (first order) dynamics.
Model construction

Steady-state abstraction

For an oligomer X with intermediate structures X_1, \ldots, X_n and dynamics

$$
\frac{d [X]}{dt} = f ([X], [X]_1, \ldots, [X]_n) - \mu [X],
$$

use the steady-state approximation $f \approx f_{ss} = \mu [X]_{ss}$. Fit μ by comparing full dynamics with reduced (first order) dynamics.

- This is not correct but is useful!
- Allows modularization of oligomerization kinetics
Model construction
Steady-state abstraction: DISC module

Lai and Jackson (2004), Aguda and Friedman (2008)
Model construction

Steady-state abstraction: DISC module

Lai and Jackson (2004), Aguda and Friedman (2008)
Model construction
Steady-state abstraction: DISC module

Lai and Jackson (2004), Aguda and Friedman (2008)
Model construction

Steady-state abstraction: MAC module

- Use tBid-Bax$_2$ as a functional surrogate of MAC, which releases Cytc and Smac from mitochondria
Model construction
Steady-state abstraction: MAC module

- Use tBid-Bax\(_2\) as a functional surrogate of MAC, which releases Cytc and Smac from mitochondria
- Analogously define a crosslinking model of formation:

\[
\text{tBid} + \text{Bax} \xrightleftharpoons[2k_f]{k_r} \text{tBid-Bax}, \quad \text{tBid-Bax} + \text{Bax} \xrightleftharpoons[k_f]{2k_r} \text{tBid-Bax}_2
\]
Model construction
Steady-state abstraction: MAC module

- Use tBid-Bax\(_2\) as a functional surrogate of MAC, which releases Cytc and Smac from mitochondria
- Analogously define a crosslinking model of formation:

\[
\text{tBid} + \text{Bax} \xrightleftharpoons[2k_r]{k_f} \text{tBid-Bax}, \quad \text{tBid-Bax} + \text{Bax} \xrightleftharpoons[2k_r]{k_f} \text{tBid-Bax}_2
\]

- Results are similar as for DISC
Model construction

Steady-state abstraction: Apoptosome module

Acehan et al. (2002), Nakabayashi and Sasaki (2008)
Steady-state abstraction: Apoptosome module

Acehan et al. (2002), Nakabayashi and Sasaki (2008)
Model construction

Steady-state abstraction: Apoptosome module

Acehan et al. (2002), Nakabayashi and Sasaki (2008)
Model construction

Full model: Reaction network
Model construction

Full model: Model species

<table>
<thead>
<tr>
<th>Species</th>
<th>Description</th>
<th>Synthesis rate (nM/s)</th>
<th>Degradation rate (s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISC</td>
<td>DISC</td>
<td></td>
<td>8.807 × 10⁻³</td>
</tr>
<tr>
<td>Casp8</td>
<td>pro caspase-8</td>
<td>adjusted</td>
<td>6.5 × 10⁻⁵ [62]</td>
</tr>
<tr>
<td>Casp8*</td>
<td>caspase-8</td>
<td></td>
<td>9.667 × 10⁻⁵ [62]</td>
</tr>
<tr>
<td>Casp3</td>
<td>pro caspase-3</td>
<td>adjusted</td>
<td>6.5 × 10⁻⁵ [62]</td>
</tr>
<tr>
<td>Casp3*</td>
<td>caspase-3</td>
<td></td>
<td>9.667 × 10⁻⁵ [62]</td>
</tr>
<tr>
<td>XIAP</td>
<td>XIAP</td>
<td>adjusted</td>
<td>1.933 × 10⁻⁴ [62]</td>
</tr>
<tr>
<td>Casp3*-XIAP</td>
<td>Casp3*-XIAP complex</td>
<td></td>
<td>2.883 × 10⁻⁴ [62]</td>
</tr>
<tr>
<td>BAR</td>
<td>BAR</td>
<td>1.111 × 10⁻³ ([BAR]₀ = 66.67 nM [62])</td>
<td>1.667 × 10⁻⁵ [62]</td>
</tr>
<tr>
<td>Casp8*-BAR</td>
<td>Casp8*-BAR complex</td>
<td></td>
<td>1.933 × 10⁻⁴ [62]</td>
</tr>
<tr>
<td>Bid</td>
<td>Bid</td>
<td>4.168 × 10⁻⁴ ([Bid]₀ = 25 nM [72, 73])</td>
<td>1.667 × 10⁻⁵ (μ_BAR)</td>
</tr>
<tr>
<td>tBid</td>
<td>truncated Bid</td>
<td></td>
<td>1.667 × 10⁻⁵ (μ_Bid)</td>
</tr>
<tr>
<td>tBid-Bax₂</td>
<td>tBid-Bax₂ complex</td>
<td></td>
<td>0.0264</td>
</tr>
<tr>
<td>Cytc</td>
<td>cytochrome c (mitochondrial)</td>
<td>10⁻³ ([Cytc]₀ = 100 nM [72, 73])</td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>Cytc*</td>
<td>cytochrome c (cytosolic)</td>
<td></td>
<td>10⁻⁵</td>
</tr>
<tr>
<td>Smac</td>
<td>Smac (mitochondrial)</td>
<td>0.0167 ([Smac]₀ = 100 nM [72, 73])</td>
<td>1.667 × 10⁻⁵ (μ_BAR)</td>
</tr>
<tr>
<td>Smac*</td>
<td>Smac (cytosolic)</td>
<td></td>
<td>1.667 × 10⁻⁵ (μ_Smac)</td>
</tr>
<tr>
<td>Smac*-XIAP</td>
<td>Smac-XIAP complex</td>
<td></td>
<td>1.933 × 10⁻⁴ (μ_Casp8*-BAR)</td>
</tr>
<tr>
<td>Apop</td>
<td>apoptosome</td>
<td></td>
<td>1.487 × 10⁻⁵</td>
</tr>
<tr>
<td>Casp9</td>
<td>pro caspase-9</td>
<td>1.3 × 10⁻³ ([Casp9]₀ = 20 nM [72, 73])</td>
<td>6.5 × 10⁻⁵ (μ_Casp8)</td>
</tr>
<tr>
<td>Casp9*</td>
<td>caspase-9</td>
<td></td>
<td>9.667 × 10⁻⁵ (μ_Casp8*)</td>
</tr>
<tr>
<td>Casp9*-XIAP</td>
<td>Casp9*-XIAP complex</td>
<td></td>
<td>2.883 × 10⁻⁴ (μ_Casp3*-XIAP)</td>
</tr>
</tbody>
</table>
Model construction

Full model: Model reactions

<table>
<thead>
<tr>
<th>Number</th>
<th>Reaction</th>
<th>Forward rate (nM$^{-1}$ s$^{-1}$)</th>
<th>Reverse rate (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISC</td>
<td>(FasL, FasR) \rightarrow DISC</td>
<td>f_{DISC}</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DISC + Casp8 \rightarrow DISC + Casp8*</td>
<td>10^{-4} (k_2)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Casp3* + Casp8 \rightarrow Casp3* + Casp8*</td>
<td>10^{-4} [3]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Casp8* + Casp3 \rightarrow Casp8* + Casp3*</td>
<td>5.8×10^{-4} [3]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Casp3* + XIAP \rightleftharpoons Casp3*-XIAP</td>
<td>3×10^{-3} [3]</td>
<td>0.035 [3]</td>
</tr>
<tr>
<td>5</td>
<td>Casp3* + XIAP \rightarrow Casp3*</td>
<td>3×10^{-3} [3]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Casp8* + BAR \rightleftharpoons Casp8*-BAR</td>
<td>5×10^{-3} [3]</td>
<td>0.035 [3]</td>
</tr>
<tr>
<td>7</td>
<td>Casp8* + Bid \rightarrow Casp8* + tBid</td>
<td>5×10^{-4} (est. [4])</td>
<td></td>
</tr>
<tr>
<td>MAC</td>
<td>(tBid, Bax) \rightarrow tBid-Bax$_2$</td>
<td>$f_{\text{tBid-Bax}_2}$</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>tBid-Bax$_2$ + Cytc \rightarrow tBid-Bax$_2$ + Cytc*</td>
<td>10^{-3} [4]</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>tBid-Bax$_2$ + Smac \rightarrow tBid-Bax$_2$ + Smac*</td>
<td>10^{-3} [4]</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Smac* + XIAP \rightleftharpoons Smac*-XIAP</td>
<td>7×10^{-3} [4]</td>
<td>2.21×10^{-3} [4]</td>
</tr>
<tr>
<td>Apop</td>
<td>(Cytc*, Apaf) \rightarrow Apop</td>
<td>f_{Apop}</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Apop + Casp9 \rightarrow Apop + Casp9*</td>
<td>2×10^{-4} (est. [8])</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Casp3* + Casp9 \rightarrow Casp3* + Casp9*</td>
<td>2×10^{-4} [8]</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Casp9* + Casp3 \rightarrow Casp9* + Casp3*</td>
<td>5×10^{-5} [8]</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Casp9* + XIAP \rightleftharpoons Casp9*-XIAP</td>
<td>1.06×10^{-4} [4]</td>
<td>10^{-3} [4]</td>
</tr>
</tbody>
</table>
Model construction

Full model: Dynamical equations

<table>
<thead>
<tr>
<th>Differential equations</th>
<th>Reaction velocities</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d \left[\text{DISC} \right]/dt = \mu_{\text{DISC}}(f_{\text{DISC}}([\text{FasL}]_0, [\text{FasR}]0; K{\text{DISC}}) - \text{DISC})$</td>
<td>$v_1 = k_1 [\text{DISC}] [\text{Casp8}]$</td>
</tr>
<tr>
<td>$d \left[\text{Casp8} \right]/dt = -v_1 - v_2 + \alpha_{\text{Casp8}} - \mu_{\text{Casp8}} [\text{Casp8}]$</td>
<td>$v_2 = k_2 [\text{Casp3}^*] [\text{Casp8}]$</td>
</tr>
<tr>
<td>$d \left[\text{Casp8}^* \right]/dt = v_1 + v_2 - v_6 - \mu_{\text{Casp8}^} [\text{Casp8}^]$</td>
<td>$v_3 = k_3 [\text{Casp8}^*] [\text{Casp3}]$</td>
</tr>
<tr>
<td>$d \left[\text{Casp3} \right]/dt = -v_3 - v_{13} + \alpha_{\text{Casp3}} - \mu_{\text{Casp3}} [\text{Casp3}]$</td>
<td>$v_4 = k_4 [\text{Casp3}^] [\text{XIAP}] - k_{-4} [\text{Casp3}^-\text{XIAP}]$</td>
</tr>
<tr>
<td>$d \left[\text{Casp3}^* \right]/dt = v_3 - v_{14} + v_{13} - \mu_{\text{Casp3}^} [\text{Casp3}^]$</td>
<td>$v_5 = k_5 [\text{Casp3}^*] [\text{XIAP}]$</td>
</tr>
<tr>
<td>$d \left[\text{XIAP} \right]/dt = -v_4 - v_5 - v_{10} - v_{14} + \alpha_{\text{XIAP}} - \mu_{\text{XIAP}} [\text{XIAP}]$</td>
<td>$v_6 = k_6 [\text{Casp8}^] [\text{BAR}] - k_{-6} [\text{Casp8}^-\text{BAR}]$</td>
</tr>
<tr>
<td>$d \left[\text{Casp3}^-\text{XIAP} \right]/dt = v_4 - \mu_{\text{Casp3}^-\text{XIAP}} [\text{Casp3}^*-\text{XIAP}]$</td>
<td>$v_7 = k_7 [\text{Casp8}^*] [\text{Bid}]$</td>
</tr>
<tr>
<td>$d \left[\text{BAR} \right]/dt = -v_6 + \alpha_{\text{BAR}} - \mu_{\text{BAR}} [\text{BAR}]$</td>
<td>$v_8 = k_8 [\text{tBid-Bax2}] [\text{Cytc}]$</td>
</tr>
<tr>
<td>$d \left[\text{Casp8}^-\text{BAR} \right]/dt = v_6 - \mu_{\text{Casp8}^-\text{BAR}} [\text{Casp8}^*-\text{BAR}]$</td>
<td>$v_9 = k_9 [\text{tBid-Bax2}] [\text{Smac}]$</td>
</tr>
<tr>
<td>$d \left[\text{Bid} \right]/dt = -v_{7} + \alpha_{\text{Bid}} - \mu_{\text{Bid}} [\text{Bid}]$</td>
<td>$v_{10} = k_{10} [\text{Smac}^] [\text{XIAP}] - k_{-10} [\text{Smac}^-\text{XIAP}]$</td>
</tr>
<tr>
<td>$d \left[\text{tBid} \right]/dt = v_7 - \mu_{\text{tBid}} [\text{tBid}]$</td>
<td>$v_{11} = k_{11} [\text{Apop}] [\text{Casp9}]$</td>
</tr>
<tr>
<td>$d \left[\text{tBid-Bax2} \right]/dt = \mu_{\text{tBid-Bax2}} (f_{\text{tBid-Bax2}}([\text{tBid}], [\text{Bax}]0; K{\text{tBid-Bax2}}) - [\text{tBid-Bax2}])$</td>
<td>$v_{12} = k_{12} [\text{Casp3}^*] [\text{Casp9}]$</td>
</tr>
<tr>
<td>$d \left[\text{Cytc} \right]/dt = -v_8 + \alpha_{\text{Cytc}} - \mu_{\text{Cytc}} [\text{Cytc}]$</td>
<td>$v_{13} = k_{13} [\text{Casp9}^*] [\text{Casp9}]$</td>
</tr>
<tr>
<td>$d \left[\text{Cytc}^* \right]/dt = v_8 - \mu_{\text{Cytc}^} [\text{Cytc}^]$</td>
<td>$v_{14} = k_{14} [\text{Casp9}^] [\text{XIAP}] - k_{-14} [\text{Casp9}^-\text{XIAP}]$</td>
</tr>
<tr>
<td>$d \left[\text{Smac} \right]/dt = -v_9 + \alpha_{\text{Smac}} - \mu_{\text{Smac}} [\text{Smac}]$</td>
<td></td>
</tr>
</tbody>
</table>
Model construction
Model parameters

- Reaction rates taken from appropriate model in the literature
- Rates appearing in more than one model are consistent
- Order-of-magnitude or similarity estimates for unquantified rates
Model construction

Model parameters

- Reaction rates taken from appropriate model in the literature
- Rates appearing in more than one model are consistent
- Order-of-magnitude or similarity estimates for unquantified rates
- Initial concentrations: HeLa (type I), Jurkat T (type II)

<table>
<thead>
<tr>
<th>Species</th>
<th>Initial concentration (nM)</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HeLa</td>
<td>Jurkat T</td>
<td></td>
</tr>
<tr>
<td>Casp8</td>
<td>216.67 [62]</td>
<td>33.33 [72,73]</td>
<td>[FasL]₀</td>
</tr>
<tr>
<td>Casp3</td>
<td>35 [62]</td>
<td>200 [72,73]</td>
<td>[FasR]₀</td>
</tr>
<tr>
<td>XIAP</td>
<td>66.67 [62]</td>
<td>30 [72,73]</td>
<td>K_DISC</td>
</tr>
<tr>
<td>BAR</td>
<td>66.67 [62]</td>
<td></td>
<td>[Bax]₀</td>
</tr>
<tr>
<td>Bid</td>
<td>25 [72,73]</td>
<td></td>
<td>K₆Bid-Bax₂</td>
</tr>
<tr>
<td>CytC</td>
<td>100 [72,73]</td>
<td></td>
<td>[Apaf]₀</td>
</tr>
<tr>
<td>Smac</td>
<td>100 [72,73]</td>
<td></td>
<td>λ₆Apop</td>
</tr>
<tr>
<td>Casp9</td>
<td>20 [72,73]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Model construction

Model parameters

- Reaction rates taken from appropriate model in the literature
- Rates appearing in more than one model are consistent
- Order-of-magnitude or similarity estimates for unquantified rates
- Initial concentrations: HeLa (type I), Jurkat T (type II)

<table>
<thead>
<tr>
<th>Species</th>
<th>HeLa (nM)</th>
<th>Jurkat T (nM)</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casp8</td>
<td>216.67</td>
<td>33.33</td>
<td>$[\text{FasL}]_0$</td>
<td>2 nM</td>
</tr>
<tr>
<td>Casp3</td>
<td>35</td>
<td>200</td>
<td>$[\text{FasR}]_0$</td>
<td>10 nM</td>
</tr>
<tr>
<td>XIAP</td>
<td>66.67</td>
<td>30</td>
<td>K_{DISC}</td>
<td>1.032 nM</td>
</tr>
<tr>
<td>BAR</td>
<td>66.67</td>
<td>30</td>
<td>$[\text{Bax}]_0$</td>
<td>83.33 nM</td>
</tr>
<tr>
<td>Bid</td>
<td>25</td>
<td>72,73</td>
<td>$K_{\text{BID-BAX}}$</td>
<td>100 nM</td>
</tr>
<tr>
<td>Cytc</td>
<td>100</td>
<td>72,73</td>
<td>$[\text{Apaf}]_0$</td>
<td>100 nM</td>
</tr>
<tr>
<td>Smac</td>
<td>100</td>
<td>72,73</td>
<td>$\lambda_{\text{Apoptosis}}$</td>
<td>1</td>
</tr>
<tr>
<td>Casp9</td>
<td>20</td>
<td>72,73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Philosophy: assume parameters are correct and study model solutions
Analysis and results
Characteristic time course

![Casp3* time course graph](image)
Define quantitative descriptors of caspase activation

1. Peak activation: maximum [Casp3*] over time course
2. Activation time: time at which this peak is achieved
Analysis and results

Regression analysis and model reduction

- Define quantitative descriptors of caspase activation
 1. Peak activation: maximum $[\text{Casp3}^*]$ over time course
 2. Activation time: time at which this peak is achieved

- Sensitivity analysis
 - Generate locally perturbed parameters around baseline values
 - Simulate to collect *synthetic* data
 - Multiple linear regression on standardized data:

\[Y = \begin{pmatrix} 1 & X \end{pmatrix} b \]

- Model reduction based on identified key parameters
Analysis and results
Regression analysis and model reduction: HeLa induced by FasL
Analysis and results
Regression analysis and model reduction: Jurkat T induced by FasL
Interestingly, both baseline HeLa and Jurkat T parameters exhibit type I behavior.
Interestingly, both baseline HeLa and Jurkat T parameters exhibit type I behavior.

Define new cell parameters Jurkat T* by turning off the reactions

\[\text{Casp3}^* + \text{Casp8} \rightarrow \text{Casp3}^* + \text{Casp8}^*, \quad (2) \]
\[\text{Casp3}^* + \text{XIAP} \rightarrow \text{Casp3}^*, \quad (5) \]
\[\text{Casp3}^* + \text{Casp9} \rightarrow \text{Casp3}^* + \text{Casp9}^*, \quad (12) \]

i.e., \(k_2 = k_5 = k_{12} = 0 \).
Analysis and results
Regression analysis and model reduction: Jurkat T* induced by low FasL
Analysis and results
Regression analysis and model reduction: HeLa induced by tBid

- Can also consider **mitochondrial apoptosis** through the intrinsic pathway
Can also consider **mitochondrial apoptosis** through the intrinsic pathway

Cell stress, DNA damage, cytotoxicity causes mitochondria permeabilization and release of Cytc and Smac
Can also consider *mitochondrial apoptosis* through the intrinsic pathway

Cell stress, DNA damage, cytotoxicity causes mitochondria permeabilization and release of CytC and Smac

Functionally represent with input $[\text{tBid}]_0 > 0$
Analysis and results
Regression analysis and model reduction: HeLa induced by tBid

- Peak [Casp3*]
- Activation time
- Parameter index
- Regression coefficient
- Time (s)
- [Casp3*] (nM)
- full
- reduced
- \(k_2 = 0 \)
- no Smac

Diagram:
- tBid-Bax₂ → Cyt c → Apop
- Smac
- XIAP
- Casp9
- BAR
- Casp8 → Casp3
- Casp8
Analysis and results
Regression analysis and model reduction: Jurkat T* induced by tBid

[Graphs and diagrams showing regression analysis and model reduction results.]
Analysis and results
Type II apoptosis prediction

- Type II behavior only for Jurkat T* under low FasL induction
Analysis and results
Type II apoptosis prediction

- Type II behavior only for Jurkat T* under low FasL induction
- Can we predict cell-specific parameters (i.e., initial concentrations) without omitting reactions that lead to type II apoptosis even under high FasL induction?
Analysis and results
Type II apoptosis prediction

- Type II behavior only for Jurkat T* under low FasL induction
- Can we predict cell-specific parameters (i.e., initial concentrations) without omitting reactions that lead to type II apoptosis even under high FasL induction?
- Use Jurkat T* case and transform to equivalent conditions
 1. Increase $[\text{XIAP}]_0$
 2. Decrease $[\text{FasR}]_0$
Type II behavior only for Jurkat T* under low FasL induction

Can we **predict** cell-specific parameters (i.e., initial concentrations) **without** omitting reactions that lead to type II apoptosis even under high FasL induction?

Use Jurkat T* case and transform to equivalent conditions

1. Increase $[\text{XIAP}]_0$
2. Decrease $[\text{FasR}]_0$
Analysis and results
Activation thresholds

Receptor-mediated apoptosis

Mitochondrial apoptosis

Graphs showing the relationship between [FasL]₀ (nM) and peak [Casp3⁺] (nM) for HeLa and Jurkat T cells.

Graphs showing the relationship between [tBid]₀ (nM) and activation time (s) for HeLa and Jurkat T cells.
Conclusion
Summary

- Constructed a model of apoptosis through module integration
Conclusion

Summary

- Constructed a model of apoptosis through module integration
- Simplified dynamics by steady-state abstraction
Conclusion

Summary

- Constructed a model of apoptosis through module integration
- Simplified dynamics by steady-state abstraction
- Performed sensitivity analysis by linear regression
Conclusion

Summary

- Constructed a model of apoptosis through module integration
- Simplified dynamics by steady-state abstraction
- Performed sensitivity analysis by linear regression
- Obtained reduced models for several cases of interest
Conclusion

Summary

- Constructed a model of apoptosis through module integration
- Simplified dynamics by steady-state abstraction
- Performed sensitivity analysis by linear regression
- Obtained *reduced models* for several cases of interest
 - Clarified roles of molecular components
 - Validated findings of previous studies
 - Highlighted different modes of operation
Conclusion

Summary

- Constructed a model of apoptosis through module integration
- Simplified dynamics by steady-state abstraction
- Performed sensitivity analysis by linear regression
- Obtained reduced models for several cases of interest
 - Clarified roles of molecular components
 - Validated findings of previous studies
 - Highlighted different modes of operation
- Predicted cell parameters for type II apoptosis
Conclusion

Summary

- Constructed a model of apoptosis through module integration
- Simplified dynamics by steady-state abstraction
- Performed sensitivity analysis by linear regression
- Obtained reduced models for several cases of interest
 - Clarified roles of molecular components
 - Validated findings of previous studies
 - Highlighted different modes of operation
- Predicted cell parameters for type II apoptosis
- Remarked on stability and caspase activation thresholds
Conclusion

Future directions

<table>
<thead>
<tr>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
</tr>
</tbody>
</table>
Conclusion

Future directions

Methodology

- Increase accuracy of steady-state abstraction by modulation with time-dependent function

Biology
Conclusion

Future directions

Methodology

- Increase accuracy of steady-state abstraction by modulation with time-dependent function
- Develop more formal framework for systematic and automated model reduction

Biology
Methodology

- Increase accuracy of steady-state abstraction by modulation with time-dependent function
- Develop more formal framework for systematic and automated model reduction
- **Reach**: integrate with model languages (e.g., SBML)

Biology
Conclusion

Future directions

Methodology

- Increase accuracy of steady-state abstraction by modulation with time-dependent function
- Develop more formal framework for systematic and automated model reduction
- **Reach**: integrate with model languages (e.g., SBML)

Biology

- Apply reduction to full apoptosis model
Conclusion

Future directions

Methodology

- Increase accuracy of steady-state abstraction by modulation with time-dependent function
- Develop more formal framework for systematic and automated model reduction
- **Reach**: integrate with model languages (e.g., SBML)

Biology

- Apply reduction to full apoptosis model
- Study transition of apoptotic behavior over cell parameters
Conclusion

Future directions

Methodology

- Increase accuracy of steady-state abstraction by modulation with time-dependent function
- Develop more formal framework for systematic and automated model reduction
- **Reach**: integrate with model languages (e.g., SBML)

Biology

- Apply reduction to full apoptosis model
- Study transition of apoptotic behavior over cell parameters
- Include regulators or delays for potential model stability
Conclusion
Future directions

Methodology

- Increase accuracy of steady-state abstraction by modulation with time-dependent function
- Develop more formal framework for systematic and automated model reduction
- **Reach**: integrate with model languages (e.g., SBML)

Biology

- Apply reduction to full apoptosis model
- Study transition of apoptotic behavior over cell parameters
- Include regulators or delays for potential model stability: bistability and the **point of no return**
Conclusion

Acknowledgments

- Heather Harrington (Imperial)
- Dr. Samik Ghosh (SBI) and KC Tung (UT Southwestern)
- Profs. Baltazar Aguda and Chiu-Yen Kao (OSU)
- Prof. Jaroslav Stark (Imperial)
- MBI Summer School at OSU

